JPS63242453A - Method for casting by light rolling reduction - Google Patents

Method for casting by light rolling reduction

Info

Publication number
JPS63242453A
JPS63242453A JP7670187A JP7670187A JPS63242453A JP S63242453 A JPS63242453 A JP S63242453A JP 7670187 A JP7670187 A JP 7670187A JP 7670187 A JP7670187 A JP 7670187A JP S63242453 A JPS63242453 A JP S63242453A
Authority
JP
Japan
Prior art keywords
cast slab
slab
molten metal
magnetic field
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7670187A
Other languages
Japanese (ja)
Inventor
Toshio Masaoka
政岡 俊雄
Hitoshi Kobayashi
日登志 小林
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7670187A priority Critical patent/JPS63242453A/en
Publication of JPS63242453A publication Critical patent/JPS63242453A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce impurity segregated at center part in a continuously cast slab and to produce the cast slab having excellent quality by impressing the static magnetic field to molten metal at crater end part in the cast slab at the time of executing light rolling reduction to the continuously cast slab and preventing flowing of the molten metal. CONSTITUTION:In the cast slab 30 drawn from a mold in continuous casting apparatus, non-solidified molten metal 34 exists in inner part of solidified shell 32, and the rolling-reduction is executed to the cast slab by many light reducing rolls 16 in the light rolling reduction device 10, and the cast slab is cooled by injection of cooling water from spray nozzles and bent toward horizontal direction while gradually increasing thickness of solidified shell 32, and transferred. In this case, a magnetic field generator 22 is arranged at the part of crater end 36 in the cast slab 30, to generate static magnetic field crossing to thickness direction of the cast slab 30. By this magnetic field, movement of the non-solidified molten metal concentrating the impurity is hindered and the segregation of impurities, such as C, P, S, at the center part, which solidifies at last time, is prevented and the continuously cast slab having quality can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、連続鋳造において鋳片の中心偏析を防止す
る軽圧下鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light reduction casting method for preventing center segregation of slabs in continuous casting.

[従来の技術] 通常、連続鋳造においては、溶鋼が水冷鋳型により冷却
されると、鋳片外周部に相当する部分に薄い凝固殻が形
成され、鋳型を通過した鋳片はその内部に未凝固溶鋼を
保持した状態で一群のサポートガイドロールにより案内
されつつ、ピンチロールにより引抜かれる。鋳片引抜き
過程においては、鋳片にスプレィ水を噴射して鋳片内部
の凝固促進を図り、凝固殻の厚さが変形に耐え得る厚さ
[Prior art] Normally, in continuous casting, when molten steel is cooled by a water-cooled mold, a thin solidified shell is formed at a portion corresponding to the outer periphery of the slab, and the slab that has passed through the mold has unsolidified inside. While holding the molten steel, it is guided by a group of support guide rolls and pulled out by pinch rolls. During the slab drawing process, spray water is injected onto the slab to promote solidification inside the slab, and the thickness of the solidified shell is thick enough to withstand deformation.

以上に成長すると、鋳片を所定の曲率で略90゜曲げつ
つ軽圧下装置により凝固途中の鋳片に軽圧下刃を加える
。この軽圧下帯において鋳片を完全凝固させ、次いで、
軽圧下帯の終了位置(矯正点)で矯正装置のロール群に
より鋳片の曲がりを矯正し、直線状になった鋳片を切断
機で所定長に切断する。
When the slab has grown to a larger size, the slab is bent at a predetermined curvature approximately 90 degrees and a light reduction blade is applied to the slab in the middle of solidification using a light reduction device. The slab is completely solidified in this light reduction zone, and then
At the end position (straightening point) of the light reduction band, the rolls of the straightening device correct the bends in the slab, and the straight slab is cut into a predetermined length by a cutting machine.

鋳片最終凝固部(クレータエンド)では、炭素(C)、
硫黄(S)、マンガン(Mn)並びに燐(P)等の成分
元素が未凝固溶鋼中に濃縮される。
In the final solidification part of the slab (crater end), carbon (C),
Component elements such as sulfur (S), manganese (Mn), and phosphorus (P) are concentrated in the unsolidified molten steel.

この濃化溶鋼は低融点であるので、溶鋼が凝固殻中で静
止した状態にある場合は析出しないが、濃化溶鋼が凝固
殻中で流動すると、これが析出して所謂中心偏析となる
。通常、溶鋼の凝固収縮により鋳片ボトム方向(鋳片引
抜方向)へ溶鋼が吸引されて流動するので、凝固収縮量
に見合った軽圧下刃を未凝固鋳片に加えて中心偏析を防
止している。一方、鋳造速度が比較的速くなる場合は、
溶鋼静圧が高まり、圧下量が不足する箇所の凝固殻が部
分的に膨張する所謂バルジングが発生する。
Since this concentrated molten steel has a low melting point, it does not precipitate when the molten steel is stationary in the solidified shell, but when the concentrated molten steel flows in the solidified shell, it precipitates, resulting in so-called central segregation. Normally, solidification shrinkage of molten steel causes the molten steel to be sucked and flow toward the bottom of the slab (in the direction of slab withdrawal), so a light reduction blade commensurate with the amount of solidification shrinkage is added to the unsolidified slab to prevent center segregation. There is. On the other hand, if the casting speed becomes relatively high,
The static pressure of the molten steel increases, and so-called bulging occurs in which the solidified shell partially expands in areas where the reduction amount is insufficient.

バルジングが発生すると、膨張した凝固殻が圧下ロール
により圧縮され、鋳片トップ方向(鋳片引抜方向の逆方
向)への溶鋼の流動が起こり、クレータエンドに濃化溶
鋼が析出して幅広の中心偏析が発生する。特に、圧下ロ
ールのピッチ間隔が大きい場合及び圧下ロールにたわみ
又は摩耗が存在する場合に、バルジングが発生しやすい
。このため、通常、軽圧下帯に一層の小径ロールを配列
し、ロール相互間のピッチを小さくし、バルジングの発
生を阻止して中心偏析を低減するようにしている。
When bulging occurs, the expanded solidified shell is compressed by the reduction roll, causing molten steel to flow toward the top of the slab (in the opposite direction to the direction in which the slab is pulled out), and concentrated molten steel precipitates at the end of the crater, forming a wide center. Segregation occurs. In particular, bulging is likely to occur when the pitch interval of the reduction roll is large or when the reduction roll is deflected or worn. For this reason, one layer of small-diameter rolls is usually arranged in the light rolling zone to reduce the pitch between the rolls, thereby preventing the occurrence of bulging and reducing center segregation.

従来の軽圧下鋳造技術においては、軽圧下装置による圧
下のみでは鋳片の中心偏析を十分に低減することができ
ない。このため、電磁攪拌装置(EMS)によりクレー
タエンドに回転磁界又は移動磁界を印加し、クレータエ
ンドの濃化溶鋼を電磁誘導により攪拌して中心偏析の発
生を防止している。
In the conventional light reduction casting technology, center segregation of the slab cannot be sufficiently reduced only by reduction using the light reduction device. For this reason, a rotating magnetic field or a moving magnetic field is applied to the crater end using an electromagnetic stirring device (EMS), and the concentrated molten steel at the crater end is stirred by electromagnetic induction to prevent center segregation.

[発明が解決しようとする問題点コ しかしながら、従来の軽圧下鋳造技術においては、クレ
ータエンドにて濃縮された[C]、[P]等の濃化成分
を電磁攪拌により一定領域内で単に拡散させているにす
ぎないので、偏析成分濃度のピーク値を下げることはで
きるが、偏析そのものを無くしてしまうことができない
。このため、鋳片中心部の一定領域内に濃度レベルが平
均化された偏析帯が生じる。この偏析帯には小型の島状
偏析(セミマクロ偏析)が存在しており、下記に示すよ
うな種々の問題点を生じる。
[Problems to be solved by the invention] However, in the conventional light reduction casting technology, concentrated components such as [C] and [P] concentrated at the crater end are simply diffused within a certain area by electromagnetic stirring. Although it is possible to lower the peak value of the concentration of the segregated components, it is not possible to eliminate the segregation itself. For this reason, a segregation zone with an average concentration level is generated within a certain area at the center of the slab. This segregation zone contains small island-like segregation (semi-macro segregation), which causes various problems as shown below.

近時、鋼材の品質に対する需要家からの要求が高度化及
び多様化してきており、製品化された鋼材中に不可避的
に存在する不純物元素の偏析及び非金属介在物等の一層
の低減化が望まれている。
In recent years, demands from customers regarding the quality of steel materials have become more sophisticated and diversified, and it is necessary to further reduce the segregation of impurity elements and non-metallic inclusions that inevitably exist in manufactured steel materials. desired.

すなわち、石油及び天然ガス輸送用のパイプ材料におい
ては、硫化水素を含むサワーガスの作用により中心偏析
帯に沿って水素誘起割れ(HI C)が発生するので、
材料改善によりHICを防止することが強く要望されて
いる。HICは中心偏析帯のP濃度が高い部分で発生し
やすいことが知られており、一般に、Pのピーク濃度が
約0.04%以上になると、HICによる割れ発生率が
高くなる。
In other words, in pipe materials for oil and natural gas transportation, hydrogen-induced cracking (HIC) occurs along the central segregation zone due to the action of sour gas containing hydrogen sulfide.
There is a strong desire to prevent HIC by improving materials. It is known that HIC is likely to occur in areas where the P concentration is high in the central segregation zone, and generally, when the peak concentration of P is about 0.04% or more, the cracking occurrence rate due to HIC increases.

従来の軽圧下鋳造技術では、鋳片中心部にP濃度が健全
部のそれの約10倍にも達する所謂マクロ偏析が発生す
るため、耐HIC鋼材を製造する場合には、取鍋溶鋼の
P濃度を50ppm以下のレベルに低減すると共に、凝
固後のスラブを約1300℃に均熱することにより偏析
Pを拡散し、P /a度の最大値を低下させるようにし
ている。
With conventional light reduction casting technology, so-called macro-segregation occurs in the center of the slab, where the P concentration is about 10 times that of the sound part. The concentration is reduced to a level of 50 ppm or less, and the solidified slab is soaked at about 1300° C. to diffuse the segregated P and lower the maximum value of P /a degrees.

第7図は、横軸に中心偏析粒子の偏析粒径をとり、縦軸
に鋳片長さ100mm当りに存在する偏析粒子の個数を
とって、中心偏析帯を有する種々の鋼材についてセミマ
クロ偏析粒子がHICに及ぼす影響について調査したグ
ラフ図である。図中、黒丸はI(ICにより割れが生じ
たものを示し、白丸は割れが生じなかったものを示す。
Figure 7 shows the semi-macro segregated particles of various steel materials having a central segregation zone, with the horizontal axis representing the segregated particle diameter and the vertical axis representing the number of segregated particles present per 100 mm of slab length. It is a graph diagram which investigated the influence on HIC. In the figure, black circles indicate those in which cracks occurred due to I (IC), and white circles indicate those in which cracks did not occur.

この図に示すように、HIC発生について、粒径が約0
.5+nm以上の大型の偏析粒子(セミマクロ偏析)が
特に有害であり、このセミマクロ偏析の低減化がHIC
発生防止にを効なことが知られている。すなわち、鋼材
の耐HIC特性を改善するためには、前述のマクロ偏析
及びセミマクロ偏析を共に低減する必要がある。
As shown in this figure, for HIC generation, the particle size is approximately 0.
.. Large segregated particles of 5+ nm or larger (semi-macro segregation) are particularly harmful, and reduction of this semi-macro segregation is HIC.
It is known to be effective in preventing outbreaks. That is, in order to improve the HIC resistance of steel materials, it is necessary to reduce both the above-mentioned macro segregation and semi-macro segregation.

一方、海洋構造物用の鋼板材料に対しては、主として鋼
材の溶接特性を改善することが需要家から要望されてい
る。すなわち、鋼材に中心偏析帯が存在する場合には、
溶接割れ防止のために溶接時に鋼材を予熱する必要があ
り、溶接後においては溶接熱影響部(HAZ)の靭性が
劣化すると共に、溶接継手部にラメラティア(鋼板のラ
ミネーションに沿って発生する階段状の割れ)が発生す
る。従って、構造物の信頼性向上を図るという観点から
鋼材の中心偏析帯の低減化が強く望まれている。
On the other hand, with respect to steel sheet materials for offshore structures, customers primarily desire improvements in the welding characteristics of the steel materials. In other words, if there is a central segregation zone in the steel material,
It is necessary to preheat the steel material during welding to prevent weld cracking, and after welding, the toughness of the weld heat-affected zone (HAZ) deteriorates and lamellar tear (step-like appearance that occurs along the lamination of the steel plates) occurs in the welded joint. cracks) occur. Therefore, from the viewpoint of improving the reliability of structures, it is strongly desired to reduce the central segregation zone of steel materials.

更に、ビール缶のような深絞り鋼においては、その加工
性に偏析が重大な影響を及ぼすので、無偏析材料の開発
が強く望まれている。
Furthermore, since segregation has a significant effect on the workability of deep-drawn steel such as beer cans, the development of segregation-free materials is strongly desired.

この発明はかかる事情に鑑みてなされたものであって、
凝固末期における溶湯の流動を抑制して鋳片中心部に偏
析する不純物等の絶対量を低減することができる軽圧下
鋳造方法を提供することを目的とする。
This invention was made in view of such circumstances, and
It is an object of the present invention to provide a light reduction casting method capable of suppressing the flow of molten metal at the final stage of solidification and reducing the absolute amount of impurities and the like segregated in the center of a slab.

【問題点を解決するための手段] ′この発明に係る軽圧下鋳造方法は、連続鋳造された未
凝固の鋳片を多数のロールにより軽圧下つつ鋳片を完全
凝固させる軽圧下鋳造方法において、凝固末期の溶湯に
静止磁界を印加して溶湯の流動を阻止することを特徴と
する。
[Means for Solving the Problems] 'The light reduction casting method according to the present invention is a light reduction casting method in which a continuous cast unsolidified slab is lightly rolled down by a number of rolls and the slab is completely solidified. It is characterized by applying a static magnetic field to the molten metal in the final stage of solidification to prevent the molten metal from flowing.

[作用] 第3図は、凝固末期の溶湯の流動について説明する模式
図である。溶湯が凝固収縮すると、鋳片引抜方向に溶湯
が吸引されて図中矢印a方向へ流動する。最終凝固領域
では鋳片軸心部にて双方の凝固殻が出会い、軸心部に向
かって発達した樹枝状晶の主軸が相互に連絡するように
なり、矢印a方向に流動した濃化溶湯が樹枝状晶に遮ら
れて図中矢印す方向(鋳斤中央部へ向かう方向)にその
流動方向が変化する。そして、樹枝状晶間に閉込められ
た溶湯が鋳片軸心部へ向かって流動し、溶湯が凝固して
高濃度の中心偏析となる。
[Function] FIG. 3 is a schematic diagram illustrating the flow of molten metal at the final stage of solidification. When the molten metal solidifies and shrinks, the molten metal is sucked in the slab drawing direction and flows in the direction of arrow a in the figure. In the final solidification region, both solidified shells meet at the axial center of the slab, and the main axes of the dendrites that have developed toward the axial center come to communicate with each other, and the concentrated molten metal flowing in the direction of arrow a Obstructed by the dendrites, the flow direction changes in the direction indicated by the arrow in the figure (towards the center of the casting pan). Then, the molten metal trapped between the dendrites flows toward the axial center of the slab, and the molten metal solidifies to form a highly concentrated central segregation.

しかしながら、この発明に係る軽圧下鋳造方法において
は、凝固末期の溶湯に静止磁界を印加しているので、矢
印a方向へ溶湯が流動すると起電力が発生し、溶湯に電
流が流れ、これにより流動方向と逆方向の誘導力が溶湯
に作用する。このため、濃化溶湯が流動すると、直ちに
反発力が働いて溶湯の流動が抑制され、濃化溶湯の析出
が阻止される。
However, in the light reduction casting method according to the present invention, a static magnetic field is applied to the molten metal at the final stage of solidification, so when the molten metal flows in the direction of arrow a, an electromotive force is generated and a current flows through the molten metal, which causes the molten metal to flow. An induced force in the opposite direction acts on the molten metal. Therefore, when the concentrated molten metal flows, a repulsive force acts immediately to suppress the flow of the molten metal and prevent precipitation of the concentrated molten metal.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

先ず、中心偏析低減の基本的考え方について説明する。First, the basic concept of center segregation reduction will be explained.

第4図は、凝固末期における中心偏析の生成機構を示す
模式図である。図中、斜線領域は固相、斜線領域を除く
領域は液相を夫々示す。また、図中の記号gは残留溶鋼
が流動しうる限界の固相率、記号LDは固液共存領域の
厚さ、記号LLは液相領域(100%液相領域)の厚さ
を夫々示す。図中、固相率が零の厚さ位置から固相率が
glになる厚さ位置までの領域に存在する濃化溶鋼が流
動して混合されることにより中心偏析が形成されると仮
定すると、凝固末期溶鋼の成分濃化率CL/C,は下記
(1)式により計算される。
FIG. 4 is a schematic diagram showing the generation mechanism of center segregation at the final stage of solidification. In the figure, the shaded area indicates the solid phase, and the area other than the shaded area indicates the liquid phase. In addition, the symbol g in the figure indicates the limit solid phase ratio at which residual molten steel can flow, the symbol LD indicates the thickness of the solid-liquid coexistence region, and the symbol LL indicates the thickness of the liquid phase region (100% liquid phase region). . In the figure, assuming that central segregation is formed by the flowing and mixing of concentrated molten steel existing in the region from the thickness position where the solid fraction is zero to the thickness position where the solid fraction is gl. , the component concentration ratio CL/C of the molten steel at the final stage of solidification is calculated by the following equation (1).

・・・(1) 但し、上記(1)式中の各記号は下記による。...(1) However, each symbol in the above formula (1) is as follows.

α−LL/LD(凝固末期の固液共存領域に対する液相
領域の割合) LL+  LD、凝固末期の液相領域の厚さ、固液共存
領域の厚さ g;残留溶鋼が流動しうる限界の固相率Ko ;  [
C] 、[P]等の各成分における平衡分配係数 第5図は、上記(1)式により求めた[C]の成分濃化
率C1,/ COを縦軸にとり、凝固末期の固液共存領
域に対する液相領域の割合いαを横軸にとって、凝固末
期における溶鋼流動と偏析度との関係について検討した
ものである。図中、各曲線に記入した数値は夫々の固相
率gを示す。なお、平衡分配係数KOを0.141とし
て成分l衰化率CL/Coを算出した。この図から明ら
かなように、濃化溶鋼の流動限界固相率gが大になるに
従って成分濃化率CL/C,が高くなり、また完全液相
領域の割合αが小さくなるほど成分濃化率に与える影響
が太き(なる。すなわち、濃化溶鋼の流動が活発になる
と成分濃化率が高まり、偏析度が高くなる。従って、中
心偏析を低減するためには、濃化溶鋼の流動を抑制する
必要がある。
α-LL/LD (ratio of liquid phase region to solid-liquid coexistence region at the end of solidification) LL+ LD, thickness of liquid phase region at the end of solidification, thickness of solid-liquid coexistence region g; limit of flow of residual molten steel Solid phase ratio Ko; [
Figure 5 shows the equilibrium distribution coefficient for each component such as [C], [P], etc., with the component concentration C1,/CO of [C] determined by the above equation (1) taken on the vertical axis, and the solid-liquid coexistence at the final stage of solidification. This study examines the relationship between molten steel flow and segregation degree at the final stage of solidification, with α, the ratio of the liquid phase region to the region, as the horizontal axis. In the figure, the numerical values written on each curve indicate the respective solid fraction g. Note that the component l decay rate CL/Co was calculated by setting the equilibrium distribution coefficient KO to 0.141. As is clear from this figure, as the flow limit solid fraction g of concentrated molten steel increases, the component concentration CL/C increases, and as the ratio α of the completely liquid phase region decreases, the component concentration increases. In other words, when the flow of concentrated molten steel becomes active, the concentration rate of components increases and the degree of segregation increases. Therefore, in order to reduce center segregation, it is necessary to increase the flow of concentrated molten steel. need to be suppressed.

この濃化溶鋼の流動を抑制する手段として、第1に鋳片
のロール間バルジングの発生を抑制するためにロール相
互間のピッチを狭くすること、第2に凝固収縮により濃
化溶鋼がボトム側(鋳片引抜き下流側)へ吸引されて流
動することを阻止するために凝固収縮量に相当する適正
量の軽圧下刃を鋳片に印加することが挙げられる。この
ため、軽圧下ロールを小径化すると共に、ロールを分割
して短尺化し、鋳片にきめ細かな圧下を印加する必要が
ある。また、種々の条件下で実際に鋳造した試験結果に
よれば、軽圧下帯の開始位置から約3/4のところにク
レータエンドを位置させた場合に、軽圧下帯のロール圧
下の効果が最大になることが判明した。
As a means of suppressing the flow of this concentrated molten steel, firstly, the pitch between the rolls is narrowed to suppress the occurrence of bulging between the rolls of the slab, and secondly, the concentrated molten steel is moved toward the bottom side by solidification shrinkage. In order to prevent the slab from being sucked and flowing toward the downstream side of the slab being drawn, an appropriate amount of light reduction blade corresponding to the amount of solidification shrinkage may be applied to the slab. For this reason, it is necessary to reduce the diameter of the light reduction roll and to divide the roll into shorter lengths to apply fine reduction to the slab. In addition, according to the results of actual casting tests conducted under various conditions, the effect of roll reduction of the light reduction zone is maximized when the crater end is positioned approximately 3/4 from the starting position of the light reduction zone. It turned out to be.

ところで、発明者らは、未凝固領域の厚さが約3011
1[11の凝固途中の鋳片にトレーサー(F e S)
が封入された鋲を打込み、軽圧下量を種々変更して凝固
末期の濃化溶鋼の流動状況を調査した結果、以下の知見
を得ることができた。
By the way, the inventors found that the thickness of the unsolidified region was approximately 3011 mm.
1 [Tracer (F e S) on the slab in the middle of solidification of 11
As a result of investigating the flow condition of concentrated molten steel at the final stage of solidification by driving a stud with encapsulated steel and varying the amount of light reduction, the following findings were obtained.

第6図は、横軸に軽圧下量(鋳片引抜長さ1m当りのロ
ール間隔絞り込み量)をとり、縦軸に溶鋼の流動長さを
とって、前記調査結果に基づき軽圧下量と溶鋼流動長さ
との関係を示すグラフ図である。この図から明らかなよ
うに、軽圧下量が増加するに従って溶鋼の流動長さが減
少し、約1.201111/il+の軽圧下量のときに
溶鋼の流動長さが最小になることが確認された。
Figure 6 shows the amount of light reduction (the amount of roll spacing reduced per 1 m of slab drawing length) on the horizontal axis, and the flow length of molten steel on the vertical axis, and the amount of light reduction and molten steel based on the above survey results. It is a graph diagram showing the relationship with flow length. As is clear from this figure, the flow length of molten steel decreases as the light reduction amount increases, and it is confirmed that the flow length of molten steel becomes the minimum at a light reduction amount of approximately 1.201111/il+. Ta.

また、上記の軽圧下条件で鋳造された鋳片を調べてみる
と、極めて僅かではあるが中心偏析が認められる。これ
はバルジングの発生及び装置精度の限界等に起因するも
のと推察され、機械的手段(軽圧下)のみにより最終凝
固領域の溶鋼流動を完全に阻止することは極めて困難で
あることが判明した。そこで、発明者らは溶鋼の微少流
動を阻止するために鋳片最終凝固領域に静止磁界を作用
させ、中心偏析防止効果についての調査を行なった。そ
の結果、アルミニウムを鋳造する場合は、凝固末期の溶
湯に磁束密度が約2250ガウスの静止磁界を印加する
と、アルミニウム溶湯の流動停止の効果を確認すること
ができた。この結果に基づけば、溶鋼を軽圧下鋳造する
場合は、磁束密度が約10000ガウスの静止磁界を凝
固末期の溶鋼に印加すれば、溶鋼の流動を停止する効果
として十分である。
Furthermore, when examining slabs cast under the above-mentioned light reduction conditions, center segregation is observed, although very slight. This is presumed to be due to the occurrence of bulging and the limits of equipment accuracy, and it has been found that it is extremely difficult to completely prevent the flow of molten steel in the final solidification region only by mechanical means (light reduction). Therefore, the inventors applied a static magnetic field to the final solidification region of the slab in order to prevent the minute flow of molten steel, and investigated the effect of preventing center segregation. As a result, when casting aluminum, applying a static magnetic field with a magnetic flux density of approximately 2250 Gauss to the molten metal at the final stage of solidification was able to confirm the effect of stopping the flow of the molten aluminum. Based on this result, when casting molten steel under light reduction, applying a static magnetic field with a magnetic flux density of about 10,000 Gauss to molten steel in the final stage of solidification is sufficient to stop the flow of molten steel.

第1図はこの発明の実施例に係る軽圧下鋳造方法に使用
される軽圧下装置を側方から見た概略断面図、第2図は
同じく軽圧下装置を示す斜視図である。垂直曲げ型連続
鋳造機の上部には鋳型(図示せず)が設けられ、所定断
面形状のスラブとなる未凝固鋳片30が鋳型からピンチ
ロールにより引抜かれるようになっている。鋳型の下方
には一層のサポートガイドロールが鋳片を取囲むように
配列され、これにより垂直引抜き部が形成されている。
FIG. 1 is a schematic cross-sectional side view of a light reduction device used in a light reduction casting method according to an embodiment of the present invention, and FIG. 2 is a perspective view of the same light reduction device. A mold (not shown) is provided in the upper part of the vertical bending continuous casting machine, and the unsolidified slab 30, which becomes a slab with a predetermined cross-sectional shape, is pulled out from the mold by pinch rolls. A layer of support guide rolls is arranged below the mold to surround the slab, thereby forming a vertical draw-out.

垂直引抜き部の下方には複数対の曲げロール24が設け
られ、曲げロール24により凝固途中の鋳片30が曲げ
られて鋳片引抜き方向が水平に変更されるようになって
いる。更に、曲げロール24の下方には軽圧下装置10
が設けられ、鋳片に所定量の圧下を加えるようになって
いる。軽圧下装置10は2基のセグメントを有しており
、各セグメントは複数対の小径の軽圧下ロール16を夫
々備えている。これらの軽圧下ロール16には各対ごと
に油圧シリンダ(図示せず)が設けられ、鋳片30が略
均−に圧下されるようにすると共に、過荷重がロール1
6に負加されないようにしている。また、一群のスプレ
ィノズル(図示せず)が鋳片30の幅に沿って配列され
ると共に、各列のスプレィノズルが軽圧下ロール16の
間に夫々配設されている。一群のスプレィノズルは水量
調節機能を有する冷却水供給源(図示せず)に接続され
、各ゾーンのスプレィパターンを制御することにより鋳
片30が所定の速度で冷却されるようになっている。
A plurality of pairs of bending rolls 24 are provided below the vertical drawing section, and the bending rolls 24 bend the slab 30 during solidification so that the direction of drawing the slab is changed to horizontal. Furthermore, a light rolling device 10 is provided below the bending roll 24.
is provided to apply a predetermined amount of reduction to the slab. The light rolling device 10 has two segments, and each segment is provided with a plurality of pairs of small diameter light rolling rolls 16, respectively. A hydraulic cylinder (not shown) is provided for each pair of these light reduction rolls 16, so that the slab 30 is reduced approximately evenly and overload is removed from the rolls 1.
This is to prevent it from being added to 6. Further, a group of spray nozzles (not shown) are arranged along the width of the slab 30, and each row of spray nozzles is arranged between the light reduction rolls 16, respectively. The group of spray nozzles is connected to a cooling water supply source (not shown) having a water volume adjustment function, and by controlling the spray pattern of each zone, the slab 30 is cooled at a predetermined rate.

第2図に示すように、軽圧下ロール16はその長さが3
分割されている。一方、下流側のセグメント内には磁場
発生装置22が鋳片の幅に沿って配設されている。磁場
発生装置22は1対の電磁コイルを有し、各コイルは直
流電源(図示せず)に接続されており、通電すると鋳片
30を厚さ方向に横切る静止磁界が発生するようになっ
ている。
As shown in FIG. 2, the light reduction roll 16 has a length of 3
It is divided. On the other hand, in the segment on the downstream side, a magnetic field generator 22 is arranged along the width of the slab. The magnetic field generator 22 has a pair of electromagnetic coils, each coil is connected to a DC power source (not shown), and when energized, generates a static magnetic field that crosses the slab 30 in the thickness direction. There is.

なお、軽圧下ロール16は、その径が従来の約375m
mから約210ffII11に、ロール相互間のピッチ
が従来の約420vnから約235+no+に、各セグ
メント内のロール本数が従来の5対から8対に夫々変更
されている。また、この連続鋳造機における垂直引抜き
部の長さは約4m、鋳片曲げ部の曲率半径は約8m、鋳
型内湯面(メニスカス)から軽圧下装置10までの高低
差は約10.4乃至14.1mである。
The diameter of the light reduction roll 16 is approximately 375 m compared to the conventional diameter.
m to about 210ffII11, the pitch between the rolls from about 420vn to about 235+no+, and the number of rolls in each segment from the conventional 5 pairs to 8 pairs. In addition, the length of the vertical drawing part in this continuous casting machine is about 4 m, the radius of curvature of the bent part of the slab is about 8 m, and the height difference from the meniscus in the mold to the light reduction device 10 is about 10.4 to 14 m. .1m.

次に、この発明方法により鋳片を製造する場合について
具体的に説明する。鋳造鋼種はNb、V系うインパイプ
用高張力鋼(API  X−,65)であり、鋳片(ス
ラブ)の幅は約1950+nmである。
Next, a case in which slabs are manufactured by the method of the present invention will be specifically explained. The casting steel type is Nb, V-based high tensile strength steel for in-pipe (API X-, 65), and the width of the slab is about 1950+ nm.

RH脱ガス処理及び取鍋精錬処理により成分調整された
溶鋼をタンディツシュから鋳型内に鋳、造する。このと
き、タンディツシュ内の溶鋼温度は約1552℃であり
、溶鋼は約33℃の過熱状態にある(この鋼種の凝固温
度は約1519℃)。溶鋼が鋳型内に注入されると、鋳
型壁に接して凝固殻32が形成される。このとき、毎分
約0.75mの鋳造速度で未凝固状態の鋳片30を引抜
きつつ鋳片冷却速度及び圧下量を適正に制御して、クレ
ータエンド36を磁場発生装置22のところに位置させ
る。
Molten steel whose composition has been adjusted by RH degassing treatment and ladle refining treatment is cast into a mold from a tundish. At this time, the temperature of the molten steel in the tundish is about 1552°C, and the molten steel is in a superheated state of about 33°C (the solidification temperature of this steel type is about 1519°C). When molten steel is injected into the mold, a solidified shell 32 is formed in contact with the mold wall. At this time, while drawing out the unsolidified slab 30 at a casting speed of about 0.75 m/min, the cooling rate and reduction amount of the slab are appropriately controlled to position the crater end 36 at the magnetic field generator 22. .

また、軽圧下装置10においては、一群の軽圧下ロール
16により鋳片引抜長さ1m当り約1.21の割合いで
鋳片30に圧下刃を加える。
In addition, in the light reduction device 10, a group of light reduction rolls 16 apply reduction blades to the slab 30 at a rate of about 1.21 per meter of slab pulling length.

第3図に示すように、軽圧下ロール16の圧下刃が加え
られると、クレータエンド36の周囲の凝固殻32が鋳
片中央側に押され、クレータエンド36内の濃化溶鋼が
鋳片トップ方向に押戻される押戻し力が作用し、クレー
タエンド36の濃化溶鋼がボトム側に吸引される凝固収
縮力と押戻し力とが略均衡して濃化溶鋼の流動が阻止さ
れる。
As shown in FIG. 3, when the reduction blade of the light reduction roll 16 is applied, the solidified shell 32 around the crater end 36 is pushed toward the center of the slab, and the concentrated molten steel within the crater end 36 is transferred to the top of the slab. A push-back force is applied to push back the concentrated molten steel in the direction, and the solidification contraction force that draws the concentrated molten steel toward the bottom side of the crater end 36 and the push-back force are substantially balanced, and the flow of the concentrated molten steel is prevented.

更に、磁場発生装置22により凝固末期の溶鋼に静止磁
界を印加しているので、バルジングにより溶鋼が流動し
ようとする方向と逆方向の電磁誘導力が作用し、溶鋼の
僅かな流動も阻止される。すなわち、図の右側から左側
へ横切る磁束密度Bの静止磁界を印加した場合に、溶鋼
のボトム側への流動速度を■、溶鋼流動長さをLとする
と、紙面の表側から裏側へ向かう起電力E (=BLv
)が発生する。溶鋼に起電力Eの電流Iが流れると、電
磁誘導によりトップ側へ向かう誘導力F(−BI)が溶
鋼に作用し、これか抑止力となって図中矢印a方向の流
動が抑制される。このため、ボトム方向への溶鋼の流動
が阻止され、鋳片軸心部にて連絡した樹枝状晶の主軸に
濃化溶鋼が衝突しなくなるので、樹枝状晶間にて濃化溶
鋼が凝固析出することが防止される。この場合に、磁束
密度が約2000乃至12000ガウスの範囲の磁界を
溶鋼に印加すれば、各種金属の鋳造に対処することがで
きる。
Furthermore, since a static magnetic field is applied to the molten steel at the final stage of solidification by the magnetic field generator 22, an electromagnetic induction force acts in the opposite direction to the direction in which the molten steel attempts to flow due to bulging, and even the slightest flow of the molten steel is blocked. . In other words, when a static magnetic field with a magnetic flux density B that crosses from the right side to the left side of the figure is applied, and if the flow velocity of the molten steel to the bottom side is ■, and the molten steel flow length is L, then the electromotive force moving from the front side to the back side of the paper is E (=BLv
) occurs. When a current I with an electromotive force E flows through the molten steel, an induced force F (-BI) directed towards the top side acts on the molten steel due to electromagnetic induction, which acts as a deterrent force and suppresses the flow in the direction of the arrow a in the figure. . This prevents the flow of molten steel toward the bottom and prevents the concentrated molten steel from colliding with the main axes of the dendrites connected at the axial center of the slab, so that the concentrated molten steel solidifies and precipitates between the dendrites. It is prevented from doing so. In this case, by applying a magnetic field with a magnetic flux density in the range of approximately 2,000 to 12,000 Gauss to the molten steel, it is possible to cast various metals.

上記実施例によれば、クレータエンドの直上域に静止磁
界を印加し、溶鋼の僅かな流動をも阻止することができ
るので、P、S等の不純物元素の偏析を有効に防止する
ことができる。
According to the above embodiment, it is possible to apply a static magnetic field directly above the crater end to prevent even the slightest flow of molten steel, thereby effectively preventing the segregation of impurity elements such as P and S. .

また、軽圧下ロール16の径及びロール間のピッチを従
来よりも小さくしているので、バルジングの発生を有効
に防止することかできる。
In addition, since the diameter of the light reduction rolls 16 and the pitch between the rolls are smaller than those of the prior art, the occurrence of bulging can be effectively prevented.

更に、軽圧下ロール16の長さを3分割しているので、
ロールがたわむことなく油圧装置の駆動力が各分割ロー
ルに確実に伝達され、ロール圧下制御を一層精密にする
ことができ、溶鋼の流動限界固相率gを従来の0.70
から0.15まで低減することができた。
Furthermore, since the length of the light reduction roll 16 is divided into three,
The driving force of the hydraulic system is reliably transmitted to each divided roll without deflection of the rolls, and roll reduction control can be made even more precise, reducing the flow limit solid fraction g of molten steel to 0.70
It was possible to reduce it from 0.15 to 0.15.

なお、上記実施例ではNb、V系高張力鋼の場合につい
て示したが、これに限らず他鋼種を連続鋳造する場合に
もこの発明方法を使用することができる。
In the above embodiments, the case of Nb, V-based high-strength steel was shown, but the method of the present invention is not limited to this, and can be used for continuous casting of other steel types.

また、上記実施例ではスラブを製造する場合について示
したが、これに限らずブルーム又は丸ビレット等を製造
する場合にもこの発明方法を使用することができる。こ
の場合には、2対のコイルによりブルーム又は丸ビレッ
トを取囲むことにより、その効果を一層高くすることも
できる。
Furthermore, although the above embodiments have been described with reference to the case of manufacturing slabs, the method of the present invention is not limited to this, and can also be used in the case of manufacturing blooms, round billets, and the like. In this case, the effect can be further enhanced by surrounding the bloom or round billet with two pairs of coils.

[発明の効果] この発明によれば、凝固末期の溶湯に静止磁界を印加し
て濃化溶湯の(mかな流動をも阻止することができるの
で、鋳片中心部に偏析する不純物等の絶対量を大幅に低
減することができる。
[Effects of the Invention] According to the present invention, it is possible to apply a static magnetic field to the molten metal at the final stage of solidification to prevent even the slightest flow of the concentrated molten metal. The amount can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る軽圧下鋳造方法が使用
された軽圧下装置を側方から見た概略断面図、第2図は
同じく軽圧下装置を示す斜視図、第3図は凝固末期の溶
湯の流動について説明する模式図、第4図は濃化溶鋼の
凝固機構を示す模式図、第5図は溶鋼の流動と偏析度と
の関係を示す模式図、第6図は軽圧下量と濃化溶鋼の流
動長さとの関係を示すグラフ図、第7図は水素誘起割れ
(HI C)に及ぼすセミマクロ(−析の影響を示すグ
ラフ図である。 10;軽圧下装置、12,14;セグメント、16.1
8;軽圧下ロール、20;スプレィノズル、22;磁場
発生装置、30;鋳片、36;クレータエンド 出願人代理人 弁理士 鈴江武彦 第1図 第2図 分 第3図 第4図 0 0.5 1.0 1.5 20 α 第5図
Fig. 1 is a schematic sectional view from the side of a light reduction device in which a light reduction casting method according to an embodiment of the present invention is used, Fig. 2 is a perspective view of the light reduction device, and Fig. 3 is a solidification A schematic diagram explaining the flow of molten metal at the final stage, Figure 4 is a schematic diagram showing the solidification mechanism of concentrated molten steel, Figure 5 is a schematic diagram showing the relationship between the flow of molten steel and the degree of segregation, and Figure 6 is a diagram showing the relationship between the flow of molten steel and the degree of segregation. Fig. 7 is a graph showing the influence of semi-macro analysis on hydrogen-induced cracking (HIC). 10; Light reduction device, 12. 14; Segment, 16.1
8; Light reduction roll, 20; Spray nozzle, 22; Magnetic field generator, 30; Slab, 36; Crater End Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 0 0. 5 1.0 1.5 20 α Figure 5

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造された未凝固の鋳片を多数のロールにより軽圧
下しつつ鋳片を完全凝固させる軽圧下鋳造方法において
、凝固末期の溶湯に静止磁界を印加して溶湯の流動を阻
止することを特徴とする軽圧下鋳造方法。
A light reduction casting method in which continuously cast unsolidified slabs are lightly rolled down by a number of rolls to completely solidify the slabs, and is characterized by applying a static magnetic field to the molten metal in the final stage of solidification to prevent the molten metal from flowing. Light reduction casting method.
JP7670187A 1987-03-30 1987-03-30 Method for casting by light rolling reduction Pending JPS63242453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7670187A JPS63242453A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7670187A JPS63242453A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Publications (1)

Publication Number Publication Date
JPS63242453A true JPS63242453A (en) 1988-10-07

Family

ID=13612814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7670187A Pending JPS63242453A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Country Status (1)

Country Link
JP (1) JPS63242453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06608A (en) * 1991-07-08 1994-01-11 Nkk Corp Method for continuously casting steel
CN105583382A (en) * 2016-03-07 2016-05-18 东北大学 Method for suppressing casting blank inclusion segregation by means of pulse current
CN108436049A (en) * 2018-02-08 2018-08-24 中国科学院金属研究所 A method of V is segregated in control large scale continuous casting billet
CN110523942A (en) * 2019-08-29 2019-12-03 邢台钢铁有限责任公司 A kind of control method improving high-carbon-chromium bearing steel bloom internal flaw

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation
JPS5976649A (en) * 1982-10-26 1984-05-01 Nippon Steel Corp Continuous casting method of steel
JPS6310050A (en) * 1986-07-01 1988-01-16 Kawasaki Steel Corp Prevention method of center segregation for continuously cast slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation
JPS5976649A (en) * 1982-10-26 1984-05-01 Nippon Steel Corp Continuous casting method of steel
JPS6310050A (en) * 1986-07-01 1988-01-16 Kawasaki Steel Corp Prevention method of center segregation for continuously cast slab

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06608A (en) * 1991-07-08 1994-01-11 Nkk Corp Method for continuously casting steel
CN105583382A (en) * 2016-03-07 2016-05-18 东北大学 Method for suppressing casting blank inclusion segregation by means of pulse current
CN108436049A (en) * 2018-02-08 2018-08-24 中国科学院金属研究所 A method of V is segregated in control large scale continuous casting billet
CN108436049B (en) * 2018-02-08 2019-11-01 中国科学院金属研究所 A method of V segregation in control large scale continuous casting billet
CN110523942A (en) * 2019-08-29 2019-12-03 邢台钢铁有限责任公司 A kind of control method improving high-carbon-chromium bearing steel bloom internal flaw
CN110523942B (en) * 2019-08-29 2021-11-23 邢台钢铁有限责任公司 Control method for improving internal defects of high-carbon chromium bearing steel bloom

Similar Documents

Publication Publication Date Title
JP3063518B2 (en) Continuous casting device and continuous casting system
EP2269750B1 (en) Method for continuous casting of steel and electromagnetic stirrer to be used therefor
JP6115735B2 (en) Steel continuous casting method
US5769152A (en) Continuous casting process and continuous casting/rolling process for steel
JP6129435B1 (en) Continuous casting method
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP2009503259A (en) Manufacture of thin steel strip
JPS63242452A (en) Method for casting by light rolling reduction
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JPS63242453A (en) Method for casting by light rolling reduction
JP4591156B2 (en) Steel continuous casting method
CN105665662B (en) Flux-cored wire based on ESP lines steel making method
JPS63286260A (en) Light rolling reduction casting method
JPS63278654A (en) Light rolling reduction casting method
JPS63278655A (en) Light rolling reduction casting method
US3811490A (en) Continuous casting of rimming steel
US7591917B2 (en) Method of producing steel strip
JPS63242454A (en) Method for casting by light squeeze
JPS63252655A (en) Method for casting under light draft
JP3308102B2 (en) Metal strip continuous casting method
JPH01178356A (en) Continuous casting method
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP3275835B2 (en) Continuous casting method and continuous casting machine
JPS63252654A (en) Method for casting under light draft
JPH01178355A (en) Continuous casting method