JPS63278654A - Light rolling reduction casting method - Google Patents

Light rolling reduction casting method

Info

Publication number
JPS63278654A
JPS63278654A JP11351387A JP11351387A JPS63278654A JP S63278654 A JPS63278654 A JP S63278654A JP 11351387 A JP11351387 A JP 11351387A JP 11351387 A JP11351387 A JP 11351387A JP S63278654 A JPS63278654 A JP S63278654A
Authority
JP
Japan
Prior art keywords
slab
cast slab
thickness
solidification
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11351387A
Other languages
Japanese (ja)
Inventor
Toshio Masaoka
政岡 俊雄
Hitoshi Kobayashi
日登志 小林
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11351387A priority Critical patent/JPS63278654A/en
Publication of JPS63278654A publication Critical patent/JPS63278654A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Abstract

PURPOSE:To make reflection of tested result on internal quality in a cast slab to operation and to reduce center segregation by measuring the cast slab thickness after the strand cast slab is completely solidified, adjusting rolling reduction rate of rolls in case the measured value excesses the permissible range and controlling strain speed in the cast slab at the end time of the solidification. CONSTITUTION:When the strand cast slab 30 is completely solidified, the solidified cast slab 30 is straightened by a straightening roll 26 and cut to the prescribed length with a cutter 37. Next, the thickness of the cut cast slab is measured at each position thereof with measuring instrument 39 and disversing degree of the center segregation is found with an arithmetic unit 40. The permissible range of the prescribed thickness, assuming that the degree of the center segregation is minor, is beforehand grapsed, and in case the measured thickness of the cast slab excesses the permissible range of the prescribed thickness, the rolling reduction rate with the light rolling reduction rolls 16 applied in the cast slab 30 at the end time of solidification, is adjusted. By this method, the strain speed for the cast slab 30 at the end time of the solidification is controlled and the flow of molten steel in the inner part of the cast slab 30 is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造において鋳片の中心偏析を防止す
る軽圧下鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light reduction casting method for preventing center segregation of slabs in continuous casting.

[従来の技術] 通常、連続鋳造においては、溶鋼が水冷鋳型により冷却
されると、鋳片外周部に相当する部分に薄い凝固殻が形
成され、鋳型を通過した鋳片はその内部に未凝固溶鋼を
保持した状態で一群のサポートガイドロールにより案内
されつつ、ピンチロールにより引抜かれる。鋳片引抜き
過程に軸いては、鋳片にスプレィ水を噴射して鋳片内部
の凝固促進を図り、凝固殻の厚さが変形に耐え得る厚さ
以上に成長すると、鋳片を所定の曲率で略90″曲げつ
つ軽圧下装置により凝固途中の鋳片に軽圧下刃を加える
。この軽圧下帯において鋳片を完全凝固させ、次いで、
軽圧下帯の終了位置(矯正点)で矯正装置のロール群に
より鋳片の曲がりを矯正し、直線状になった鋳片を切断
機で所定長に切断する。
[Prior art] Normally, in continuous casting, when molten steel is cooled by a water-cooled mold, a thin solidified shell is formed at a portion corresponding to the outer periphery of the slab, and the slab that has passed through the mold has unsolidified inside. While holding the molten steel, it is guided by a group of support guide rolls and pulled out by pinch rolls. During the slab drawing process, spray water is injected onto the slab to promote solidification inside the slab, and when the thickness of the solidified shell grows beyond the thickness that can withstand deformation, the slab is bent to a predetermined curvature. While bending the slab by about 90 inches, a light reduction blade is applied to the slab in the middle of solidification using a light reduction device.The slab is completely solidified in this light reduction zone, and then
At the end position (straightening point) of the light reduction band, the rolls of the straightening device correct the bends in the slab, and the straight slab is cut into a predetermined length by a cutting machine.

鋳片最終凝固部(クレータエンド)では、炭素(C)、
硫黄(S)、マンガン(Mn)並びに燐(P)等の成分
元素が未凝固溶鋼中に濃縮される。
In the final solidification part of the slab (crater end), carbon (C),
Component elements such as sulfur (S), manganese (Mn), and phosphorus (P) are concentrated in the unsolidified molten steel.

この濃化溶鋼は低融点であるので、溶鋼が凝固殻中で静
止した状態にある場合は析出しないが、濃化溶鋼が凝固
殻中で流動するとこれが析出して所謂中心偏析となる。
Since this concentrated molten steel has a low melting point, it does not precipitate when the molten steel is stationary in the solidified shell, but when the concentrated molten steel flows in the solidified shell, it precipitates, resulting in so-called central segregation.

通常、溶鋼の凝固収縮により鋳片ボトム方向(鋳片引抜
方向)へ溶鋼が吸引されて流動するので、凝固収縮量に
見合った軽圧下刃を未凝固鋳片に加えて中心偏析を防止
している。
Normally, solidification shrinkage of molten steel causes the molten steel to be sucked and flow toward the bottom of the slab (in the direction of slab withdrawal), so a light reduction blade commensurate with the amount of solidification shrinkage is added to the unsolidified slab to prevent center segregation. There is.

一方、鋳造速度が比較的速くなる場合は、溶鋼静圧が高
まり、圧下量が不足する箇所の凝固殻が部分的に膨張す
る所謂バルジングが発生する。バルジングが発生すると
、膨張した凝固殻がロール圧下により圧縮されて鋳片ト
ップ方向(鋳片引抜方向の逆方向)への溶鋼の流動が起
こり、クレータエンドに濃化溶鋼が析出して幅広の中心
偏析が発生する。特に、ロールのピッチ間隔が大きい場
合及び圧下ロールにたわみ又は摩耗が存在する場合に、
バルジングが発生しやすい。このため、通常、軽圧下帯
に一層の小径ロールを配列し、ロール相互間のピッチを
小さくし、バルジングの発生を阻止して中心偏析を低減
するようにしている。
On the other hand, when the casting speed becomes relatively high, the static pressure of the molten steel increases, and so-called bulging occurs, in which the solidified shell partially expands in areas where the reduction amount is insufficient. When bulging occurs, the expanded solidified shell is compressed by roll reduction, causing molten steel to flow toward the top of the slab (in the direction opposite to the direction in which the slab is pulled out), and concentrated molten steel precipitates at the crater end, forming a wide center. Segregation occurs. In particular, when the pitch interval of the rolls is large and when there is deflection or wear on the reduction roll,
Bulging is likely to occur. For this reason, one layer of small-diameter rolls is usually arranged in the light rolling zone to reduce the pitch between the rolls, thereby preventing the occurrence of bulging and reducing center segregation.

従来の軽圧下鋳造技術においては、軽圧下装置による圧
下のみでは鋳片の中心偏析を十分に低減することができ
ない。このため、電磁攪拌装置(EMS)によりクレー
タエンドに回転磁界又は移動磁界を印加し、クレータエ
ンドの濃化溶鋼を電磁誘導により攪拌して中心偏析の発
生を防止している。
In the conventional light reduction casting technology, center segregation of the slab cannot be sufficiently reduced only by reduction using the light reduction device. For this reason, a rotating magnetic field or a moving magnetic field is applied to the crater end using an electromagnetic stirring device (EMS), and the concentrated molten steel at the crater end is stirred by electromagnetic induction to prevent center segregation.

[発明が解決しようとする問題点コ しかしながら、従来の軽圧下鋳造技術においては、クレ
ータエンドにて濃縮された[C]、[P]等の濃化成分
を電磁攪拌により一定領域内で単に拡散させているにす
ぎないので、偏析成分濃度のピーク値を下げることはで
きるが、偏析そのものを無くしてしまうことができない
。このため、鋳片中心部の一定領域内に濃度レベルが平
均化された偏析帯が生じる。この偏析帯には小型の島状
偏析(セミマクロ偏析)が存在しており、下記に示すよ
うな種々の問題点を生じる。
[Problems to be solved by the invention] However, in the conventional light reduction casting technology, concentrated components such as [C] and [P] concentrated at the crater end are simply diffused within a certain area by electromagnetic stirring. Although it is possible to lower the peak value of the concentration of the segregated components, it is not possible to eliminate the segregation itself. For this reason, a segregation zone with an average concentration level is generated within a certain area at the center of the slab. This segregation zone contains small island-like segregation (semi-macro segregation), which causes various problems as shown below.

近時、鋼材の品質に対する需要家からの要求が高度化及
び多様化してきており、製品化された鋼材中に不可避的
に存在する不純物元素の偏析及び非金属介在物等の一層
の低減化が望まれている。
In recent years, demands from customers regarding the quality of steel materials have become more sophisticated and diversified, and it is necessary to further reduce the segregation of impurity elements and non-metallic inclusions that inevitably exist in manufactured steel materials. desired.

すなわち、石油及び天然ガス輸送用のパイプ材料におい
ては、硫化水素を含むサワーガスの作用により中心偏析
帯に沿って水素誘起割れ(HI C)が発生するので、
材料の改善によりHICを防止することが強く要望され
ている。HICは中心偏析帯のP濃度が高い部分で発生
しやすいことが知られており、一般に、Pのピーク濃度
が約0.04%以上になると、HICによる割れ発生率
が高くなる。従来の軽圧下鋳造技術では、鋳片中心部に
P濃度が健全部のそれの約10倍にも達する所謂マクロ
偏析が発生するため、耐HIC鋼材を製造する場合には
、取鍋溶鋼のP濃度を50ppm以下のレベルに低減す
ると共に、凝固後のスラブを約1300℃に均熱するこ
とにより偏析Pを拡散し、P濃度の最大値を低下させる
ようにしている。
In other words, in pipe materials for oil and natural gas transportation, hydrogen-induced cracking (HIC) occurs along the central segregation zone due to the action of sour gas containing hydrogen sulfide.
There is a strong desire to prevent HIC by improving materials. It is known that HIC is likely to occur in areas where the P concentration is high in the central segregation zone, and generally, when the peak concentration of P is about 0.04% or more, the cracking occurrence rate due to HIC increases. With conventional light reduction casting technology, so-called macro-segregation occurs in the center of the slab, where the P concentration is about 10 times that of the sound part. The concentration is reduced to a level of 50 ppm or less, and the solidified slab is soaked at about 1300° C. to diffuse the segregated P and reduce the maximum value of the P concentration.

第8図は、横軸に中心偏析粒子の粒径をとり、縦軸に鋳
片長さ100+am当りに存在する偏析粒子の個数をと
って、中心偏析帯を有する種々の鋼材についてセミマク
ロ偏析粒子がHICに及ぼす影響について調査したグラ
フ図である。図中、黒丸はHICにより割れが生じたも
のを示し、白丸は割れが生じなかったものを示す。この
図に示すように、HIC発生について、粒径が約0.5
■以上の大型の偏析粒子(セミマクロ偏析)が特に有害
であり、このセミマクロ偏析の低減化がHIC発生防止
に有効なことが知られている。すなわち、鋼材の耐HI
C特性を改善するためには、前述の゛マクロ偏析及びセ
ミマクロ偏析を共に低減する必要がある。
Figure 8 shows the HIC of semi-macro segregated particles for various steel materials with a central segregation zone, with the horizontal axis representing the grain size of centrally segregated particles and the vertical axis representing the number of segregated particles present per 100+ am of slab length. It is a graph diagram that investigated the influence on In the figure, black circles indicate those in which cracks occurred due to HIC, and white circles indicate those in which no cracks occurred. As shown in this figure, for HIC generation, the particle size is approximately 0.5
Large-sized segregated particles (semi-macro segregation) larger than (2) are particularly harmful, and it is known that reducing this semi-macro segregation is effective in preventing the occurrence of HIC. In other words, the HI resistance of the steel material
In order to improve the C characteristics, it is necessary to reduce both the above-mentioned macro segregation and semi-macro segregation.

一方、海洋構造物用の鋼板材料に対しては、主として鋼
材の溶接特性を改善することが需要家から要望されてい
る。すなわち、鋼材に中心偏析帯が存在する場合には、
溶接割れ防止のために溶接時に鋼材を予熱する必要があ
り、溶接後においては溶接熱影響部(HAZ)の靭性が
劣化すると共に、溶接継手部にラメラティア(鋼板のラ
ミネーションに沿って発生する階段状の割れ)が発生す
る。従って、構造物の信顆性向上を図るという観点から
鋼材の中心偏析帯の低減化が強く望まれている。
On the other hand, with respect to steel sheet materials for offshore structures, customers primarily desire improvements in the welding characteristics of the steel materials. In other words, if there is a central segregation zone in the steel material,
It is necessary to preheat the steel material during welding to prevent weld cracking, and after welding, the toughness of the weld heat-affected zone (HAZ) deteriorates and lamellar tear (step-like appearance that occurs along the lamination of the steel plates) occurs in the welded joint. cracks) occur. Therefore, from the viewpoint of improving the reliability of structures, it is strongly desired to reduce the central segregation zone of steel materials.

更に、ビール缶のような深絞り鋼においては、その加工
性に偏析が重大な影響を及ぼすので、無偏析材料の開発
が強く望まれている。
Furthermore, since segregation has a significant effect on the workability of deep-drawn steel such as beer cans, the development of segregation-free materials is strongly desired.

ところで、通常、中心偏析が著しい不良材を発見するた
めに鋳片切断後に断面が調査される。この鋳片内部品質
の調査にはサルファープリント、EPMA若しくはX線
マイクロアナライザ等が用いられるが、これらの方法に
よれば結果が得られるまでに長時間を要するので、その
結果を連続鋳造操業に迅速に反映させて鋳片の品質向上
を図ることができないという問題点がある。
Incidentally, in order to discover defective material with significant center segregation, the cross section is usually investigated after cutting the slab. A sulfur print, EPMA, or X-ray microanalyzer is used to investigate the internal quality of the slab, but these methods require a long time to obtain results, so the results cannot be quickly applied to continuous casting operations. There is a problem in that it is not possible to improve the quality of slabs by reflecting these factors.

この発明はかかる事情に鑑みてなされたものであって、
完全凝固後の鋳片の内部品質調査結果を迅速に操業に反
映させることができ、鋳片中心部に偏析する不純物等の
絶対量を低減することができる軽圧下鋳造方法を提供す
ることを目的とする。
This invention was made in view of such circumstances, and
The purpose is to provide a light reduction casting method that can quickly reflect the internal quality investigation results of a slab after complete solidification in operations and reduce the absolute amount of impurities segregated in the center of the slab. shall be.

E問題点を解決するための手段] この発明に係る軽圧下鋳造方法は、連続鋳造された未凝
固のストランド鋳片を多数対のロールにより軽圧下しつ
つ完全凝固させる軽圧下鋳造方法において、前記ストラ
ンド鋳片が完全凝固した後に鋳片の厚さを測定し、測定
厚さが所定の厚さ許容範囲を越える場合に前記ロールの
圧下量を調節して凝固末期のストランド鋳片の歪み速度
を制御することを特徴とする。
Means for Solving Problem E] The light reduction casting method according to the present invention is a light reduction casting method in which continuously cast unsolidified strand slab is completely solidified while being lightly reduced by a large number of pairs of rolls. After the strand slab is completely solidified, the thickness of the strand slab is measured, and if the measured thickness exceeds a predetermined thickness tolerance range, the reduction amount of the rolls is adjusted to adjust the strain rate of the strand slab at the final stage of solidification. It is characterized by control.

[作用] この発明に係る軽圧下鋳造方法においては、ストランド
鋳片が完全凝固すると、完全凝固鋳片の各所の厚さを測
定し、そのばらつきを調査する。
[Operation] In the light reduction casting method according to the present invention, when the strand slab is completely solidified, the thickness of each part of the completely solidified slab is measured and the variation thereof is investigated.

また、鋳片の中心偏析度の程度が軽いと推定される所定
の厚さ許容範囲を予め把握しておき、鋳片の測定厚さが
所定の厚さ許容範囲を越える場合に凝固末期のストラン
ド鋳片に加えるロール圧下量を調節する。これにより、
凝固末期のストランド鋳片の歪み速度が制御され、鋳片
内部の溶湯の流動が阻止される。
In addition, a predetermined thickness tolerance range in which the degree of central segregation of the slab is estimated to be light should be known in advance, and if the measured thickness of the slab exceeds the predetermined thickness tolerance range, the strands at the final stage of solidification should be Adjust the amount of roll reduction applied to the slab. This results in
The strain rate of the strand slab at the final stage of solidification is controlled, and the flow of molten metal inside the slab is prevented.

〔実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

先ず、中心偏析低減の基本的考え方について説明する。First, the basic concept of center segregation reduction will be explained.

第4図は、凝固末期における中心偏析の生成機構を示す
模式図である。図中、斜線領域は固相、斜線領域を除く
領域は液相を夫々示す。また、図中の記号gは残留溶鋼
が流動しうる限界の固相率、記号LDは固液共存領域の
厚さ、記号LLは液相領域(100%液相領域)の厚さ
を夫々示す。図中、固相率が零の厚さ位置から固相率が
glになる厚さ位置までの領域に存在する濃化溶鋼が流
動して混合されることにより中心偏析が形成されると仮
定すると、凝固末期溶鋼の成分濃化率CL/Coは下記
(1)式により計算される。
FIG. 4 is a schematic diagram showing the generation mechanism of center segregation at the final stage of solidification. In the figure, the shaded area indicates the solid phase, and the area other than the shaded area indicates the liquid phase. In addition, the symbol g in the figure indicates the limit solid phase ratio at which residual molten steel can flow, the symbol LD indicates the thickness of the solid-liquid coexistence region, and the symbol LL indicates the thickness of the liquid phase region (100% liquid phase region). . In the figure, assuming that central segregation is formed by the flowing and mixing of concentrated molten steel existing in the region from the thickness position where the solid fraction is zero to the thickness position where the solid fraction is gl. , the component concentration ratio CL/Co of the molten steel at the final stage of solidification is calculated by the following equation (1).

但し、上記(1)式中の各記号は下記による。However, each symbol in the above formula (1) is as follows.

α−LL/LD(凝固末期の固液共存領域に対する液相
領域の割合) LL + LD ;凝固末期の液相領域の厚さ、固液共
存領域の厚さ g;残留溶鋼が流動しうる限界の固相率Ko  ;  
[C] 、[P]等の各成分における平衡分配係数 第5図は、上記(1)式により求めた[C]の成分濃化
率cL/Coを縦軸にとり、凝固末期の固液共存領域に
対する液相領域の割合いαを横軸にとって、凝固末期に
おける溶鋼流動と偏析度との関係について検討したもの
である。図中、各曲線に記入した数値は夫々の固相率g
を示す。なお、平衡分配係数Koを0.141として成
分濃化率CL/Coを算出した。この図から明らかなよ
うに、濃化溶鋼の流動限界固相率gが大になるに従って
成分濃化率CL/Coが高くなり、また完全液相領域の
割合αが小さくなるほど成分濃化率に与える影響が大き
くなる。すなわち、濃化溶鋼の流動が活発になると成分
濃化率が高まり、偏析度が高くなる。従って、中心偏析
を低減するためには、濃化溶鋼の流動を抑制する必要が
ある。
α-LL/LD (Ratio of liquid phase region to solid-liquid coexistence region at the end of solidification) LL + LD; Thickness of liquid phase region at end of solidification, thickness of solid-liquid coexistence region g; Limit to which residual molten steel can flow The solid phase ratio Ko;
The equilibrium partition coefficient for each component such as [C] and [P] in Figure 5 shows the solid-liquid coexistence at the final stage of solidification, with the component concentration cL/Co of [C] determined by equation (1) above taken on the vertical axis. This study examines the relationship between molten steel flow and segregation degree at the final stage of solidification, with α, the ratio of the liquid phase region to the region, as the horizontal axis. In the figure, the numbers written on each curve are the respective solid fraction g
shows. Note that the component concentration ratio CL/Co was calculated by setting the equilibrium distribution coefficient Ko to 0.141. As is clear from this figure, as the flow limit solid fraction g of concentrated molten steel increases, the component concentration CL/Co increases, and as the ratio α of the completely liquid phase region decreases, the component concentration increases. The impact will be greater. That is, when the flow of concentrated molten steel becomes active, the component concentration rate increases and the degree of segregation increases. Therefore, in order to reduce center segregation, it is necessary to suppress the flow of concentrated molten steel.

この濃化溶鋼の流動を抑制する手段として、第1に鋳片
のロール間バルジングの発生を抑制するためにロール相
互間のピッチを狭くすること、第2に凝固収縮により濃
化溶鋼がボトム側(鋳片引抜き下流側)へ吸引されるこ
とを阻止するために凝固収縮量に相当する適正量の軽圧
下刃を鋳片に印加することが挙げられる。また、種々の
条件下で実際に鋳造した試験結果によれば、軽圧下帯の
開始位置から約3/4のところにクレータエンドを位置
させた場合に、軽圧下帯のロール圧下の効果が最大にな
ることが判明した。
As a means of suppressing the flow of this concentrated molten steel, firstly, the pitch between the rolls is narrowed to suppress the occurrence of bulging between the rolls of the slab, and secondly, the concentrated molten steel is moved toward the bottom side by solidification shrinkage. In order to prevent the slab from being sucked toward the downstream side of slab drawing, an appropriate amount of light pressure lower blade corresponding to the amount of solidification shrinkage may be applied to the slab. In addition, according to the results of actual casting tests conducted under various conditions, the effect of roll reduction of the light reduction zone is maximized when the crater end is positioned approximately 3/4 from the starting position of the light reduction zone. It turned out to be.

ところで、発明者らは、未凝固領域の厚さが約30+n
mの凝固途中の鋳片にトレーサー(FeS)が封入され
た鋲を打゛込み、軽圧下量を種々変更して凝固末期の濃
化溶鋼の流動状況を調査した結果、以下の゛知見を得る
ことができた。
By the way, the inventors found that the thickness of the unsolidified region was about 30+n
As a result of investigating the flow condition of concentrated molten steel at the final stage of solidification by driving studs containing a tracer (FeS) into a slab in the middle of solidification and varying the amount of light reduction, the following findings were obtained. I was able to do that.

第6図は、横軸に軽圧下量(鋳片引抜長さ1m当りのロ
ール間隔絞り込み量)をとり、縦軸に溶鋼の流動長さを
とって、前記調査結果に基づき軽圧下量と溶鋼流動長さ
との関係を示すグラフ図である。この図から明らかなよ
うに、軽圧下量が増加するに従って溶鋼の流動長さが減
少し、約1.211m1Illの軽圧下量のときに溶鋼
の流動長さが最小になることが確認された。
Figure 6 shows the amount of light reduction (the amount of roll spacing reduced per 1 m of slab drawing length) on the horizontal axis, and the flow length of molten steel on the vertical axis, and the amount of light reduction and molten steel based on the above survey results. It is a graph diagram showing the relationship with flow length. As is clear from this figure, it was confirmed that the flow length of molten steel decreased as the light reduction amount increased, and that the flow length of molten steel became the minimum when the light reduction amount was about 1.211 ml.

第1図はこの発明の実施例に係る軽圧下鋳造方法が使用
された連続鋳造設備を示す模式図、第2図は軽圧下ロー
ル群を示す斜視図、第3図は軽圧下装置の一部を示す模
式図である。垂直曲げ型連続鋳造機の鋳型からストラン
ド鋳片30がピンチロールにより引抜かれ、所定断面形
状のスラブが製造されるようになっている。鋳型から引
抜かれたストランド鋳片30は、その外周部に凝固殻3
2が形成され、その内部に未凝固の溶湯34を保持して
いる。鋳型の下方には一部のサポートガイドロールが鋳
片を取囲むように配列され、垂直引抜き部が形成されて
いる。垂直引抜き部の下方には複数対の曲げロール24
が設けられ、曲げロール24により凝固途中のストラン
ド鋳片30が所定の曲率で曲げられて鋳片引抜き方向が
水平に変更されるようになっている。更に、曲げロール
24の下方には軽圧下装置10の一部の軽圧下ロール1
6が設けられて軽圧下帯が形成され、ストランド鋳片3
0に所定の圧下刃が加えられるようになっている。軽圧
下帯には一部のスプレィノズル(図示せず)が鋳片30
の幅に沿って配列され、各列のスプレィノズルが軽圧下
ロール16相互の間隙に夫々配設されている。スプレィ
ノズルは水f:に調節機能を有する冷却水供給源に接続
されており、各ゾーンのスプレィパターンを増減してス
トランド鋳片30の冷却速度が制御されるようになって
いる。軽圧下帯の上流側から約3/4の位置にストラン
ド鋳片30のクレータエンド36が位置せられ、軽圧下
帯内でストランド鋳片30が完全凝固するようになって
いる。更に、一群の軽圧下ロール16の下流側には複数
対の矯正ロール26が配設されており、鋳片30の曲が
りが矯正されるようになっている。また、切断機37が
矯正ロール26の下流側に配設され、矯正されて直線状
になったストランド鋳片30が所定長の切断鋳片31に
切断されるようになっている。切断機37は移動台車に
搭載され、切断中は鋳片30と共に移動することができ
るようになっている。水平ラインにはローラテーブル(
図示せず)が設けられ、切断鋳片31がローラテーブル
上をスラブヤードに向かって搬送されるようになってい
る。スラブヤードには厚さ測定器39が設けられ、その
入力側が超音波を発生する探触子38に接続されている
。この探触子38は、電気信号と超音波とを相互に変換
することができ、切断鋳片31からの反射波(底面波)
を電気信号に変換して厚さ測定器39に送信するように
なっている。また、探触子38は、ケーシング(図示せ
ず)内に納められ、ケーシングごと切断鋳片31の幅中
央に沿って鋳片長手方向に移動可能に設けられている。
Fig. 1 is a schematic diagram showing continuous casting equipment in which a light reduction casting method according to an embodiment of the present invention is used, Fig. 2 is a perspective view showing a group of light reduction rolls, and Fig. 3 is a part of the light reduction equipment. FIG. A strand slab 30 is pulled out from a mold of a vertical bending type continuous casting machine by pinch rolls to produce a slab having a predetermined cross-sectional shape. The strand slab 30 pulled out from the mold has a solidified shell 3 on its outer periphery.
2 is formed and holds an unsolidified molten metal 34 inside. Some support guide rolls are arranged below the mold so as to surround the slab, and a vertical pull-out part is formed. A plurality of pairs of bending rolls 24 are provided below the vertical drawing section.
is provided, and the strand slab 30 which is in the middle of solidification is bent by a bending roll 24 at a predetermined curvature so that the direction of drawing the slab is changed to horizontal. Further, below the bending roll 24, a part of the light rolling roll 1 of the light rolling device 10 is provided.
6 is provided to form a light reduction zone, and the strand slab 3
A predetermined reduction blade is added to 0. Some spray nozzles (not shown) are installed in the light reduction zone.
The spray nozzles in each row are arranged along the width of the light reduction rolls 16, respectively, and are arranged in the gaps between the light reduction rolls 16. The spray nozzle is connected to a cooling water supply having an adjustable water f: so that the cooling rate of the strand slab 30 can be controlled by increasing or decreasing the spray pattern in each zone. A crater end 36 of the strand slab 30 is located about 3/4 of the way from the upstream side of the light reduction zone, so that the strand slab 30 is completely solidified within the light reduction zone. Further, a plurality of pairs of straightening rolls 26 are arranged downstream of the group of light reduction rolls 16, so that the bends in the slab 30 can be straightened. Further, a cutting machine 37 is disposed on the downstream side of the straightening roll 26 to cut the straightened strand slab 30 into a straight slab into cut slabs 31 of a predetermined length. The cutting machine 37 is mounted on a movable cart so that it can move together with the slab 30 during cutting. A roller table (
(not shown) is provided so that the cut slab 31 is conveyed toward the slab yard on a roller table. A thickness measuring device 39 is provided in the slab yard, and its input side is connected to a probe 38 that generates ultrasonic waves. This probe 38 can mutually convert electric signals and ultrasonic waves, and generates reflected waves (bottom waves) from the cut slab 31.
is converted into an electrical signal and sent to the thickness measuring device 39. Further, the probe 38 is housed in a casing (not shown) and is provided so as to be movable along the width center of the cut slab 31 together with the casing in the longitudinal direction of the slab.

厚さ測定器39の出力側は演算装置40の入力側に接続
されている。厚さ測定器39においては所定の許容厚さ
範囲に対応する電圧範囲が設定されており、この設定電
圧範囲外にはみ出す信号が入力された場合には演算装置
40に信号が送信される一方、設定電圧信号内に入る信
号が入力された場合には演算装置40には信号が送られ
ないようになっている。また、厚さ測定器39から演算
装置40に送られる信号の強弱は、前述の設定電圧範囲
の上限値又は下限値と測定信号との電圧差に比例するよ
うになっている。演算装置40は、厚さ測定器39から
の信号を受信すると、その強弱をランク付けすると共に
その数をカウントし、これらのデータに基づき多変数系
の数式モデルを用いて計算を実行するようになっている
。油圧制御装置42が演算装置40に接続され、データ
を相互に入出力できるようになっている。すなわち、圧
下シリンダ19の油圧力の信号が油圧制御装置42から
演算装置40に入力される一方、この油圧力データ及び
前記厚さ測定データから求められた油圧制御信号が演算
装置40から油圧制御装置42に入力されるようになっ
ている。油圧制御装置42は圧油供給源(図示せず)を
有しており、演算装置42の油圧制御信号を受信すると
、これに基づき圧油供給口の電磁弁を調節するようにな
っている。
The output side of the thickness measuring device 39 is connected to the input side of the arithmetic unit 40. In the thickness measuring device 39, a voltage range corresponding to a predetermined allowable thickness range is set, and when a signal exceeding this set voltage range is input, a signal is sent to the arithmetic device 40. When a signal falling within the set voltage signal is input, the signal is not sent to the arithmetic unit 40. Further, the strength of the signal sent from the thickness measuring device 39 to the arithmetic unit 40 is proportional to the voltage difference between the upper limit value or lower limit value of the aforementioned set voltage range and the measurement signal. When the arithmetic unit 40 receives the signal from the thickness measuring device 39, it ranks its strength and counts the number of signals, and performs calculations based on these data using a multivariable formula model. It has become. A hydraulic control device 42 is connected to the arithmetic device 40 so that data can be input and output to and from each other. That is, a signal of the hydraulic pressure of the reduction cylinder 19 is input from the hydraulic control device 42 to the arithmetic device 40, while a hydraulic control signal obtained from this hydraulic pressure data and the thickness measurement data is input from the arithmetic device 40 to the hydraulic control device. 42. The hydraulic control device 42 has a pressure oil supply source (not shown), and upon receiving a hydraulic control signal from the arithmetic device 42, adjusts the solenoid valve of the pressure oil supply port based on this signal.

第2図に示すように、軽圧下ロール16はその長さが3
分割又は6分割されている。軽圧下ロール16は、その
径が従来の約3751から約210+aa+に、ロール
相互間のピッチが従来の約420a+a+から約235
1に、各セグメント内のロール本数が従来の5対から8
対に夫々変更されている。また、この連続鋳造機におけ
る垂直引抜き部の長さは約4m1鋳片曲げ部の曲率半径
は約8 m s鋳型内湯面(メニスカス)から軽圧下装
置10までの高低差は約1O04乃至14.1mである
As shown in FIG. 2, the light reduction roll 16 has a length of 3
It is divided or divided into six parts. The diameter of the light reduction roll 16 has been increased from the conventional approximately 3751 to approximately 210+aa+, and the pitch between the rolls has been increased from the conventional approximately 420a+a+ to approximately 235.
1. The number of rolls in each segment has been increased from 5 pairs to 8.
Each pair has been changed. In addition, the length of the vertical drawing part in this continuous casting machine is approximately 4 m, the radius of curvature of the bent part of the slab is approximately 8 m s, and the height difference from the meniscus in the mold to the light reduction device 10 is approximately 1004 to 14.1 m. It is.

第3図に示すように、軽圧下ロール16はロールチョッ
ク17に夫々葆持されており、各ロールチョック17ご
とに圧下シリンダ19のロッド18が連結され、ロッド
18でロールチョック17を押すとロール16がストラ
ンド鋳片30に押付けられるようになっている。各圧下
シリンダ19には油圧制御装置42の圧油供給口が油圧
回路により夫々接続されている。更に、この油圧制御装
置42の入力側が演算装置40の出力側に接続されてお
り、演算装置40の指令信号に基づいて油圧制御装置4
2から所定圧の油が各圧下シリンダ19に供給されるよ
うになっている。
As shown in FIG. 3, the light reduction rolls 16 are supported by roll chocks 17, and a rod 18 of a reduction cylinder 19 is connected to each roll chock 17. When the roll chock 17 is pushed with the rod 18, the roll 16 is moved into a strand. It is pressed against the slab 30. A pressure oil supply port of a hydraulic control device 42 is connected to each reduction cylinder 19 through a hydraulic circuit. Furthermore, the input side of this hydraulic control device 42 is connected to the output side of the calculation device 40, and the hydraulic control device 4 is controlled based on the command signal from the calculation device 40.
2 at a predetermined pressure is supplied to each reduction cylinder 19.

次に、この発明方法により鋳片を製造する場合について
第1図乃至第3図を用いて具体的に説明する。鋳造鋼種
はNb、V系うインパイプ用高張力鋼(API  X−
65)であり、切断鋳片(スラブ)31はその幅が約1
950111、その厚さが約220+amである。RH
脱ガス処理及び取鍋精錬処理により成分調整された溶鋼
をタンディツシュから鋳型内に鋳造する。このとき、タ
ンディツシュ内の溶鋼温度は約1552℃であり、溶鋼
は約33℃の過熱状態にある(この鋼種の凝固温度は約
1519℃)。
Next, the case of producing slabs by the method of this invention will be specifically explained using FIGS. 1 to 3. The casting steel type is Nb, V-based high tensile strength steel for in-pipe (API X-
65), and the width of the cut slab 31 is approximately 1
950111, whose thickness is approximately 220+am. R.H.
Molten steel whose composition has been adjusted through degassing and ladle refining is cast from a tundish into a mold. At this time, the temperature of the molten steel in the tundish is about 1552°C, and the molten steel is in a superheated state of about 33°C (the solidification temperature of this steel type is about 1519°C).

溶鋼が鋳型内に注入されると、鋳型壁に接して凝固殻3
2が形成される。毎分約0.75mの鋳造速度で未凝固
状態のストランド鋳片30を引抜き、クレータエンド3
6を軽圧下帯のセグメント14の略中夫に位置させる。
When molten steel is injected into the mold, it forms a solidified shell 3 in contact with the mold wall.
2 is formed. The unsolidified strand slab 30 is pulled out at a casting speed of about 0.75 m/min, and the crater end 3
6 is located approximately at the center of the segment 14 of the light pressure zone.

油圧制御装置42から圧下シリンダ19に所定圧の圧油
を供給し、約1.2ma/a+の圧下量を軽圧下ロール
16により鋳片30に加える。また、冷却水供給源の流
量調節弁を調節して各スプレィノズルに供給する冷却水
量を制御し、比水量0.54ノ八g (鋳片1kg当り
のスプレィ水ff1)のスプレィパターンで各スプレィ
ノズルを介してストランド鋳片30に冷却水を噴射する
Pressure oil at a predetermined pressure is supplied from the hydraulic control device 42 to the reduction cylinder 19, and a reduction amount of approximately 1.2 ma/a+ is applied to the slab 30 by the light reduction roll 16. In addition, the flow control valve of the cooling water supply source was adjusted to control the amount of cooling water supplied to each spray nozzle, and each spray was sprayed in a spray pattern with a specific water amount of 0.54 g (spray water ff1 per 1 kg of slab). Cooling water is injected onto the strand slab 30 through a nozzle.

そして、完全凝固したストランド鋳片30を矯正ロール
26により矯正し、次いで、切断機37により所定長さ
に切断する。ローラテーブルにより切断鋳片31をスラ
ブヤードに搬送し、探触子38を切断鋳片31の幅中央
部に沿って移動させ、分塊圧延される前の鋳片31の厚
さを厚さ測定器39により測定する。例えば、許容厚さ
が218sn+乃至222■の範囲に設定されている場
合に、ある一枚の切断鋳片31において測定厚さが22
2■乃至225■に対応する信号が5個カウントされた
とする。すると、厚さ測定器39から演算装置40にこ
れらの測定信号が送られ、これに基づき演算装置40内
で所定の数式モデルを用いて中心偏析のばらつき度を求
め、このばらつき度及び従前のロール16の圧下量から
ロール圧下量の修正量を導き出す。そして、この修正量
に対応する信号を油圧制御装置42に送り、圧油供給口
の電磁弁を調節して圧下シリンダ19に供給する圧油量
を制御する。これにより、ロール16の圧下量が調節さ
れ、クレータエンド36近傍に位置する凝固末期の鋳片
30に適正量の歪みが加えられるようになる。
Then, the completely solidified strand slab 30 is straightened by a straightening roll 26, and then cut into a predetermined length by a cutter 37. The cut slab 31 is conveyed to the slab yard by a roller table, the probe 38 is moved along the width center of the cut slab 31, and the thickness of the slab 31 before being bloomed is measured. Measurement is performed using a device 39. For example, when the allowable thickness is set in the range of 218sn+ to 222cm, the measured thickness of one cut slab 31 is 22cm.
Assume that five signals corresponding to 2■ to 225■ are counted. Then, these measurement signals are sent from the thickness measuring device 39 to the calculation device 40, and based on the measurement signals, the degree of variation in center segregation is calculated using a predetermined mathematical model in the calculation device 40, and this degree of variation and the previous roll are calculated. The amount of correction of the amount of roll reduction is derived from the amount of reduction of 16. Then, a signal corresponding to this correction amount is sent to the hydraulic control device 42, and the solenoid valve of the pressure oil supply port is adjusted to control the amount of pressure oil supplied to the reduction cylinder 19. As a result, the amount of reduction of the roll 16 is adjusted, and an appropriate amount of strain is applied to the slab 30 in the final stage of solidification located near the crater end 36.

すなわち、いま、第3図に示すように、ロール16から
鋳片30に圧下刃Poを印加しつつ鋳造しているときに
、クレータエンド36近傍の溶鋼34にボトム方向へ流
動力aが生じているとすると、演算装置40の制御信号
に従って油圧制御装置42から従前の圧油量より修正分
だけ増加された圧油が各圧下シリンダ19に供給される
。すると、ロッド18が押出されて従前よりも強力にロ
ール16が鋳片30に押付けられ、鋳片30に圧下刃P
oよりも大きな圧下刃P1.P2が作用して鋳片30内
部の歪み速度が増加する。これにより、凝固殻32の歪
み速度が増加し、凝固末期の溶鋼34にトップ方向の流
動力すが生じるので、これがボトム方向の流動力aを打
消し、溶鋼34の流動が実質的に阻止され、濃化溶鋼の
凝固析出が防止される。
That is, as shown in FIG. 3, while casting is being performed while applying the reduction blade Po to the slab 30 from the roll 16, a flow force a is generated in the molten steel 34 near the crater end 36 in the bottom direction. If so, in accordance with the control signal from the arithmetic unit 40, the hydraulic control device 42 supplies each reduction cylinder 19 with pressurized oil whose amount has been increased by the correction amount from the previous amount of pressurized oil. Then, the rod 18 is pushed out and the roll 16 is pressed against the slab 30 more forcefully than before, and the rolling blade P is pressed against the slab 30.
A rolling blade P1 larger than o. P2 acts to increase the strain rate inside the slab 30. As a result, the strain rate of the solidified shell 32 increases, and a flow force in the top direction is generated in the molten steel 34 at the final stage of solidification, which cancels out the flow force a in the bottom direction, and the flow of the molten steel 34 is substantially prevented. , solidification precipitation of concentrated molten steel is prevented.

第7図は、横軸に偏析帯に存在する偏析粒子の粒径をと
り、縦軸に鋳片引抜長さ100■当りの偏析粒子の個数
をとって、セミマクロ偏析粒子の粒径分布について調査
したグラフ図である。図中、黒丸はこの発明の実施例に
より製造された鋳片の中心偏析帯に存在するセミマクロ
偏析粒子、白丸は従来の方法により製造された鋳片の中
心偏析帯に存在するセミマクロ偏析粒子を夫々示す。こ
の図から明らかなように、この発明の実施例によれば、
HIC割れに有害となる粒径0.Sra印以上のセミマ
クロ偏析粒子の数を従来よりも大幅に減少させることが
でき、中心偏析低減の効果をあげることができた。
In Figure 7, the particle size distribution of semi-macro segregated particles is investigated by taking the particle size of the segregated particles existing in the segregation zone on the horizontal axis and the number of segregated particles per 100 cm of slab pulling length on the vertical axis. FIG. In the figure, black circles represent semi-macro segregated particles present in the central segregation zone of slabs manufactured by the embodiment of the present invention, and white circles represent semi-macro segregation particles present in the central segregation zone of slabs manufactured by the conventional method. show. As is clear from this figure, according to the embodiment of the present invention,
Particle size 0.0 that is harmful to HIC cracking. The number of semi-macro segregated particles of Sra mark or higher could be significantly reduced compared to the conventional method, and the effect of reducing central segregation could be achieved.

上記実施例により製造されたスラブ(均熱処理無し)か
ら試料を採取し、硫化水素雰囲気中で行なう腐蝕試験(
NACE試験)により24個の断面についてHIC発生
率を調査した結果、長さが0.01a+m以上の割れは
全く認められなかった。
A sample was taken from the slab manufactured according to the above example (without soaking treatment), and a corrosion test was conducted in a hydrogen sulfide atmosphere (
As a result of investigating the HIC incidence on 24 cross sections by NACE test, no cracks with a length of 0.01 a+m or more were observed.

また、上記実施例では軽圧下ロール16の径及びロール
間のピッチを従来よりも小さくしているので、バルジン
グの発生を有効に防止することができる。
Furthermore, in the embodiment described above, since the diameter of the light reduction roll 16 and the pitch between the rolls are smaller than those of the prior art, the occurrence of bulging can be effectively prevented.

更に、軽圧下ロール16の長さを3分割又は6分割して
いるので、ロールがたわむことなく油圧装置の駆動力が
各分割ロールに確実に伝達され、ロール圧下制御を一層
精密にすることができ、溶鋼の流動限界固相率gを従来
の0.70から0゜15まで低減することができた。
Furthermore, since the length of the light reduction roll 16 is divided into three or six parts, the driving force of the hydraulic system is reliably transmitted to each divided roll without bending the roll, and roll reduction control can be made more precise. The flow limit solid fraction g of molten steel was reduced from the conventional 0.70 to 0.15.

また、上記実施例ではNb、V系高張力鋼を製造する場
合について示したが、これに限らず約800℃以下の温
度域で熱間加工脆性を示す他の金属材料を製造する場合
についてもこの発明方法を使用することができる。
In addition, although the above example shows the case of manufacturing Nb, V-based high-strength steel, it is not limited to this, and can also be applied to the case of manufacturing other metal materials that exhibit hot work brittleness in a temperature range of about 800°C or less. This invention method can be used.

また、上記実施例では超音波利用の厚さDJ定器を用い
たが、厚さ測定にはレーザー等も利用することができる
。一方、上記実施例では厚さ測定器を切断機の後工程に
設けたが、厚さ測定器を切断機の前工程に設けることも
できる。
Further, in the above embodiment, a thickness DJ meter using ultrasonic waves was used, but a laser or the like may also be used for thickness measurement. On the other hand, in the above embodiment, the thickness measuring device was provided in the post-process of the cutting machine, but the thickness measuring device could also be provided in the pre-process of the cutting machine.

また、上記実施例ではスラブを製造する場合について示
したが、これに限らずブルーム又は丸ビレット等を製造
する場合にもこの発明方法を使用することができる。
Furthermore, although the above embodiments have been described with reference to the case of manufacturing slabs, the method of the present invention is not limited to this, and can also be used in the case of manufacturing blooms, round billets, and the like.

[発明の効果] この発明によれば、サルファープリント、EPMA若し
くはX線マイクロアナライザ等を実施することなく、鋳
片の内部品質調査結果を迅速に軽圧下による連続鋳造操
業に反映させることができ、鋳片の中心偏析を有効に低
減することができる。
[Effects of the Invention] According to the present invention, the internal quality investigation results of the slab can be quickly reflected in the continuous casting operation using light reduction without using sulfur print, EPMA, or X-ray microanalyzer, etc. Center segregation of slabs can be effectively reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る軽圧下鋳造方法が使用
された軽圧下装置を側方から見た模式図、第2図は軽圧
下ロール群を示す斜視図、第3図は軽圧下装置の一部を
示す模式図、第4図は濃化溶鋼の凝固機構を示す模式図
、第5図は溶鋼の流動と偏析度との関係を示す模式図、
第6図は軽圧下量と溶鋼の流動長さとの関係を示すグラ
フ図、第7図はこの発明の効果を示すグラフ図、第8図
は水素誘起割れ(HI C)に及ぼすセミマクロ偏析の
影響を示すグラフ図である。 10;軽圧下装置、16;軽圧下ロール、19;圧下シ
リンダ、30;ストランド鋳片、31;切断鋳片、32
;凝固殻、34;溶鋼、36;クレータエンド、37;
切断機、38;探触子、39;厚さn1定器、40;演
算装置、42;油圧制御装置。 出願人代理人 弁理士 鈴江武彦 第 2121 第3図 第4図 α 第5図 第6図
FIG. 1 is a schematic side view of a light reduction device in which a light reduction casting method according to an embodiment of the present invention is used, FIG. 2 is a perspective view showing a group of light reduction rolls, and FIG. 3 is a light reduction device. A schematic diagram showing a part of the apparatus, FIG. 4 is a schematic diagram showing the solidification mechanism of concentrated molten steel, and FIG. 5 is a schematic diagram showing the relationship between the flow of molten steel and the degree of segregation.
Figure 6 is a graph showing the relationship between light reduction and flow length of molten steel, Figure 7 is a graph showing the effects of this invention, and Figure 8 is the effect of semi-macro segregation on hydrogen-induced cracking (HIC). FIG. 10; light reduction device, 16; light reduction roll, 19; reduction cylinder, 30; strand slab, 31; cut slab, 32
; Solidified shell, 34; Molten steel, 36; Crater end, 37;
Cutting machine, 38; Probe, 39; Thickness n1 regulator, 40; Arithmetic device, 42; Hydraulic control device. Applicant's agent Patent attorney Takehiko Suzue No. 2121 Figure 3 Figure 4 α Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造された未凝固のストランド鋳片を多数対のロー
ルにより軽圧下しつつ完全凝固させる軽圧下鋳造方法に
おいて、前記ストランド鋳片が完全凝固した後に鋳片の
厚さを測定し、測定厚さが所定の厚さ許容範囲を越える
場合に前記ロールの圧下量を調節して凝固末期のストラ
ンド鋳片の歪み速度を制御することを特徴とする軽圧下
鋳造方法。
In a light reduction casting method in which a continuously cast unsolidified strand slab is completely solidified while being lightly rolled down by a large number of pairs of rolls, the thickness of the strand slab is measured after the strand slab is completely solidified, and the measured thickness is 1. A light reduction casting method, characterized in that when the thickness exceeds a predetermined thickness tolerance range, the reduction amount of the rolls is adjusted to control the strain rate of the strand slab at the final stage of solidification.
JP11351387A 1987-05-12 1987-05-12 Light rolling reduction casting method Pending JPS63278654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11351387A JPS63278654A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11351387A JPS63278654A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Publications (1)

Publication Number Publication Date
JPS63278654A true JPS63278654A (en) 1988-11-16

Family

ID=14614242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11351387A Pending JPS63278654A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Country Status (1)

Country Link
JP (1) JPS63278654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497821A (en) * 1991-09-12 1996-03-12 Giovanni Arvedi Manufacture of billets and blooms from a continuously cast steel
JP2010520060A (en) * 2007-03-09 2010-06-10 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Apparatus for measuring thickness and method therefor
JP2011121063A (en) * 2009-12-08 2011-06-23 Jfe Steel Corp Continuous casting method with soft reduction
KR101246195B1 (en) 2011-01-28 2013-03-21 현대제철 주식회사 Method for producing hardened steel slab in heat treatment
JP2021517517A (en) * 2018-05-17 2021-07-26 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd Continuous casting piece thickness in-line measurement and reduction adjustment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101719A (en) * 1978-01-27 1979-08-10 Hitachi Shipbuilding Eng Co Casting thickness controlling method in continuous casting installation
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101719A (en) * 1978-01-27 1979-08-10 Hitachi Shipbuilding Eng Co Casting thickness controlling method in continuous casting installation
JPS5813454A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Method and device for controlling thickness of ingot in continuous casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497821A (en) * 1991-09-12 1996-03-12 Giovanni Arvedi Manufacture of billets and blooms from a continuously cast steel
JP2010520060A (en) * 2007-03-09 2010-06-10 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Apparatus for measuring thickness and method therefor
US9335164B2 (en) 2007-03-09 2016-05-10 Sms Group Gmbh Device for thickness measurement and method therefor
JP2011121063A (en) * 2009-12-08 2011-06-23 Jfe Steel Corp Continuous casting method with soft reduction
KR101246195B1 (en) 2011-01-28 2013-03-21 현대제철 주식회사 Method for producing hardened steel slab in heat treatment
JP2021517517A (en) * 2018-05-17 2021-07-26 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd Continuous casting piece thickness in-line measurement and reduction adjustment system

Similar Documents

Publication Publication Date Title
EP2269750A1 (en) Method for continuous casting of steel and electromagnetic stirrer usable therefor
JP6115735B2 (en) Steel continuous casting method
US20100000062A1 (en) Method and installation for producing steel products with optimum surface quality
US5657814A (en) Direct rolling method for continuously cast slabs and apparatus thereof
JPS63242452A (en) Method for casting by light rolling reduction
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP2011005524A (en) Method for continuously casting high carbon steel
KR20010093258A (en) Cold rolled steel
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JPS63278654A (en) Light rolling reduction casting method
JPS63286260A (en) Light rolling reduction casting method
CN105665662B (en) Flux-cored wire based on ESP lines steel making method
JPS63278655A (en) Light rolling reduction casting method
JP3427794B2 (en) Continuous casting method
JPH038864B2 (en)
JPH08238550A (en) Method for continuously casting steel
KR101360660B1 (en) Method for manufacturing austenitic stainless steel sheet having excellent edge property
JP5648300B2 (en) Steel continuous casting method
Ueyama et al. Development of high quality heavy plates on steelmaking process at Kimitsu Works
JPS63242453A (en) Method for casting by light rolling reduction
JPS63252655A (en) Method for casting under light draft
JPS63238965A (en) Method for casting under light draft
US20040003875A1 (en) Method of producing steel strip
JPS63252654A (en) Method for casting under light draft
JP4692164B2 (en) Continuous casting method of high carbon steel