JPH01178356A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH01178356A
JPH01178356A JP33687387A JP33687387A JPH01178356A JP H01178356 A JPH01178356 A JP H01178356A JP 33687387 A JP33687387 A JP 33687387A JP 33687387 A JP33687387 A JP 33687387A JP H01178356 A JPH01178356 A JP H01178356A
Authority
JP
Japan
Prior art keywords
slab
molten steel
solidification
concentrated
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33687387A
Other languages
Japanese (ja)
Inventor
Hitoshi Kobayashi
日登志 小林
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33687387A priority Critical patent/JPH01178356A/en
Publication of JPH01178356A publication Critical patent/JPH01178356A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce center segregation in a cast slab by specifying super heat of casting temp. and drawing speed and applying light rolling reduction at near crater end. CONSTITUTION:Molten steel poured into a mold 10 is cooled with spray water to form the solidified shell 21, and drawn downward with guide rolls 11, small diameter rolls 12 or pinch rolls 13, while holding non-solidified part 22 in the inner part. In this case, the super heat of the casting temp. is made to high, such as 50-100 deg.C. Further, the drawing speed is made to slow, such as <=0.4m/min. By this method, the center segregation of the cast slab can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明はスラブの連続鋳造において中心偏析を防止す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] This invention relates to a method for preventing center segregation in continuous slab casting.

[従来技術] 連続鋳造においては、溶鋼が水冷鋳型により冷却される
と鋳片外周部に凝固殻が形成され、鋳型を通過した鋳片
はその内部に未凝固溶鋼を保持したまま一層のサポート
ガイドロールにより引き抜かれる。鋳片の引き抜き過程
においては、鋳片にスプレィ水を噴射して鋳片内部の凝
固促進を図り、凝固殻の厚さが変形に耐える厚さ以上に
成長すると、鋳片を所定の曲率で略90”曲げつつ軽圧
下刃を加える。この軽圧下帯において鋳片を完全凝固さ
せせ、ついで軽圧下帯の終了位置で矯正装置のロール群
により鋳片の曲がりを矯正し、直線状になった鋳片を切
断機で所定長に切断する。
[Prior art] In continuous casting, when molten steel is cooled by a water-cooled mold, a solidified shell is formed around the outer periphery of the slab, and the slab that has passed through the mold is formed into a support guide while retaining the unsolidified molten steel inside. It is pulled out by a roll. During the slab drawing process, spray water is injected onto the slab to promote solidification inside the slab, and when the thickness of the solidified shell grows beyond the thickness that can withstand deformation, the slab is pulled to a predetermined curvature. While bending the slab by 90", a light reduction blade is applied. The slab is completely solidified in this light reduction zone, and then, at the end of the light reduction zone, the bend in the slab is straightened by the roll group of the straightening device, and it becomes straight. Cut the cast slab into a predetermined length using a cutting machine.

凝固開始からクレータ−エンド付近までの凝固過程にお
いては凝固界面で成分元素の濃縮が生じているが、この
ときの濃縮溶液は凝固時に生じるデンドライト(樹枝状
晶)にトラップされるかまたは浮上して未凝固溶液の中
に混合されて薄めらる。こうして凝固が進行するので凝
固の進行に従って緩やかな前記成分元素の濃縮は生ずる
が特に有害となる偏析の発生を見ることはない。
During the solidification process from the start of solidification to near the crater end, concentration of component elements occurs at the solidification interface, and the concentrated solution at this time is trapped by dendrites (dendrites) formed during solidification or floats to the surface. Mixed and diluted into unsolidified solution. As the solidification progresses in this manner, the component elements are gradually concentrated as the solidification progresses, but no particularly harmful segregation occurs.

しかしながら、クレータ−エンド付近では溶鋼中に含ま
れるC、S、Mn及びPなどの成分元素が未凝固溶鋼中
に濃縮される。この濃縮成分は上記と同様にデンドライ
トにトラップされるが、凝固界面に生じた濃化溶液はク
レータ−エンド付近においては薄められべき溶液は殆ど
無く濃化されたまま凝固に至る。また、凝固が進行した
場合には凝固による収縮によりクレータ−エンド付近に
おいて未凝固部分が広がり、ここに上方からすでに凝固
が進行して濃化されている前記濃化溶液が降下するので
、中心部の偏析は一層助長される。
However, near the crater end, component elements such as C, S, Mn, and P contained in the molten steel are concentrated in the unsolidified molten steel. This concentrated component is trapped in the dendrite in the same way as above, but the concentrated solution generated at the solidification interface solidifies while being concentrated, with almost no solution to be diluted near the crater end. In addition, when solidification progresses, the unsolidified portion expands near the crater end due to contraction due to solidification, and the concentrated solution, which has already solidified and has been concentrated, falls from above, so that the central part This further promotes segregation.

また溶鋼静圧により未凝固部分が広がるいわゆるバルジ
ングが生じた場合においても、上記凝固収縮の場合と同
様に前記濃化溶液のクレータ−エンド付近への降下によ
り中心偏析を助長する。
Furthermore, even when so-called bulging occurs, in which the unsolidified portion expands due to the static pressure of the molten steel, center segregation is promoted by the drop of the concentrated solution near the crater end, as in the case of solidification shrinkage.

中心偏析を防止するための対策として、上記凝固による
収縮に対してはクレータ−エンド付近において軽圧下を
かけ、前記凝固収縮による未凝固部分の広がりを補償し
ている。又、バルジング対策としてはロールのピッチ間
隔が大きいと・バルジングが発生しやすいので上記の軽
圧下帯に小径ロールを配列しロール相互間のピッチを小
さくしている。
As a measure to prevent center segregation, a light reduction is applied near the crater end to compensate for the expansion of the unsolidified portion due to the solidification shrinkage. In addition, as a countermeasure against bulging, since bulging is likely to occur if the pitch interval between the rolls is large, small diameter rolls are arranged in the above-mentioned light rolling zone to reduce the pitch between the rolls.

[発明が解決しようとする問題点] しかしながら、従来の軽圧下鋳造技術においては、中心
偏析を十分防止するまでに至っていない。例えば近時鋼
材に対する需要家からの要求が高度化または多様化して
きており、製品化された鋼材中に不可避的に存在する不
純物元素の偏析及び非金属介在物等の一層の低減が望ま
れている。
[Problems to be Solved by the Invention] However, in the conventional light reduction casting technology, center segregation has not been sufficiently prevented. For example, demands from customers for steel products have recently become more sophisticated or diversified, and there is a desire to further reduce the segregation of impurity elements and nonmetallic inclusions that inevitably exist in manufactured steel products. There is.

すなわち、石油、または天然ガス輸送用のパイプ材料に
おいては、硫化水素を含むサワーガスの作用により中心
偏析帯に沿って水素誘起割れ(HIC)が発生するので
、材料改善によりHICを防止することが強く要望され
ている。
In other words, in pipe materials for oil or natural gas transportation, hydrogen-induced cracking (HIC) occurs along the central segregation zone due to the action of sour gas containing hydrogen sulfide, so it is strongly recommended to prevent HIC by improving the material. It is requested.

第5図は、横軸に中心偏析粒子の粒径をとり、縦軸に鋳
片長さ100m+a当たりに存在する偏析粒子の個数を
とって、中心偏析帯を有する種々の鋼材について偏析粒
子がHICに及ぼす影響について調査したグラフ図であ
る0図中、黒丸はHICにより割れが生じたものを示し
、白丸は割れが生じなかったものを示す。この図に示す
ように、HIC発生について、粒径が約0.5mm以上
の大型の偏析粒子が特に有害であり、この偏析の低減が
HIC発生防止に有効なことが知られている。
Figure 5 shows the HIC of segregated particles for various steel materials with a central segregation zone, with the horizontal axis representing the grain size of centrally segregated particles and the vertical axis representing the number of centrally segregated particles present per 100m+a slab length. In Figure 0, which is a graph showing the effects of HIC, black circles indicate those in which cracks occurred due to HIC, and white circles indicate those in which no cracks occurred. As shown in this figure, it is known that large segregated particles with a particle size of about 0.5 mm or more are particularly harmful to the generation of HIC, and that reducing this segregation is effective in preventing the generation of HIC.

一方、海洋構造物の鋼材に対しては主として溶接特性の
改善が需要家から要望されている。すなわち、鋼材に中
心偏析帯が存在する場合には、溶接割れ防止のために溶
接時に鋼材を予熱する必要があり、溶接後においては溶
接熱影響部(HAZ)の靭性が劣化するとともに、溶接
継手部にラメラティア(鋼販のラミネーションに沿って
発生する階段状の割れ)が発生する。従って、構造物の
信頼性向上の観点から鋼材の中心偏析の低減が強く望ま
れている。さらに、ビール缶のよう深絞り鋼においては
、その加工性に偏析が重大な影響を及ぼすので、無偏析
材料の開発が強く望まれている。
On the other hand, customers mainly demand improvements in welding characteristics of steel materials for offshore structures. In other words, if a central segregation zone exists in the steel material, it is necessary to preheat the steel material during welding to prevent weld cracking, and after welding, the toughness of the weld heat affected zone (HAZ) deteriorates and the weld joint Lamellar tears (step-like cracks that occur along the lamination of the steel plate) occur in the steel plate. Therefore, from the viewpoint of improving the reliability of structures, it is strongly desired to reduce center segregation of steel materials. Furthermore, since segregation has a significant effect on the workability of deep-drawn steel such as beer cans, the development of segregation-free materials is strongly desired.

この発明はかかる事情に鑑みてなされたものであって、
凝固末期に生じる鋳片の中心偏析を防止することが出来
る連続鋳造法を提供することを目的とする。
This invention was made in view of such circumstances, and
The object of the present invention is to provide a continuous casting method that can prevent center segregation of slabs that occurs at the final stage of solidification.

[問題点を解決するための手段] この発明に係わる連続鋳造法は、スラブの連続鋳造にお
いて、鋳造温度のスーパーヒートを50℃乃至100℃
とし、かつ引き抜き速度を0.4m/min以下として
クレータ−エンド付近において小径ロールにより軽圧下
を行うことを特徴とする。
[Means for Solving the Problems] The continuous casting method according to the present invention involves superheating the casting temperature to 50°C to 100°C in the continuous casting of slabs.
The invention is characterized in that light reduction is performed using small diameter rolls near the crater end at a drawing speed of 0.4 m/min or less.

[作用] 第3図及び第4図は凝固末期の中心偏析の生成について
説明する模式図である。先ず従来技術である第3図につ
いて説明するとクレータ−エンド付近において溶湯が凝
固収縮すると未凝固部分が広がり上方から不純物元素の
濃化溶鋼が降下してクレータ−エンド方向に向かう。最
終凝固領域では鋳片中心部で双方の柱状晶(樹枝状晶で
その主軸がよく発達したもの)が出会い、中心部に向か
って発達したその主軸25が相互に連結するようになり
、降下した濃化溶鋼は双方の柱状晶に遣えぎられてその
中にトラップされる。そして、樹枝状晶に閉じこめられ
た溶湯が凝固して高濃度の中心偏析となる。なお等軸晶
26の生成により相対的に比重の小さい濃化溶鋼の浮上
が妨げられる虞がある。しかしながら、この発明に係る
連続鋳造法にいては、溶鋼が鋳型に注入されるときの温
度すなわち鋳造温度のスーパーヒート(鋳造温度と鋳造
される溶鋼の凝固温度との差)は従来例では30℃前後
であるのに対し、本発明では50℃乃至100℃と高く
されであるので鋳片の中心部において柱状晶が良く発達
し、等軸晶の発達が妨げられる。また鋳片の引き抜き速
度は0.4m/ll1inと遅くしであるので第4図に
示すごとくクレータ−エンド角度(図中αで示す)は大
きくなっている0元来、濃化溶鋼は濃化されていない溶
鋼に比して軽いのもであるので、前記αが大きいことと
相まって濃化溶鋼は浮上して拡散することになる。さら
に鋳片の前記凝固収縮に見合う分だけ軽圧下をかけるの
で、未凝固部分の広がりとこれにともなう濃化溶鋼の降
下は阻止される。このため鋳片の中心部に濃化溶鋼の非
金属元素が析出してsh積される虞はなく、中心偏析を
防ぐことが出来る。
[Operation] FIGS. 3 and 4 are schematic diagrams illustrating the formation of center segregation at the final stage of solidification. First, referring to FIG. 3 which shows the prior art, when the molten metal solidifies and shrinks near the crater end, the unsolidified part spreads out and the molten steel enriched with impurity elements descends from above and heads toward the crater end. In the final solidification region, both columnar crystals (dendritic crystals with well-developed main axes) meet at the center of the slab, and the main axes 25 that have developed toward the center become interconnected and descend. The concentrated molten steel is trapped within both columnar crystals. Then, the molten metal confined in the dendrites solidifies and becomes highly concentrated central segregation. Note that the formation of equiaxed crystals 26 may hinder the levitation of concentrated molten steel having a relatively low specific gravity. However, in the continuous casting method according to the present invention, the temperature at which molten steel is injected into the mold, that is, the superheat of the casting temperature (difference between the casting temperature and the solidification temperature of the molten steel to be cast) is 30°C in the conventional example. In contrast, in the present invention, the temperature is raised to 50°C to 100°C, so columnar crystals develop well in the center of the slab, and the development of equiaxed crystals is hindered. In addition, since the slab drawing speed is slow at 0.4 m/ll1 inch, the crater-end angle (indicated by α in the figure) is large as shown in Figure 4. Since the concentrated molten steel is lighter than the molten steel that is not heated, combined with the large α, the concentrated molten steel floats and diffuses. Further, since a light reduction is applied by an amount commensurate with the solidification shrinkage of the slab, the spread of the unsolidified portion and the concomitant descent of the concentrated molten steel are prevented. Therefore, there is no possibility that nonmetallic elements of the concentrated molten steel will precipitate and accumulate in the center of the slab, and center segregation can be prevented.

[実施例コ 以下添付の図面についてこの発明の実施例について説明
する。第1図はこの発明の実施例に係る連続鋳造法に使
用されるスラブの連続鋳造装置の概略断面図である。鋳
型10に注入された溶鋼は水冷されている前記鋳型及び
其の下方に配置されたスプレィノズルから噴射されるス
プレィ水により冷却されて凝固殻21が形成され、その
内部に未凝固部22を保持したままガイドロール11、
小径ロール12またはピンチロール13により下方に引
き抜かれる。凝固の進行にともなって、鋳片の断面形状
で見ると前記凝固殻21は次第に厚くなるとともに未凝
固部22は薄くなりクレータ−エンド23に至って未凝
固部は消滅する。
[Embodiments] Examples of the present invention will be described below with reference to the attached drawings. FIG. 1 is a schematic sectional view of a continuous slab casting apparatus used in a continuous casting method according to an embodiment of the present invention. The molten steel injected into the mold 10 is cooled by the water-cooled mold and spray water injected from a spray nozzle placed below the mold to form a solidified shell 21, which holds an unsolidified portion 22 inside. Leave the guide roll 11,
It is pulled out downward by the small diameter roll 12 or the pinch roll 13. As solidification progresses, the solidified shell 21 becomes gradually thicker and the unsolidified portion 22 becomes thinner when viewed from the cross-sectional shape of the slab, reaching a crater end 23 and the unsolidified portion disappears.

第2図は第1図のクレータ−エンド付近の鋳片を拡大し
たものである。この実施例においては鋳造温度のスーパ
ーヒートを高くして50℃乃至100℃としであるので
柱状晶31が良く発達し、等軸晶は殆ど見られない。ま
た引き抜き速度を遅くして0.4m/min以下としで
あるのでクレータ−エンド角度(図中αで示す)は大き
くなって、凝固界面から排出された非金属元素で濃化さ
れている濃化溶鋼は上方へ浮上され易い。
FIG. 2 is an enlarged view of the slab near the crater end in FIG. 1. In this example, the casting temperature is superheated to a high temperature of 50° C. to 100° C., so columnar crystals 31 are well developed and equiaxed crystals are hardly seen. In addition, since the drawing speed is slowed down to 0.4 m/min or less, the crater-end angle (indicated by α in the figure) becomes large, and the concentration that is concentrated by the nonmetallic elements discharged from the solidification interface increases. Molten steel tends to float upward.

また引き抜き速度を遅くすることにより前記角度αが大
きくなるとともに凝固界面に垂直となる柱状晶の発達の
方向は従来例で鋳片の軸心に対して垂直であったものが
やや上向きになる。このように柱状晶の向きが上向きに
なると一層濃化溶鋼は浮上し易くなる。
Also, by slowing down the drawing speed, the angle α becomes larger, and the direction of growth of columnar crystals perpendicular to the solidification interface, which was perpendicular to the axis of the slab in the conventional example, becomes slightly upward. When the columnar crystals are oriented upward in this way, the concentrated molten steel becomes easier to float.

更に、等軸晶が殆ど見られないので前記濃化溶鋼の浮上
が妨げられることはない。また前記小径ロールによる軽
圧下で、鋳片の凝固収縮による未凝固部の広がりを防い
でいるので、第3図に示したような濃化溶鋼の降下は見
られない、このため鋳片の中心部に濃化溶鋼の非金属が
析出して集積される戊はなく、中心偏析を防止すること
が出来る。
Furthermore, since almost no equiaxed crystals are observed, the floating of the concentrated molten steel is not hindered. In addition, the light pressure applied by the small-diameter rolls prevents the unsolidified part from spreading due to solidification shrinkage of the slab, so the drop of concentrated molten steel as shown in Fig. 3 is not observed. There are no holes where non-metals of concentrated molten steel precipitate and accumulate, and center segregation can be prevented.

[発明の効果] この発明によれば、スーパーヒートを高くし、引き抜き
速度を遅くしてクレータ−エンド付近で鋳片に軽圧下を
かけるので、鋳片の中心偏析を大幅に低減することが出
来る。
[Effects of the Invention] According to this invention, the superheat is increased, the drawing speed is slowed down, and a light reduction is applied to the slab near the crater end, so that the center segregation of the slab can be significantly reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る連続鋳造法に使用され
るスラブの連続鋳造装置の概略断面図、第2図は第1図
のクレータ−エンド付近を拡大した図、第3図及び第4
図はそれぞれ従来例、本発明における濃化溶鋼の挙動を
説明する説明図、第5図は水素誘起割れ(HIC)に及
ぼす偏析の影響を示すグラフ図である。 10・・・鋳型、11・・・ガイドロール、12・・・
小径ロール、13・・・ピンチロール、21・・・凝固
殻、22・・・未凝固部、23・・・クレータ−エンド
FIG. 1 is a schematic sectional view of a continuous slab casting apparatus used in a continuous casting method according to an embodiment of the present invention, FIG. 2 is an enlarged view of the vicinity of the crater end in FIG. 1, and FIGS. 4
The figures are explanatory diagrams explaining the behavior of concentrated molten steel in the conventional example and the present invention, respectively, and FIG. 5 is a graph diagram showing the influence of segregation on hydrogen-induced cracking (HIC). 10... Mold, 11... Guide roll, 12...
Small diameter roll, 13... Pinch roll, 21... Solidified shell, 22... Unsolidified portion, 23... Crater end.

Claims (1)

【特許請求の範囲】[Claims] スラブの連続鋳造において、鋳造温度のスーパーヒート
を50℃乃至100℃とし、かつ引き抜き速度を0.4
m/min以下としてクレーターエンド付近において小
径ロールにより軽圧下を行うことを特徴とする連続鋳造
法。
In continuous slab casting, the casting temperature is superheated from 50°C to 100°C, and the drawing speed is 0.4°C.
A continuous casting method characterized by performing light reduction with small diameter rolls in the vicinity of the crater end at m/min or less.
JP33687387A 1987-12-29 1987-12-29 Continuous casting method Pending JPH01178356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33687387A JPH01178356A (en) 1987-12-29 1987-12-29 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33687387A JPH01178356A (en) 1987-12-29 1987-12-29 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH01178356A true JPH01178356A (en) 1989-07-14

Family

ID=18303441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33687387A Pending JPH01178356A (en) 1987-12-29 1987-12-29 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH01178356A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238674C2 (en) * 1991-11-29 2001-02-22 Concast Standard Ag Method and device for the continuous casting of steel
CN106925738A (en) * 2017-04-01 2017-07-07 唐山钢铁集团有限责任公司 The method for improving low-alloy high-tensile structural steel wide thickness plate continuous casting base homogeneity
CN107081413A (en) * 2017-04-01 2017-08-22 唐山钢铁集团有限责任公司 The method for improving Steels for High Rise Buildings continuous casting billet central dense degree
CN108436049A (en) * 2018-02-08 2018-08-24 中国科学院金属研究所 A method of V is segregated in control large scale continuous casting billet
CN110802207A (en) * 2019-11-12 2020-02-18 苏州大学 Combined pressing method for continuous casting billet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238674C2 (en) * 1991-11-29 2001-02-22 Concast Standard Ag Method and device for the continuous casting of steel
CN106925738A (en) * 2017-04-01 2017-07-07 唐山钢铁集团有限责任公司 The method for improving low-alloy high-tensile structural steel wide thickness plate continuous casting base homogeneity
CN107081413A (en) * 2017-04-01 2017-08-22 唐山钢铁集团有限责任公司 The method for improving Steels for High Rise Buildings continuous casting billet central dense degree
CN108436049A (en) * 2018-02-08 2018-08-24 中国科学院金属研究所 A method of V is segregated in control large scale continuous casting billet
CN108436049B (en) * 2018-02-08 2019-11-01 中国科学院金属研究所 A method of V segregation in control large scale continuous casting billet
CN110802207A (en) * 2019-11-12 2020-02-18 苏州大学 Combined pressing method for continuous casting billet
CN110802207B (en) * 2019-11-12 2021-09-24 苏州大学 Combined pressing method for continuous casting billet

Similar Documents

Publication Publication Date Title
JP2010082638A (en) Method for producing continuously cast slab
JP2995519B2 (en) Light reduction of continuous cast strand
JPH01178356A (en) Continuous casting method
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP2903927B2 (en) Continuous casting method
JPH01178355A (en) Continuous casting method
JP2008087055A (en) Method for completing continuous casting
JPH0550201A (en) Light rolling reduction method in continuous casting
JPH11156511A (en) Steel slab continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH0957411A (en) Continuous casting method
JPS63242453A (en) Method for casting by light rolling reduction
JPH05212511A (en) Method and device for improving internal quality in continuously cast slab
JPH0390261A (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH0346217B2 (en)
JPH0390263A (en) Continuous casting method
JPS63252655A (en) Method for casting under light draft
JP3615482B2 (en) Light reduction method in billet caster
JPH08332556A (en) Improvement of internal quality of cast bloom in continuous casting
JP2008207201A (en) Method for manufacturing continuously cast slab
JP2001150104A5 (en)
JPH01178351A (en) Continuous casting method
JPS62224463A (en) Continuous casting method for steel material