JP2011131242A - Continuous casting method for steel - Google Patents

Continuous casting method for steel Download PDF

Info

Publication number
JP2011131242A
JP2011131242A JP2009292958A JP2009292958A JP2011131242A JP 2011131242 A JP2011131242 A JP 2011131242A JP 2009292958 A JP2009292958 A JP 2009292958A JP 2009292958 A JP2009292958 A JP 2009292958A JP 2011131242 A JP2011131242 A JP 2011131242A
Authority
JP
Japan
Prior art keywords
slab
cooling
mold
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009292958A
Other languages
Japanese (ja)
Other versions
JP5397214B2 (en
Inventor
Tatsuji Tanaka
竜二 田中
Hidesato Hashimoto
英賢 橋本
Hiroyuki Tanaka
宏幸 田中
Yuji Hiramoto
祐二 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009292958A priority Critical patent/JP5397214B2/en
Publication of JP2011131242A publication Critical patent/JP2011131242A/en
Application granted granted Critical
Publication of JP5397214B2 publication Critical patent/JP5397214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for a steel which suppresses the temperature deviation in the width direction of a slab and the overcooling of its surface, achieves the coexistence in the prevention of the internal cracks and the prevention in the surface cracks of the slab, and can produce a slab of high quality. <P>SOLUTION: In the method for continuously casting a steel, using a continuous casting machine 12 including: a mold 10; and a secondary cooling zone 11 arranged at the downstream side of the mold 10, a slab 13 comprising, by mass, ≥1.0% Si or ≥10% Cr or ≥0.5% C is drawn out, and is cooled by many nozzles for cooling provided at the secondary cooling zone 11. In this case, the consumption Pw of the powder to be fed into the mold 10 is controlled to 0.2 to 0.6 kg/m<SP>2</SP>, and, regarding the secondary cooling zone 11, in the cooling range of up to 1.2 m to the casting direction from directly below the mold 10, the water quantity density W of the cooling water sprayed from the nozzles for cooling to the slab 13 is controlled to 300 to 700L/m<SP>2</SP>/min. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋳片割れを防止する鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting method of steel for preventing cracking of a cast piece.

連続鋳造機(以下、連鋳機ともいう)において、良質の鋳片を製造するためには、バルジング起因の内部割れと、過冷却起因の表面割れとを回避する必要がある。
まず、バルジング起因の内部割れについて説明する。
バルジングとは、連続鋳造機で鋳片を製造する際に、鋳片内部の液相の静圧により、鋳造方向に隣り合うロール間(鋳片が支持されていない領域)で鋳片が膨らむ現象である。このバルジング(膨れ)により、鋳片の凝固部表層に割れ(内部割れ)が生じる場合がある。
この割れを防止するため、冷却用ノズルからのスプレー水(冷却水ともいう)の水量を増加することで、鋳片の表面温度を低下させて凝固シェル厚を確保したり、またスプレー水の衝突圧力を用いるなどして、過大なバルジングを抑制することが一般に実施されている。
上記したバルジングにより割れが生じるという状況は、鋳片の表面温度が高い部位で、内部割れが発生するという現象で確認されている(高温部の割れ)。
In a continuous casting machine (hereinafter also referred to as a continuous casting machine), it is necessary to avoid internal cracking caused by bulging and surface cracking caused by supercooling in order to produce a high quality slab.
First, an internal crack caused by bulging will be described.
Bulging is a phenomenon in which when a slab is manufactured by a continuous casting machine, the slab swells between adjacent rolls in the casting direction (area where the slab is not supported) due to the static pressure of the liquid phase inside the slab. It is. This bulging may cause a crack (internal crack) in the surface layer of the solidified part of the slab.
In order to prevent this cracking, by increasing the amount of spray water (also called cooling water) from the cooling nozzle, the surface temperature of the slab is lowered to ensure the thickness of the solidified shell, and the collision of spray water In general, excessive bulging is suppressed by using pressure or the like.
The above-described situation in which cracking occurs due to bulging has been confirmed by a phenomenon that internal cracking occurs at a portion where the surface temperature of the slab is high (cracking at a high temperature portion).

次に、過冷却起因の表面割れについて説明する。
バルジング抑制を目的として、スプレー水の水量を増加し過ぎると、鋳片の表面温度が極端に低下して鋳片の延性が低下する。このため、連鋳機において、鋳片に歪が生じる曲げ戻し部で、鋳片の幅方向両端部(幅方向両端からそれぞれ100mm内側までの領域)を除く鋳片の幅方向中央部に、表面割れが生じる場合がある。
この状況は、鋳片の表面温度が低い部位で、表面割れが発生するという現象で確認されている(低温部の割れ)。
なお、本発明では、上記した鋳片の幅方向両端部に発生する端部割れを防止することを課題としてはいない。これは、端部割れが、この部分に噴射されるスプレー水の水量を低減するなどの公知の方法により、防止することが可能であることによる。
Next, surface cracking due to supercooling will be described.
If the amount of spray water is excessively increased for the purpose of suppressing bulging, the surface temperature of the slab is extremely lowered and the ductility of the slab is reduced. For this reason, in the continuous casting machine, at the bent back portion where the slab is distorted, the surface in the width direction central portion of the slab excluding both ends in the width direction (regions from both ends in the width direction to 100 mm inside) Cracks may occur.
This situation has been confirmed by the phenomenon that surface cracks occur at the part where the surface temperature of the slab is low (cracking in the low temperature part).
In addition, in this invention, it is not made into the subject to prevent the edge part crack which generate | occur | produces in the width direction both ends of an above-described slab. This is because end cracks can be prevented by a known method such as reducing the amount of spray water sprayed on this portion.

しかし、上記した内部割れ(バルジング起因)と表面割れ(過冷却起因)の防止を両立するには、以下の課題がある。
一般に、バルジング抑制を目的としたスプレー水の水量増加は、鋳片の幅方向の温度分布が不均一となる状態、即ち鋳片の幅方向に高温部と低温部が混在する状態を招く場合がある。このため、内部割れと表面割れの回避を両立するには、鋳片の幅方向の水量分布の調節等で、鋳片の表面温度(幅方向の温度偏差)を最適温度範囲内、即ち高温部の内部割れが発生しない温度域でかつ低温部の表面割れが発生しない温度域、に納める必要があった。
なお、鋳片の表面温度が脆化温度を下回る状態で、鋳片が曲げ戻し部を通過すると、鋳片に表面割れが生じる。
However, in order to achieve both the prevention of internal cracks (caused by bulging) and surface cracks (caused by supercooling), there are the following problems.
In general, the increase in the amount of spray water for the purpose of suppressing bulging may lead to a state in which the temperature distribution in the width direction of the slab becomes non-uniform, i.e., a state in which a high temperature portion and a low temperature portion are mixed in the width direction of the slab. is there. For this reason, in order to avoid internal cracks and surface cracks at the same time, the surface temperature of the slab (temperature deviation in the width direction) can be adjusted within the optimum temperature range by adjusting the water volume distribution in the width direction of the slab. Therefore, it was necessary to keep the temperature in a temperature range where no internal cracks occur and in a temperature range where surface cracks in the low temperature portion do not occur.
In addition, when the slab passes through the bent back portion in a state where the surface temperature of the slab is lower than the embrittlement temperature, surface cracks are generated in the slab.

特に、Si:1.0質量%以上(例えば、無方向性電磁鋼板等の電磁鋼)、Cr:10質量%以上、又はC:0.5質量%以上を含む鋼種の鋳片は、割れ感受性が高く、内部割れと表面割れの一方又は双方が高い頻度で発生する。
本発明者らの調査によれば、曲げ戻し部での鋳片の表面割れと内部割れを回避するためには、曲げ戻し部を通過するときの鋳片の温度を、600〜900℃(鋳片の幅方向の温度偏差を300℃以下)の狭い温度領域に納める必要がある。
この課題に対して、例えば、特許文献1には、鋳片の幅方向の特定部位に補助冷却ノズルを設置し、高温部を冷却させることで、温度偏差を小さくする冷却方法が提案されている。
In particular, slabs of steel types containing Si: 1.0 mass% or more (for example, electromagnetic steel such as non-oriented electrical steel sheets), Cr: 10 mass% or more, or C: 0.5 mass% or more are susceptible to cracking. And one or both of internal cracks and surface cracks occur at a high frequency.
According to the investigation by the present inventors, in order to avoid surface cracks and internal cracks of the slab at the bent back portion, the temperature of the slab when passing through the bent back portion is set to 600 to 900 ° C. (cast It is necessary to keep the temperature deviation in the width direction of the piece within a narrow temperature range of 300 ° C. or less.
In response to this problem, for example, Patent Document 1 proposes a cooling method in which a temperature deviation is reduced by installing an auxiliary cooling nozzle at a specific portion in the width direction of a slab and cooling a high temperature portion. .

特開2008−55454号公報JP 2008-55454 A

しかしながら、特許文献1の方法は、一定の効果を奏するものの、鋳造鋼種や鋳造幅の変更の際に、高温部の位置が変動すると、設置した補助冷却ノズルが高温部位を冷却できなくなる懸念がある。また、補助冷却ノズルの稼動と停止を繰り返し行う必要があり、ノズル詰りを招き易いため、鋳片の安定な冷却に懸念がある。 However, although the method of Patent Document 1 has a certain effect, there is a concern that the installed auxiliary cooling nozzle may not be able to cool the high-temperature portion when the position of the high-temperature portion fluctuates when changing the cast steel type or the casting width. . In addition, since it is necessary to repeatedly operate and stop the auxiliary cooling nozzle and easily cause nozzle clogging, there is a concern about stable cooling of the slab.

本発明はかかる事情に鑑みてなされたもので、鋳片の幅方向の温度偏差と鋳片の表面の過冷却とを抑制して、鋳片の内部割れ防止と表面割れ防止の両立を図り、良質の鋳片を製造可能な鋼の連続鋳造方法を提供することを目的とする。 The present invention was made in view of such circumstances, suppresses the temperature deviation in the width direction of the slab and the supercooling of the surface of the slab, and achieves both prevention of internal cracking and surface cracking of the slab, An object of the present invention is to provide a continuous casting method of steel capable of producing a high quality slab.

前記目的に沿う本発明に係る鋼の連続鋳造方法は、鋳型と、該鋳型の下流側に配置された二次冷却帯とを有する連続鋳造機を用い、前記鋳型から、Siを1.0質量%以上、又はCrを10質量%以上、又はCを0.5質量%以上含む鋳片を引き抜き、該鋳片を前記二次冷却帯に設けられた多数の冷却用ノズルで冷却する鋼の連続鋳造方法において、
前記鋳型内に供給するパウダーの消費量Pwを0.2kg/m以上0.6kg/m以下とし、前記二次冷却帯のうち、前記鋳型の直下から、鋳造方向に1.2mまでの冷却範囲で、前記冷却用ノズルから前記鋳片に吹き付けられる冷却水の水量密度Wを300リットル/m/分以上700リットル/m/分以下とする。
The continuous casting method of steel according to the present invention that meets the above-mentioned object uses a continuous casting machine having a mold and a secondary cooling zone disposed downstream of the mold, and 1.0 mass of Si from the mold. % Or more, or slab containing 10 mass% or more of Cr, or 0.5 mass% or more of C is drawn out, and the slab is cooled by a number of cooling nozzles provided in the secondary cooling zone. In the casting method,
The consumption Pw powder supplied into the mold and 0.2 kg / m 2 or more 0.6 kg / m 2 or less, of the secondary cooling zone, from immediately below the mold, until 1.2m in the casting direction In the cooling range, the water density W of the cooling water sprayed from the cooling nozzle to the slab is set to 300 liter / m 2 / min to 700 liter / m 2 / min.

本発明に係る鋼の連続鋳造方法において、少なくとも前記冷却範囲で冷却水を吹き付ける前記冷却用ノズルに、気水ノズルを用いることが好ましい。
本発明に係る鋼の連続鋳造方法において、前記二次冷却帯には、前記鋳型から引き抜かれた前記鋳片を、厚み方向から挟み込んで鋳造方向に搬送する多数のロールが配置され、該多数のロールの一部又は全部に、前記鋳片の幅方向両端部を除く位置で分割された分割ロールを用いることが好ましい。
In the continuous casting method for steel according to the present invention, it is preferable to use an air-water nozzle as the cooling nozzle that blows cooling water at least in the cooling range.
In the continuous casting method of steel according to the present invention, the secondary cooling zone is provided with a number of rolls that sandwich the slab drawn from the mold from the thickness direction and convey the slab in the casting direction. It is preferable to use a split roll that is split at a position excluding both ends in the width direction of the slab for part or all of the roll.

本発明に係る鋼の連続鋳造方法において、前記鋳型の直下から前記連続鋳造機の曲げ戻し部までの距離をDとして、前記鋳型の直下から0.4Dの位置から0.65Dの位置までの範囲内に温度計を設置して前記鋳片の表面温度を測定し、前記鋳片の幅方向両端から中央部へ向けて100mmまでの範囲を除いた領域の前記鋳片の幅方向の表面温度差が300℃を超えたことを条件として、前記冷却範囲より下流、かつ前記0.4Dの位置より上流の範囲の全部又は一部で前記冷却用ノズルから前記鋳片に吹き付けられる冷却水の水量密度を減少させるのがよい。 In the continuous casting method for steel according to the present invention, the distance from the position immediately below the mold to the position of 0.65D from the position immediately below the mold is D, where D is the distance from the position immediately below the mold to the bent back portion of the continuous casting machine. A surface temperature difference in the width direction of the slab in a region excluding a range of up to 100 mm from both ends in the width direction to the center portion of the slab by measuring a surface temperature of the slab by installing a thermometer inside The water volume density of cooling water sprayed from the cooling nozzle to the slab in the whole or a part of the range downstream from the cooling range and upstream from the position of 0.4D on the condition that the temperature exceeds 300 ° C. Should be reduced.

本発明に係る鋼の連続鋳造方法は、Si:1.0質量%以上(例えば、無方向性電磁鋼板等の電磁鋼)、又はCr:10質量%以上、又はC:0.5質量%以上を含む鋼種である割れ感受性の高い鋳片を鋳造するに際し、パウダーの消費量Pwと冷却用ノズルから鋳片に吹き付けられる冷却水の水量密度Wとを調整することで、鋳片表面に付着したパウダーの剥離の開始と完了を、鋳片の冷却能がパウダーの付着の有無に大きく影響されない領域で実施できる。これにより、パウダーの付着の有無による鋳片の幅方向の温度偏差と、鋳片の表面の過冷却とを抑制できるので、鋳片の内部割れ防止と表面割れ防止の両立が図れ、良質の鋳片を製造できる。 The steel continuous casting method according to the present invention includes Si: 1.0 mass% or more (for example, electromagnetic steel such as a non-oriented electrical steel sheet), Cr: 10 mass% or more, or C: 0.5 mass% or more. When casting a slab with high cracking sensitivity, which is a steel type containing steel, the powder consumption Pw and the water density W of the cooling water sprayed from the cooling nozzle to the slab were adjusted to adhere to the slab surface. The start and completion of the peeling of the powder can be carried out in an area where the cooling capacity of the slab is not greatly affected by the presence or absence of the powder. As a result, the temperature deviation in the width direction of the slab due to the presence or absence of powder adhesion and the overcooling of the surface of the slab can be suppressed, so that both internal crack prevention and surface crack prevention of the slab can be achieved. A piece can be manufactured.

また、冷却用ノズルに気水ノズルを用いる場合、冷却水の鋳造方向の広がりを広くできる。これにより、鋳片の表面に付着したパウダーの剥離可能な時間(冷却水による鋳片の冷却時間)を長く確保できると共に、冷却範囲における鋳片への冷却水の平均衝突エネルギーを大きくできるので、鋳片からのパウダーの剥離をより安定的に行うことができ、鋳片の割れ発生率を更に低減できる。 Further, when an air nozzle is used as the cooling nozzle, the spread of the cooling water in the casting direction can be widened. As a result, it is possible to ensure a long period of time during which the powder adhering to the surface of the slab can be peeled (cooling time of the slab with cooling water) and to increase the average collision energy of cooling water to the slab in the cooling range, The powder can be peeled from the slab more stably, and the crack generation rate of the slab can be further reduced.

そして、二次冷却帯に配置されたロールに分割ロールを用いる場合、通常のロールに比べてロールの直径を小さくできるため、鋳造方向に隣り合うロールの設置間隔を狭くできる。これにより、鋳片のバルジング量を抑制できるので、冷却水の水量密度の制約を緩和でき、鋳片の幅方向の平均温度や温度偏差の調整を目的とした水量密度の調整が容易になる。 And when using a split roll for the roll arrange | positioned in a secondary cooling zone, since the diameter of a roll can be made small compared with a normal roll, the installation space | interval of the roll adjacent to a casting direction can be narrowed. Thereby, since the amount of bulging of the slab can be suppressed, the restriction on the water density of the cooling water can be relaxed, and the adjustment of the water density for the purpose of adjusting the average temperature and temperature deviation in the width direction of the slab becomes easy.

更に、鋳型の直下から0.4Dの位置から0.65Dの位置までの範囲内に温度計を設置して鋳片の表面温度を測定し、鋳片の幅方向の表面温度差が300℃を超えたことを条件として、冷却範囲より下流、かつ0.4Dの位置より上流の範囲で、冷却用ノズルから鋳片に吹き付けられる冷却水の水量密度を減少させる場合、鋳片の幅方向の温度偏差の低減に有効である。これは、水量密度を減少させることで、鋳片の表面温度を復熱により上昇させ、この復熱により、上記した300℃超えした温度偏差を解消し、温度依存性が弱い温度域で、鋳片の冷却再開が可能になることによる。なお、復熱とは、冷却用ノズルから吹き付けられる冷却水の量の減少によって、鋳片表面の抜熱量が減少し、相対的に鋳片表面の加熱量が顕著になって、鋳片の表面温度が上昇することをいう。 Furthermore, the surface temperature of the slab is measured by installing a thermometer within the range from the position of 0.4D to the position of 0.65D immediately below the mold, and the surface temperature difference in the width direction of the slab is 300 ° C. If the amount of cooling water sprayed from the cooling nozzle to the slab is reduced in the range downstream from the cooling range and upstream from the position of 0.4D on the condition that it has exceeded, the temperature in the width direction of the slab It is effective for reducing the deviation. This is because by reducing the water density, the surface temperature of the slab is raised by recuperation, and by this recuperation, the above-mentioned temperature deviation exceeding 300 ° C. is eliminated, and in the temperature range where the temperature dependence is weak. This is because the cooling of the piece can be resumed. Note that recuperation refers to a reduction in the amount of heat removed from the slab surface due to a decrease in the amount of cooling water sprayed from the cooling nozzle, and the amount of heating on the slab surface becomes relatively significant. It means that the temperature rises.

パウダーの付着の有無による鋳片の冷却能指数と鋳型直下からの距離との関係を示す説明図である。It is explanatory drawing which shows the relationship between the cooling capacity index | exponent of a slab by the presence or absence of powder adhesion, and the distance from a casting_mold | template. 本発明の一実施の形態に係る鋼の連続鋳造方法を適用する連続鋳造機の説明図である。It is explanatory drawing of the continuous casting machine to which the continuous casting method of steel which concerns on one embodiment of this invention is applied. 冷却用ノズルの圧力測定位置とスプレー圧力指数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pressure measurement position of a nozzle for cooling, and a spray pressure index | exponent. 鋳片の熱伝達係数と表面温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the heat transfer coefficient of slab, and surface temperature.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明に想到した経緯について説明する。
連続鋳造機は、鋳型と、鋳型直下から鋳造方向に渡って配置された二次冷却帯とを有し、二次冷却帯には、鋳片を冷却するための複数の冷却用ノズルが配置されている。この各冷却用ノズルは、鋳造方向の各位置で鋳片の冷却速度をコントロールできるように、鋳造方向に渡って1〜4mの範囲ごとの冷却ゾーンで区切られ、この冷却ゾーンごとに、各冷却用ノズルから鋳片に吹き付けられる冷却水(スプレー水)の水量が調整されている。
また、鋳型湯面には、一般に、鋳型と鋳片の凝固シェルとの焼付き防止等を目的としたパウダーが投入される。このパウダーが、鋳片表面に付着した状態で二次冷却帯で冷却されると、鋳片の冷却能力が低下することが一般にいわれていた。これは、鋳片と比べて熱伝導が低いパウダーが熱抵抗になり、鋳片自体の抜熱を阻害することを根拠としている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background to the present invention will be described.
The continuous casting machine has a mold and a secondary cooling zone arranged in the casting direction from directly under the mold, and a plurality of cooling nozzles for cooling the slab are arranged in the secondary cooling zone. ing. Each cooling nozzle is divided into cooling zones in the range of 1 to 4 m across the casting direction so that the cooling rate of the slab can be controlled at each position in the casting direction. The amount of cooling water (spray water) sprayed from the nozzle to the slab is adjusted.
In addition, powder for the purpose of preventing seizure between the mold and the solidified shell of the slab is generally put on the mold surface. It has been generally said that when this powder is cooled in the secondary cooling zone in a state of adhering to the slab surface, the cooling capacity of the slab decreases. This is based on the fact that a powder having a lower thermal conductivity than the slab becomes a thermal resistance and inhibits heat removal from the slab itself.

そこで、本発明者らは、ラボ試験により、パウダー付着の有無が鋳片の冷却能へ及ぼす影響を調査した。
まず、ラボ試験では、熱電対を埋め込んだ鋼材を1200℃以上に加熱した後、これを冷却用ノズルで冷却し、パウダー付着の有無による鋼材の冷却速度の影響を調査した。続いて、このラボ試験の結果と伝熱解析モデルを用いて、パウダー付着の有無が鋳片の冷却能へ及ぼす影響を調査した。なお、本発明で使用した伝熱解析モデルは、例えば、鉄と鋼、第60巻(1974年)、1023頁に示される一般的な手法を用いた。
Therefore, the present inventors investigated the influence of the presence or absence of powder adhesion on the cooling ability of the slab by a laboratory test.
First, in the laboratory test, after the steel material in which the thermocouple was embedded was heated to 1200 ° C. or higher, this was cooled with a cooling nozzle, and the influence of the cooling rate of the steel material depending on the presence or absence of powder adhesion was investigated. Subsequently, using the results of this laboratory test and the heat transfer analysis model, the effect of the presence or absence of powder adhesion on the cooling capacity of the slab was investigated. The heat transfer analysis model used in the present invention used a general method shown in, for example, iron and steel, Vol. 60 (1974), p. 1023.

ここで、解析を行った連続鋳造機の構成、鋳造条件、及び冷却条件を、以下に示す。
・連続鋳造機の鋳型直下から鋳造方向に1.2mまでのロールのピッチ:200mm
・鋳型直下から曲げ戻し部までの距離:16m
・鋳造条件:鋳造速度1.3m/分、鋳造幅(鋳片の幅)1300mm、鋳造厚み(鋳片の厚み)250mm
・冷却条件:鋳型直下から、鋳造方向に2.0mまでの範囲で、冷却用ノズルから鋳片に吹き付けられる冷却水の水量密度を450リットル/m/分(以下、L/m/分ともいう)で一定。
Here, the structure of the continuous casting machine which analyzed, casting conditions, and cooling conditions are shown below.
・ Pitch of rolls from directly under the mold of continuous casting machine to 1.2m in casting direction: 200mm
・ Distance from directly under mold to bent back part: 16m
Casting conditions: casting speed 1.3 m / min, casting width (slab width) 1300 mm, casting thickness (slab thickness) 250 mm
Cooling conditions: The water density of cooling water sprayed from the cooling nozzle to the slab from the position immediately below the mold to 2.0 m in the casting direction is 450 liter / m 2 / min (hereinafter referred to as L / m 2 / min). It is also constant).

この解析結果を、図1に示す。
図1の横軸は、鋳型直下から鋳造方向の距離(m)を示している。なお、図1においては、鋳型直下(横軸の値が0.0m:鋳片の表面温度が600℃付近)から、鋳造方向の距離が2.0m(鋳片表面温度900℃付近)までの範囲を図示している。
また、図1の縦軸は、パウダーの付着ありを前提とした鋳片を冷却した際に、鋳造方向の距離が1.2m相当位置の鋳片の熱伝達係数を1として、パウダーの付着なし(図1中の実線)と付着あり(図1中の点線)の場合の鋳片の各熱伝達係数を、それぞれ指数化(冷却能指数)した値を図示している。
The analysis result is shown in FIG.
The horizontal axis in FIG. 1 indicates the distance (m) in the casting direction from directly below the mold. In FIG. 1, the distance from the casting direction to 2.0 m (slab surface temperature of 900 ° C.) immediately below the mold (the value of the horizontal axis is 0.0 m: the surface temperature of the slab is approximately 600 ° C.). The range is illustrated.
In addition, the vertical axis in FIG. 1 indicates that when the slab is cooled on the premise that powder adheres, the heat transfer coefficient of the slab where the distance in the casting direction is equivalent to 1.2 m is 1, and no powder adheres. The values obtained by indexing (cooling capacity index) the respective heat transfer coefficients of the slab in the case of (solid line in FIG. 1) and attached (dotted line in FIG. 1) are shown.

まず、図1から得られた知見を以下に示す。
・パウダー付着の有無によらず、鋳造の進行(横軸の増加)と共に、冷却能が低下した。
・パウダー付着の有無による冷却能の大小関係は存在するが、横軸の位置(鋳片の表面温度が異なる位置)によって、大小関係が異なる場合があった。
・鋳型直下付近(例えば、0.2m位置)では、パウダー付着なしは、パウダー付着ありと比べて、冷却能指数が約30%大きくなった。
・鋳型直下から鋳造方向に1.2mの位置を超える(例えば、1.4m位置)と、パウダー付着なしは、パウダー付着ありと比べて、冷却能指数が20%を超えて小さくなった。
First, the knowledge obtained from FIG. 1 is shown below.
-Cooling ability decreased with the progress of casting (increase in the horizontal axis) regardless of the presence or absence of powder adhesion.
-Although there is a magnitude relationship of cooling ability depending on the presence or absence of powder adhesion, the magnitude relationship may differ depending on the position of the horizontal axis (position where the surface temperature of the slab is different).
In the vicinity of the mold (for example, at a position of 0.2 m), the cooling ability index was about 30% larger when no powder was adhered than when powder was adhered.
-When the position of 1.2 m was exceeded in the casting direction from directly under the mold (for example, the position of 1.4 m), the cooling capacity index was smaller than 20% when the powder was not adhered, compared with the powder adhered.

・鋳型直下から鋳造方向に、0.6〜1.2mの範囲(即ち、図1の交点A付近)では、パウダー付着の有無にかかわらず、パウダー付着ありに対するパウダー付着なしの冷却能指数が、20%を超えない範囲で、大きく異ならない傾向を示した。
以上のことから、鋳片表面へのパウダー付着の有無が、鋳片の表面温度を局部的に変動させる原因となることが判った。
ここで、鋳片の表面からパウダーが剥離するに際しては、一挙に剥離することは考えにくく、徐々に剥離するものと考えられる。このため、上記した冷却能指数の違いが、鋳片の幅方向の温度偏差の大きな原因になると考えられる。
-In the range of 0.6 to 1.2 m in the casting direction from directly under the mold (that is, in the vicinity of the intersection A in FIG. 1), the cooling capacity index without powder adhesion with respect to powder adhesion is There was a tendency not to differ greatly within a range not exceeding 20%.
From the above, it has been found that the presence or absence of powder on the surface of the slab causes the surface temperature of the slab to fluctuate locally.
Here, when the powder peels from the surface of the slab, it is unlikely that it is peeled off at once, and it is considered that the powder peels off gradually. For this reason, it is considered that the difference in the cooling capacity index described above causes a large temperature deviation in the width direction of the slab.

例えば、鋳型直下から、鋳造方向に1.2mを超える位置(例えば、1.5m位置)でパウダーの剥離が開始すると、図1に示すように、パウダーの付着部分は、パウダーの付着がない部分よりも冷却能が高くなる。
このため、パウダーの付着部分の鋳片の表面温度が局部的に低下して、鋳片の幅方向の温度偏差の原因となることが判る。なお、本発明者らの検討では、連続鋳造機の曲げ戻し部で鋳片の温度偏差が300℃超えとなる傾向が強いと考えられた。
このような温度偏差が発生することで、高温起因の内部割れや、鋳片の表面温度の低下起因による表面割れが発生すると推定される。
For example, when powder peeling starts at a position exceeding 1.2 m (for example, 1.5 m position) in the casting direction from directly below the mold, as shown in FIG. The cooling capacity is higher than that.
For this reason, it turns out that the surface temperature of the slab of the adhesion part of powder falls locally, and causes the temperature deviation of the width direction of a slab. In the study by the present inventors, it was considered that the temperature deviation of the slab is likely to exceed 300 ° C. at the bent back part of the continuous casting machine.
It is estimated that such a temperature deviation causes an internal crack due to a high temperature and a surface crack due to a decrease in the surface temperature of the slab.

更に、上記した温度偏差を解消するため、鋳型直下から、鋳造方向に0.2mまでの範囲でパウダーの剥離が完了する場合を考えると、冷却能が高いため、表面割れの原因である鋳片の過冷却を招き易いことが判る。
この場合、本発明者らの検討では、鋳片のバルジングを防止する目的で、最低限の水量で鋳片の冷却を行う前提でも、連続鋳造機の曲げ戻し部で鋳片の表面温度が600℃を下回ってしまい、その結果、曲げ戻し部で鋳片の表面割れが発生すると考えられた。
Furthermore, in order to eliminate the above temperature deviation, considering the case where powder peeling is completed within 0.2 m in the casting direction from directly under the mold, the slab that causes surface cracking because of its high cooling capacity It turns out that it is easy to invite overcooling.
In this case, according to the study by the present inventors, the surface temperature of the slab is 600 at the bent back portion of the continuous casting machine even if the slab is cooled with a minimum amount of water for the purpose of preventing bulging of the slab. As a result, the surface crack of the slab was considered to occur at the bent back part.

以上から、本発明者らは、図1の交点A付近で、鋳片表面からのパウダーの剥離を開始し完了させることで、鋳片の幅方向の冷却能の偏差を小さくして、鋳片の幅方向の温度偏差を抑制した鋳片の二次冷却を実現できることに想到した。即ち、交点A付近で、鋳片表面からのパウダーの剥離開始と剥離完了を実質的に実現することで、鋳片の幅方向の温度偏差を抑制し、鋳片の表面の過冷却を抑制して、鋳片の内部割れ防止と表面割れ防止の両立が図れることに想到した。
なお、本発明者らの検討では、図1の交点Aは、鋳造速度(例えば、0.6〜3.0m/分程度)や連続鋳造機の機長(鋳型直下から機端までの距離)によって多少変化するが、大きく変化することはなく、本発明の鋼の連続鋳造方法に従えば、鋳片の割れ抑制の効果を享受できる。
From the above, the present inventors started and completed the peeling of the powder from the surface of the slab in the vicinity of the intersection A in FIG. 1, thereby reducing the deviation of the cooling capacity in the width direction of the slab, and It was conceived that secondary cooling of the slab with reduced temperature deviation in the width direction could be realized. That is, by substantially realizing the start of peeling of powder from the surface of the slab and the completion of peeling near the intersection A, the temperature deviation in the width direction of the slab is suppressed, and the overcooling of the surface of the slab is suppressed. Thus, it was conceived that both internal crack prevention and surface crack prevention of the slab can be achieved.
In the study by the present inventors, the intersection A in FIG. 1 depends on the casting speed (for example, about 0.6 to 3.0 m / min) and the length of the continuous casting machine (distance from directly under the mold to the machine end). Although it changes to some extent, it does not change greatly, and according to the continuous casting method of steel of the present invention, the effect of suppressing cracking of the slab can be enjoyed.

以下、本発明の一実施の形態に係る鋼の連続鋳造方法について、図1、図2を参照しながら説明する。
図2に示すように、連続鋳造を行うに際しては、鋳型10と、この鋳型10の下流側に配置された二次冷却帯11とを有する連続鋳造機(以下、連鋳機ともいう)12を用いる。
連続鋳造機の形式は、湾曲型連続鋳造機と垂直曲げ型連続鋳造機のいずれでもよいが、特に、本発明を垂直曲げ型連続鋳造機に適用すると、より大きな効果が期待できる。これは、湾曲型連鋳機が、連続鋳造機の曲げ戻し部でのみ鋳片表面割れが発生し易いのに対し、垂直曲げ型連鋳機が、連続鋳造機の曲げ部と曲げ戻し部の双方で鋳片の表面割れが発生し易いためであり、同じ冷却条件でも、垂直曲げ型連鋳機の方が鋳片の割れ発生率が高いことによる。
Hereinafter, a steel continuous casting method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, when performing continuous casting, a continuous casting machine (hereinafter also referred to as a continuous casting machine) 12 having a mold 10 and a secondary cooling zone 11 disposed downstream of the mold 10 is provided. Use.
The type of the continuous casting machine may be either a curved type continuous casting machine or a vertical bending type continuous casting machine. In particular, when the present invention is applied to a vertical bending type continuous casting machine, a greater effect can be expected. This is because the curved type continuous caster tends to cause cracks on the slab surface only at the bent back part of the continuous caster, whereas the vertical bend type continuous caster has the bending part and the bent back part of the continuous caster. This is because the surface cracks of the slab are likely to occur on both sides, and the vertical bending type continuous casting machine has a higher rate of cracking of the slab even under the same cooling conditions.

この鋳型10内に溶鋼を供給し、鋳型下方から鋳片13を引き抜き、この鋳片13を二次冷却帯11に設けられた多数の冷却用ノズル(図示しない)で冷却する。
この鋳片13の鋼種は、割れ発生が顕著なものであり、Siを1.0質量%以上(上限は、例えば4質量%)、又はCrを10質量%以上(上限は、例えば20質量%)、又はCを0.5質量%以上(上限は、例えば1.2質量%)含むものである。ここで、Siが1.0質量%以上の鋼種は、内部割れや表面割れが顕著な鋼種であるが、Siが2.8質量%以上の電磁鋼となると割れ発生が更に顕著となり、3.5質量%以上の高級電磁鋼となると更に顕著に発生する。また、Crが10質量%以上の鋼種においても、Crが13質量%以上のステンレス鋼になると割れ発生が更に顕著となる。そして、Cが0.5質量%以上の鋼種においても、Cが0.8質量%以上となると割れ発生が更に顕著となる。
Molten steel is supplied into the mold 10, the slab 13 is pulled out from below the mold, and the slab 13 is cooled by a number of cooling nozzles (not shown) provided in the secondary cooling zone 11.
The steel type of the slab 13 is prone to cracking, and Si is 1.0 mass% or more (upper limit is 4 mass%, for example), or Cr is 10 mass% or more (upper limit is 20 mass%, for example). Or 0.5% by mass or more (the upper limit is, for example, 1.2% by mass). Here, the steel type with Si of 1.0% by mass or more is a steel type in which internal cracks and surface cracks are remarkable, but when Si is 2.8% by mass or more of electromagnetic steel, the occurrence of cracks becomes more prominent. It becomes more prominent when it becomes a high-grade electromagnetic steel of 5% by mass or more. Further, even in a steel type having Cr of 10% by mass or more, cracking becomes more prominent when the Cr is stainless steel having 13% by mass or more. And even in a steel type in which C is 0.5% by mass or more, cracking becomes more prominent when C is 0.8% by mass or more.

また、鋼種以外にも、鋳造幅が広くなると割れ発生が顕著になる。
例えば、電磁鋼(Siが2.8質量%以上、更には3.5質量%以上)において、鋳造幅が1000mmのスラブと、1200mmのスラブの割れ発生率を比較すると、1200mmのスラブの方が、割れ発生率が高い。このため、鋳造幅を1000mm以上、更には1200mm以上にすることで、本発明の効果がより顕著になる。なお、鋳造幅の上限値は、一般的には2000mm程度である。
以上のことから、本発明を、上記したような割れ発生率が高い鋼種やサイズに対して適用することで、顕著な効果を発揮できる。
In addition to the steel types, cracks become prominent as the casting width increases.
For example, in electromagnetic steel (Si is 2.8% by mass or more, and further 3.5% by mass or more), a slab having a casting width of 1000 mm and a crack occurrence rate of a 1200 mm slab are compared with a 1200 mm slab. , Cracking rate is high. For this reason, the effect of this invention becomes more remarkable by making casting width 1000 mm or more, Furthermore, 1200 mm or more. The upper limit of the casting width is generally about 2000 mm.
From the above, a remarkable effect can be exhibited by applying the present invention to a steel type and size having a high crack occurrence rate as described above.

上記した鋼種の鋳片13を製造するに際しては、前記したように、図1に示す交点A付近で、鋳片13表面からのパウダーの剥離開始と剥離完了を実質的に実現する必要がある。
そこで、パウダーの剥離を図1に示す交点A付近で完了するため、二次冷却帯11のうち、鋳型10の直下から、鋳造方向に1.2mまでの冷却範囲Rで、冷却用ノズルから鋳片13に吹き付けられる(鋳片13に直接あたる)冷却水の水量密度(以下、スプレー水量密度ともいう)Wを、300L/m/分以上700L/m/分以下とする。
この水量密度Wは、従来の水量密度よりも多め(約2倍程度)である。なお、冷却水の水量密度Wは、下限を、400L/m/分、更には450L/m/分とすることが好ましく、上限を、650L/m/分、更には600L/m/分とすることが好ましい。
When manufacturing the above-described steel type cast slab 13, as described above, it is necessary to substantially realize the start of peeling of powder from the surface of the cast slab 13 and the completion of peeling near the intersection A shown in FIG.
Therefore, in order to complete the powder peeling near the intersection A shown in FIG. 1, in the secondary cooling zone 11, casting is performed from the cooling nozzle within the cooling range R from just below the mold 10 to 1.2 m in the casting direction. The water density (hereinafter also referred to as spray water density) W of the cooling water sprayed on the piece 13 (directly hitting the slab 13) is set to 300 L / m 2 / min to 700 L / m 2 / min.
This water density W is larger (about twice) than the conventional water density. Incidentally, water flow rate W of the cooling water, the lower limit, 400 L / m 2 / min, preferably further includes a 450L / m 2 / min, the upper limit, 650L / m 2 / min, more 600L / m 2 / Min is preferred.

なお、上記した冷却水の水量密度W(L/m/分)は、以下のように定義している。
{冷却水の水量密度W(L/m/分)}={Q(L/分)}/{A(m)}
ここで、Q(L/分)は、鋳型直下から、鋳造方向に1.2mまでの範囲で、鋳片の上面側又は下面側に吹き付けられる(直接あたる)単位時間(分)あたりの冷却水量である。
また、A(m)は、鋳型直下から、鋳造方向に1.2mまでの範囲で、実際に冷却水が吹き付けられる(直接あたる)鋳片の表面積、即ち、1.2m×鋳造幅(m)である。
In addition, the amount density W (L / m < 2 > / min) of the above-described cooling water is defined as follows.
{Cooling water density W (L / m 2 / min)} = {Q (L / min)} / {A (m 2 )}
Here, Q (L / min) is the amount of cooling water per unit time (min) sprayed (directly hits) on the upper surface side or the lower surface side of the slab in the range from just below the mold to 1.2 m in the casting direction. It is.
A (m 2 ) is the surface area of the slab where the cooling water is actually sprayed (directly hit) in the range from just below the mold to 1.2 m in the casting direction, ie 1.2 m × casting width (m ).

しかし、上記した冷却水の水量密度Wのみの規定では、パウダーが鋳型直下で鋳片表面から顕著に剥離する場合がある。そこで、これを防止するため、鋳片の表面に予め厚めのパウダー層を付着させておく必要があり、鋳型内に供給するパウダーの消費量(供給量)Pwを0.2kg/m以上0.6kg/m以下とする。なお、パウダーには、例えば、1350℃で0.6〜1.0poise(ポアズ)のものを使用できる。
このパウダーの消費量Pwは、従来の消費量よりも比較的多めである。なお、パウダーの消費量Pwは、下限を、0.25kg/m、更には0.3kg/mとすることが好ましく、上限を、0.55kg/m、更には0.5kg/mとすることが好ましい。
However, according to the regulation of only the water flow density W described above, the powder may be remarkably separated from the slab surface directly under the mold. Therefore, in order to prevent this, it is necessary to deposit a thick powder layer in advance on the surface of the slab, and the consumption (supply amount) Pw of the powder supplied into the mold is 0.2 kg / m 2 or more 0 .6 kg / m 2 or less. In addition, as powder, the thing of 0.6-1.0 poise (poise) can be used at 1350 degreeC, for example.
This powder consumption Pw is relatively larger than the conventional consumption. Incidentally, the consumption Pw of powder, the lower limit, 0.25 kg / m 2, more preferably be 0.3 kg / m 2, the upper limit, 0.55 kg / m 2, even 0.5 kg / m 2 is preferable.

上記したパウダーの消費量Pw(kg/m)は、以下のように定義している。
{パウダーの消費量Pw(kg/m)}
={鋳造時間中にメニスカスへ投入したパウダーの量(kg)}
/{鋳造速度(m/分)×{鋳片の幅(m)+鋳片の厚み(m)}×2×鋳造時間(分)}
ここで、鋳造時間とは、例えば、150〜350トン程度の1チャージの溶鋼を鋳造する時間や、複数チャージの溶鋼を鋳造する時間を意味する。
The above-mentioned powder consumption Pw (kg / m 2 ) is defined as follows.
{Powder consumption Pw (kg / m 2 )}
= {Amount of powder put into meniscus during casting time (kg)}
/ {Casting speed (m / min) × {slab width (m) + slab thickness (m)} × 2 × casting time (min)}
Here, the casting time means, for example, a time for casting one charged molten steel of about 150 to 350 tons or a time for casting a plurality of charged molten steels.

冷却用ノズルには、冷却水のみを鋳片の表面に吹き付ける水ノズルを使用しているが、空気と冷却水が混合されて吹き付けられる気水ノズルを使用することが好ましい。なお、気水ノズルは、二次冷却帯11の全てに取り付けて使用できるが、冷却範囲Rで冷却水を吹き付ける部分のみに取り付けて使用してもよい。
ここで、気水ノズルの特徴について、図3を参照しながら説明する。なお、図3の横軸はスプレー水の幅方向(鋳造方向)の圧力測定位置(気水ノズルを使用した場合と水ノズルを使用した場合との相対位置)であり、縦軸は冷却水の衝突圧力であって、気水ノズルでの最大圧力を1として指数化したものである。
Although the water nozzle which sprays only cooling water on the surface of a slab is used for the cooling nozzle, it is preferable to use the air-water nozzle which air and cooling water are mixed and sprayed. In addition, although an air-water nozzle can be attached and used for all the secondary cooling zones 11, you may attach and use only for the part which sprays cooling water in the cooling range R.
Here, the features of the air-water nozzle will be described with reference to FIG. The horizontal axis in FIG. 3 is the pressure measurement position in the width direction (casting direction) of the spray water (relative position between when the water nozzle is used and when the water nozzle is used), and the vertical axis is the cooling water. The collision pressure is indexed with the maximum pressure at the air-water nozzle as 1.

図3から明らかなように、気水ノズル(図3中の実線)は水ノズル(図3中の点線)に比べて、スプレー水の広がる範囲が広く、広範囲での冷却が可能になる。このため、気水ノズルでは、パウダーの剥離時間(スプレー水による冷却時間)を長く確保でき、冷却範囲Rにおける平均衝突エネルギーを大きくできる。
なお、このパウダーの剥離時間の確保と平均衝突エネルギーの増大は、いずれも安定的なパウダーの剥離に寄与するため、鋳片の割れ発生率を減少できる。
As is clear from FIG. 3, the air-water nozzle (solid line in FIG. 3) has a wider range of spray water than the water nozzle (dotted line in FIG. 3), and cooling over a wide range is possible. For this reason, in the air-water nozzle, it is possible to ensure a long powder peeling time (cooling time by spray water) and to increase the average collision energy in the cooling range R.
It should be noted that the securing of the powder peeling time and the increase in the average collision energy both contribute to stable powder peeling, so that the rate of occurrence of cracks in the slab can be reduced.

この気水ノズルの気水比は、容積(Nm:ノルマル立方メートル)単位で、「(気水比)=(空気容積)÷(水容積)」とした。
ここで、気水比が低過ぎると、パウダーの剥離に要する時間を長く確保できなくなるため、4.4以上(10以上でもよい)がよい。
一方、気水比が高過ぎると、スプレー水の衝突圧力が低くなり過ぎて、パウダーの剥離に必要な衝突圧力が得にくくなる。このため、20.5以下がよく、安定した剥離を確実に行うには、18.5以下が更によい。
The air / water ratio of this air / water nozzle was expressed as “(air / water ratio) = (air volume) ÷ (water volume)” in units of volume (Nm 3 : normal cubic meter).
Here, if the air-water ratio is too low, it is not possible to secure a long time for peeling the powder, so 4.4 or more (or 10 or more) is preferable.
On the other hand, when the air / water ratio is too high, the collision pressure of the spray water becomes too low, and it becomes difficult to obtain the collision pressure necessary for peeling of the powder. For this reason, 20.5 or less is good, and 18.5 or less is even better in order to ensure stable peeling.

また、二次冷却帯11には、鋳型10から引き抜かれた鋳片13を、厚み方向から挟み込んで鋳造方向に搬送する多数のサポートロールが配置されているが、このサポートロールの一部又は全部に、分割ロールを用いることが好ましい。
分割ロールとは、鋳片の幅方向両端部を除く位置で分割されたロールであり、スプレー水を用いることなくバルジングを抑制できるものである。具体的には、直径が250〜400mmの複数のロール(例えば2本)を、軸受け部(ロールの直径より小さな直径部分)により隙間を設けて直列につないだロールである。
The secondary cooling zone 11 is provided with a large number of support rolls that sandwich the slab 13 drawn from the mold 10 in the thickness direction and transport it in the casting direction. In addition, it is preferable to use a split roll.
A division | segmentation roll is a roll divided | segmented in the position except the width direction both ends of a slab, and can suppress a bulging without using spray water. Specifically, it is a roll in which a plurality of rolls (for example, two) having a diameter of 250 to 400 mm are connected in series by providing a gap with a bearing portion (diameter portion smaller than the diameter of the roll).

このように、軸受け部によって隙間を設けているため、鋳片の熱影響によるロール変形を抑制できる。これにより、従来の連続鋳造機のサポートロール(軸受け部のない一本ロール)に比べてロール直径を小さくできるので、従来のサポートロールに比べて鋳造方向に隣り合うロールの設置間隔を狭くすることができる。
従って、鋳片のバルジング量を抑制することが可能となり、バルジング抑制を目的としたスプレー水による水量密度の制約(下限値設定)を緩和できるため、鋳片の幅方向の平均温度や温度偏差の調整を目的とした水量密度の調整が容易となる。つまり、鋳片の復熱の活用の自由度を向上させ、大幅な冷却水量の減少が可能となる。
Thus, since the gap is provided by the bearing portion, it is possible to suppress the roll deformation due to the heat effect of the slab. As a result, the roll diameter can be reduced compared to the support roll (single roll without bearings) of the conventional continuous casting machine, so that the installation interval between adjacent rolls in the casting direction should be narrowed compared to the conventional support roll. Can do.
Therefore, it becomes possible to suppress the bulging amount of the slab, and since the restriction of the water density by the spray water for the purpose of suppressing bulging (lower limit setting) can be relaxed, the average temperature and temperature deviation in the width direction of the slab can be reduced. It becomes easy to adjust the water density for the purpose of adjustment. That is, the degree of freedom in utilizing the recuperation of the slab is improved, and the amount of cooling water can be significantly reduced.

また、鋳片の幅方向の温度偏差を抑制する方法としては、鋳片表面の復熱現象を用いることもできる。以下、復熱現象について説明する。
鋳片の表面温度は、表面側の凝固シェル(低温)と内部の溶鋼(高温)とが存在する鋳片において、スプレー水による鋳片表面の抜熱と内部の溶鋼による鋳片表面の加熱により決定される。ここで、スプレー水の量の減少等によって鋳片表面の抜熱量が減少し、相対的に鋳片表面の加熱量が顕著になると、鋳片の表面温度が上昇する。これを復熱という。
Further, as a method of suppressing the temperature deviation in the width direction of the slab, a recuperation phenomenon on the surface of the slab can be used. Hereinafter, the recuperation phenomenon will be described.
The surface temperature of the slab is determined by the heat removal of the slab surface by spray water and the heating of the slab surface by the internal molten steel in the slab where the solidified shell (low temperature) and the internal molten steel (high temperature) exist. It is determined. Here, when the amount of heat removed from the surface of the slab decreases due to a decrease in the amount of spray water or the like, and the amount of heating on the surface of the slab becomes relatively significant, the surface temperature of the slab increases. This is called recuperation.

一般に、表面温度が500〜900℃の鋳片をスプレー水により冷却した場合、図4に示すように、鋳片の温度が低下すると共に、その冷却能(熱伝達係数)が向上する(水蒸気膜の有無にかかわる)。なお、鋳片の表面温度が800℃以上になると、鋳片表面の冷却能の温度依存性が弱まり、冷却能は概ね一定となる。
つまり、鋳片の温度偏差を低減したい場合には、スプレー水量密度を減少させ、鋳片の表面温度を復熱により上昇させて、鋳片の温度偏差を解消した上で、温度依存性の弱い温度域で鋳片の冷却再開を行うのがよい。
このように、復熱現象は、鋳片の温度偏差の低減に有効であるため、以下のように構成するのがよい。
In general, when a slab having a surface temperature of 500 to 900 ° C. is cooled with spray water, the temperature of the slab is lowered and its cooling ability (heat transfer coefficient) is improved as shown in FIG. Or not). When the surface temperature of the slab becomes 800 ° C. or higher, the temperature dependency of the cooling capacity of the slab surface is weakened, and the cooling capacity becomes substantially constant.
In other words, if you want to reduce the temperature deviation of the slab, reduce the spray water density, increase the surface temperature of the slab by recuperation, eliminate the temperature deviation of the slab, and weakly depend on temperature. It is better to restart the slab cooling in the temperature range.
Thus, since the recuperation phenomenon is effective in reducing the temperature deviation of the slab, the following configuration is preferable.

まず、鋳型10の直下から連続鋳造機12の曲げ戻し部14までの距離をDとして、鋳型10の直下から0.4Dの位置から0.65Dの位置までの範囲内に、温度計を1つ(2以上の複数でもよい)設置する。
鋳片13の割れ回避の条件、即ち、鋳片の幅方向両端から中央部へ向けて100mmまでの範囲を除いた領域の鋳片の幅方向の表面温度差(=最大温度−最小温度)300℃以内を確保するため、曲げ戻し部14付近で温度偏差(表面温度分布)を測定し、曲げ戻し部14の温度偏差が目標値(300℃)を上回ることが予兆される場合に、冷却条件を変更すると良い。
ここで、鋳片表面が復熱するための時間を確保する必要があるため、曲げ戻し部14より上流側、即ち0.65D以下となる位置に温度計を設置する。
First, assuming that the distance from the position immediately below the mold 10 to the bending back portion 14 of the continuous casting machine 12 is D, one thermometer is within the range from the position immediately below the mold 10 to the position 0.4D to the position 0.65D. (It may be two or more).
Conditions for avoiding cracks in the slab 13, that is, the surface temperature difference in the width direction of the slab (= maximum temperature−minimum temperature) 300 excluding the range up to 100 mm from both ends of the slab in the width direction toward the center. In order to ensure a temperature within ° C., the temperature deviation (surface temperature distribution) is measured in the vicinity of the bent back part 14, and when it is predicted that the temperature deviation of the bent back part 14 exceeds the target value (300 ° C.), the cooling condition It is good to change.
Here, since it is necessary to secure time for the surface of the slab to reheat, a thermometer is installed on the upstream side of the bent back portion 14, that is, at a position of 0.65D or less.

また、前記した鋼種、即ちSi:1.0質量%以上、又はCr:10質量%以上、又はC:0.5質量%以上を含有する鋼種は、割れ感受性が高く、バルジング起因の内部割れが発生し易い。
これら鋼種は、バルジング発生が顕著になり易い湾曲部(特に、鋳型直下から概ね0.4Dの位置にある湾曲部の前半、即ち溶鋼静圧が大きく凝固シェルが比較的薄い領域)で、鋳片の幅方向に温度偏差が発生する傾向にある。このため、温度偏差の発生場所以降、即ち0.4D以上となる位置に温度計を設置する。
以上から、温度計設置の位置を、0.4D以上0.65D以下(好ましくは、下限を0.45D、上限を0.6D)の範囲内にする。
Moreover, the above steel types, that is, steel types containing Si: 1.0% by mass or more, or Cr: 10% by mass or more, or C: 0.5% by mass or more have high cracking susceptibility, and internal cracking due to bulging occurs. It is easy to generate.
These steel grades are curved portions where bulging is likely to occur (especially, the first half of the curved portion located approximately 0.4D from directly under the mold, that is, the region where the molten steel has a high static pressure and the solidified shell is relatively thin). There is a tendency for temperature deviation to occur in the width direction. For this reason, a thermometer is installed after the place where the temperature deviation occurs, that is, at a position where it becomes 0.4 D or more.
From the above, the position of the thermometer is set within the range of 0.4D to 0.65D (preferably, the lower limit is 0.45D and the upper limit is 0.6D).

そして、上記した温度計で鋳片13の表面温度を測定し、この鋳片13の幅方向両端部を除く幅方向の表面温度差が300℃を超えたことを条件として、冷却範囲Rより下流、かつ0.4Dの位置より上流の範囲の全部又は一部で冷却用ノズルから鋳片13に吹き付けられる冷却水の水量密度を、現状の(現在吹き付けられている)水量密度よりも減少(例えば、現状の水量密度の0を超え20%以下程度減少)させる。なお、水量密度の調整は、上記した範囲に配置された全部もしくは一部の冷却用ノズルで行う。
前記したように、冷却範囲Rでは、パウダーの剥離除去を目的として、スプレー水の水量密度Wを決定した。従って、上記した温度計により修正すべき温度偏差が検知された場合には、冷却範囲Rよりも下流側のスプレー水による冷却を調整する必要がある。
このため、鋳型直下から鋳造方向に1.2mまでの冷却範囲Rより下流、かつ0.4Dの位置より上流の範囲の全部もしくは一部のスプレー水量密度を減少させると良い。
Then, the surface temperature of the slab 13 is measured with the thermometer described above, and downstream of the cooling range R on condition that the surface temperature difference in the width direction excluding both ends of the slab 13 exceeds 300 ° C. And the water density of the cooling water sprayed from the cooling nozzle to the slab 13 in the whole or part of the range upstream from the position of 0.4D is smaller than the current (currently sprayed) water density (for example, , The current water density exceeds 0 and decreases by about 20% or less). The water density is adjusted with all or some of the cooling nozzles arranged in the above range.
As described above, in the cooling range R, the water density W of the spray water was determined for the purpose of peeling and removing the powder. Therefore, when a temperature deviation to be corrected is detected by the thermometer described above, it is necessary to adjust the cooling by the spray water downstream from the cooling range R.
For this reason, it is preferable to reduce the spray water density in the whole or part of the range downstream from the cooling range R from just below the mold to 1.2 m in the casting direction and upstream from the position of 0.4D.

なお、一般の連続鋳造機(湾曲型連続鋳造機や垂直曲げ型連続鋳造機)は、距離Dが10〜20m程度であるため、0.4Dとなる位置は、鋳型直下から4〜8m程度である。このため、温度計は、鋳型直下から鋳造方向に、1.2mの位置から起算して2.8m以上、下流側に設置されることになる。従って、スプレー水量密度の減少対象位置は、鋳型直下から、鋳造方向に1.2mまでの冷却範囲Rとは重ならない。
ここでは、水量密度の減少によって鋳片の表面温度を復熱させ、鋳片の幅方向の温度偏差を抑制しているが、水量密度の減少によるバルジング発生を考慮する必要がある。
しかし、本発明者らの知見では、温度計の設置位置での温度偏差が顕著(300℃超え)となるように冷却された場合、鋳片の幅方向の少なくとも一部は、凝固シェル厚さが厚くなるためバルジングは発生しにくく、水量密度の減少代の調整で、バルジングの顕著な発生を抑制して、復熱(水量密度の減少)させることが可能である。
In addition, since a distance D is about 10 to 20 m in a general continuous casting machine (a curved continuous casting machine or a vertical bending type continuous casting machine), the position where 0.4D is about 4 to 8 m from directly below the mold. is there. For this reason, a thermometer will be installed in the casting direction from just under a casting_mold | template from the position of 1.2 m in the downstream by 2.8 m or more. Accordingly, the position where the spray water density is reduced does not overlap with the cooling range R from just below the mold to 1.2 m in the casting direction.
Here, the surface temperature of the slab is reheated by reducing the water density and the temperature deviation in the width direction of the slab is suppressed. However, it is necessary to consider the occurrence of bulging due to the reduction of the water density.
However, according to the knowledge of the present inventors, when cooling is performed so that the temperature deviation at the installation position of the thermometer becomes remarkable (over 300 ° C.), at least a part of the slab width direction is the thickness of the solidified shell. Therefore, bulging is unlikely to occur, and by adjusting the reduction amount of the water amount density, it is possible to suppress remarkable generation of bulging and to recover heat (reduction of water amount density).

これにより、鋳片13の幅方向の温度偏差と表面の過冷却とを抑制して、鋳片の内部割れ防止と表面割れ防止の両立を図り、良質の鋳片を製造できる。 Thereby, the temperature deviation in the width direction of the slab 13 and the supercooling of the surface are suppressed, and both the prevention of the internal crack and the prevention of the surface crack of the slab are achieved, and a high quality slab can be manufactured.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、図2に示す連続鋳造機を使用し、パウダーの消費量Pwと、鋳型直下から、鋳造方向に1.2mまでの冷却範囲Rにおけるスプレー水量密度Wを変更させた場合について、鋳片の表面温度偏差と鋳片の割れ発生率への影響を調査した。
また、鋳片の表面を観察可能なカメラを、鋳型直下から鋳造方向に1.2m位置に設置し、スプレー水量密度Wを変更した場合のパウダーの付着状態(目視観察)と鋳片の温度偏差の関係についても調査した。なお、連続鋳造機には、温度計を、鋳型直下から鋳造方向に8m(0.5D)位置に設置して、鋳片の表面温度を測定した。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, for the case of using the continuous casting machine shown in FIG. 2 and changing the powder consumption Pw and the spray water density W in the cooling range R from just below the mold to 1.2 m in the casting direction, The effect of surface temperature deviation on the crack occurrence rate of slab was investigated.
In addition, a camera capable of observing the surface of the slab is installed at a position 1.2 m in the casting direction from directly below the mold, and the powder adhesion state (visual observation) and the temperature deviation of the slab when the spray water density W is changed The relationship was also investigated. In the continuous casting machine, a thermometer was installed at a position of 8 m (0.5 D) in the casting direction from directly under the mold, and the surface temperature of the slab was measured.

ここで、実験条件を以下に示す。
<連続鋳造機>
ロールのタイプ:全てのロールを1本のサポートロール(分割ロールなし)で構成
ロールのピッチ:鋳型直下から、鋳造方向に1.2mまでは、200mm
冷却用ノズルのタイプ:鋳型直下から、鋳造方向に1.2mまでは、気水ノズル
鋳型直下から曲げ戻し部までの距離D:16m
Here, experimental conditions are shown below.
<Continuous casting machine>
Roll type: All rolls are composed of a single support roll (no split rolls). Pitch of rolls: 200mm from just below the mold to 1.2m in the casting direction.
Cooling nozzle type: From just below the mold to 1.2 m in the casting direction, the distance D from the air-water nozzle mold to the bent back part D: 16 m

<鋳造条件>
鋳造速度:1.3m/分、鋳造幅:1000〜1300mm、鋳造厚み:250mm、鋼種:1.0〜3.5質量%Si含有鋼
<冷却条件>
鋳型直下から、鋳造方向に1.2mまでの水量密度W:200L/m/分、300L/m/分、700L/m/分、800L/m/分
<Casting conditions>
Casting speed: 1.3 m / min, casting width: 1000-1300 mm, casting thickness: 250 mm, steel type: 1.0-3.5 mass% Si-containing steel <cooling conditions>
Water volume density from directly under the mold to 1.2 m in the casting direction W: 200 L / m 2 / min, 300 L / m 2 / min, 700 L / m 2 / min, 800 L / m 2 / min

また、鋳片の割れ発生率は、以下のように定義した。
(鋳片の割れ発生率)=(割れが発生した鋳片の本数)/(鋳片の全本数)×100(%)
(鋳片の全本数)={鋳造全長(m)}/{10(m/本)}
鋳片の全本数は、鋳造後に10m間隔で切断した鋳片単位で、本数をカウントしているため、上記した式で表している。
割れが発生した鋳片の本数は、表面割れと内部割れの一方又は双方が1箇所でも発生した場合を、割れが発生した鋳片としてカウントした。
Moreover, the crack incidence rate of the slab was defined as follows.
(Crack occurrence rate of slab) = (Number of slabs with cracks) / (Total number of slabs) × 100 (%)
(Total number of slabs) = {total casting length (m)} / {10 (m / piece)}
The total number of slabs is represented by the above formula because the number of slabs is counted in units of slabs cut at intervals of 10 m after casting.
The number of slabs in which cracks occurred was counted as a slab in which cracks occurred when one or both of surface cracks and internal cracks occurred at one location.

この結果を表1に示す。なお、表1では、上段に鋳片の温度偏差を、下段に鋳片の割れ発生率を、それぞれ示している。
この温度偏差は、鋳片の幅方向両端部(鋳片の幅方向両端から中央部へ100mmの領域)を除く鋳片の幅方向の「最大温度(℃)」−「最小温度(℃)」で定義した。
また、鋳片の割れ発生率は、5%未満を良好(○)、5%以上20%未満を製品として使用可(△)、20%以上を不良品(×)とした(以下に示す表2も同様)。
The results are shown in Table 1. In Table 1, the upper part shows the temperature deviation of the slab, and the lower part shows the crack occurrence rate of the slab.
This temperature deviation is “maximum temperature (° C.)” − “Minimum temperature (° C.)” in the width direction of the slab, excluding both ends in the width direction of the slab (region of 100 mm from both ends in the width direction of the slab to the center). Defined in
In addition, the crack occurrence rate of the slab was determined to be less than 5% as good (◯), 5% to less than 20% can be used as a product (Δ), and 20% or more as defective (x) (the table shown below) 2 is the same).

Figure 2011131242
Figure 2011131242

表1から、パウダーの消費量Pwが0.15kg/mの場合、鋳片表面からのパウダーの剥離が早期に発生し、過冷却が著しくなったため、鋳片に割れが発生した(割れ発生率:20%以上)。
また、スプレー水量密度Wが200L/m/分の場合、カメラによる観察では、鋳片の表面にパウダーが付着しており、300℃を超える温度偏差が発生した(割れ発生率:20%以上)。なお、パウダーの消費量Pwが0.60kg/mの場合は、鋳片へのパウダーの付着厚さが厚くなり、より大きな温度偏差が発生するため、実験しなかった。
From Table 1, when the powder consumption Pw was 0.15 kg / m 2 , peeling of the powder from the surface of the slab occurred at an early stage, and supercooling became significant, so that cracking occurred in the slab (cracking occurred) Rate: 20% or more).
In addition, when the spray water density W is 200 L / m 2 / min, in the observation with the camera, powder adheres to the surface of the slab, and a temperature deviation exceeding 300 ° C. occurs (crack generation rate: 20% or more) ). When the powder consumption Pw was 0.60 kg / m 2 , the adhesion thickness of the powder to the slab was increased, and a larger temperature deviation was generated.

そして、スプレー水量密度Wが800L/m/分の場合、過冷却により鋳片に割れが発生した(割れ発生率:20%以上)。なお、パウダーの消費量Pwが0.15kg/mの場合は、パウダーがより剥離し易くなり、過冷却が起こり易くなるため、実験しなかった。
一方、パウダーの消費量Pwが、0.2kg/mと0.6kg/mの場合で、かつスプレー水量密度Wが、300L/m/分と700L/m/分の場合は、カメラにより、良好なパウダーの剥離状況が観察され、温度偏差が少なく、過冷却も発生せず、割れ発生率の低減が可能であった(割れ発生率:5%以上20%未満)。
When the spray water density W was 800 L / m 2 / min, cracking occurred in the slab due to overcooling (cracking rate: 20% or more). Note that when the powder consumption Pw was 0.15 kg / m 2 , the powder was more easily peeled off and overcooling was more likely to occur, so no experiment was conducted.
On the other hand, when the powder consumption Pw is 0.2 kg / m 2 and 0.6 kg / m 2 and the spray water density W is 300 L / m 2 / min and 700 L / m 2 / min, A good peeling state of the powder was observed with a camera, the temperature deviation was small, supercooling did not occur, and the crack generation rate could be reduced (crack generation rate: 5% or more and less than 20%).

以上より、パウダーに起因した温度低下や温度偏差を抑制するためには、パウダーの消費量Pwを0.2kg/m≦Pw≦0.6kg/mとし、冷却範囲Rでのスプレー水量密度Wを300L/m/分≦W≦700L/m/分とする必要があり、これにより、鋳片の割れ発生率を20%未満にできることを確認できた。
また、スプレー水量密度Wが300〜700L/m/分の範囲で、パウダーの消費量Pwを0.7〜0.8kg/mとしたところ、割れ発生率は変化が無かった(改善効果の顕著な増加が無かった)。しかし、剥離したパウダー片が連続鋳造機内に飛散し、冷却用ノズルの閉塞が懸念されたため、上限は0.6で十分と考えられる。
As described above, in order to suppress the temperature drop or temperature variation due to powder, the consumption Pw powder and 0.2kg / m 2 ≦ Pw ≦ 0.6kg / m 2, a spray water density in the cooling range R W must be 300 L / m 2 / min ≦ W ≦ 700 L / m 2 / min, and it was confirmed that the crack generation rate of the slab can be reduced to less than 20%.
Moreover, when the spray water density W was in the range of 300 to 700 L / m 2 / min and the powder consumption Pw was 0.7 to 0.8 kg / m 2 , the crack generation rate did not change (improvement effect). There was no significant increase in However, since the peeled powder pieces were scattered in the continuous casting machine and there was concern about the clogging of the cooling nozzle, an upper limit of 0.6 is considered sufficient.

更に、連続鋳造機に使用するロールとして、鋳型直下から、鋳造方向に少なくとも0.4Dの位置まで、分割ロールを適用した場合には、バルジング起因の内部割れが減少し、スプレー水量密度の低減による復熱の活用ができることから、表1中の「△」評価の割れ発生率(割れ発生率が5%以上20%未満)を、2〜5%程度低減できることが推定できた。なお、この結果は、温度偏差の減少効果と復熱活用の効果から推定した。 Furthermore, when a split roll is applied as a roll used in a continuous casting machine from directly under the mold to a position of at least 0.4D in the casting direction, internal cracks due to bulging are reduced, and the spray water density is reduced. Since recuperation can be utilized, it was estimated that the crack occurrence rate (crack occurrence rate of 5% or more and less than 20%) in Table 1 can be reduced by about 2 to 5%. This result was estimated from the effect of reducing temperature deviation and the effect of recuperation.

次に、連続鋳造機への温度計設置の有無による鋳片の割れ発生率への影響と、温度計を設置した場合に水量密度を変更したときの鋳片の割れ発生率への影響を示した結果を、表2に示す。 Next, the effect of the presence or absence of a thermometer on the continuous casting machine on the crack occurrence rate of the slab, and the effect on the crack occurrence rate of the slab when the water density is changed when a thermometer is installed are shown. The results are shown in Table 2.

Figure 2011131242
Figure 2011131242

なお、表2の実施例1は、連続鋳造機に温度計を設置することなく鋳造を行った場合の結果であり、実施例4は、温度計を、鋳型直下から鋳造方向に8m位置に設置し、温度計で測定した鋳片の温度偏差が300℃を超えた際に、0.4Dの位置より上流のスプレー水量密度を変更して鋳造した場合の結果を示している。
また、表2中の実施例2、3、5、6は、温度計を、鋳型直下から鋳造方向に、それぞれ5.6m(0.35D)、6.4m(0.40D)、10.4m(0.65D)、11.2m(0.70D)の位置に設置した場合の推定結果を示している。なお、鋳片割れ発生率の推定は、鋳造方向における鋳片の温度履歴と鋳片の幅方向の温度分布(温度偏差)を推定するモデルを、実施例4の実測データを用いて作成することで行った。
In addition, Example 1 of Table 2 is a result at the time of casting, without installing a thermometer in a continuous casting machine, and Example 4 installs a thermometer in the casting direction from right under a casting_mold | template at 8 m position. And when the temperature deviation of the slab measured with the thermometer exceeds 300 degreeC, the result at the time of casting by changing the spray water quantity density upstream from the position of 0.4D is shown.
In Examples 2, 3, 5, and 6 in Table 2, the thermometers were 5.6 m (0.35 D), 6.4 m (0.40 D), and 10.4 m in the casting direction from directly below the mold. (0.65D) The estimation result when installed at a position of 11.2 m (0.70 D) is shown. Note that the rate of occurrence of slab cracking is estimated by creating a model that estimates the temperature history of the slab in the casting direction and the temperature distribution (temperature deviation) in the width direction of the slab using the actual measurement data of Example 4. went.

表2から、0.4D以上0.65D以下の範囲内に温度計を設置して鋳片の表面温度を測定し、鋳片の幅方向の表面温度差が300℃を超えたことを条件として、冷却範囲より下流、かつ0.4Dの位置より上流の範囲で、鋳片に吹き付けるスプレー水量密度を、上記条件時に鋳片に吹き付けられていた冷却水の水量密度よりも減少させることで、鋳片の割れ発生率を5%未満まで改善できることを確認できた(表2中の実施例3〜5)。
なお、鋼種については、10質量%以上Cr含有鋼と、0.5質量%以上C含有鋼についても、Si含有鋼と略同等の結果が得られた。
以上のことから、本発明の鋼の連続鋳造方法を使用することで、鋳片の幅方向の温度偏差と、鋳片の表面の過冷却とを抑制して、鋳片の内部割れ防止と表面割れ防止の両立を図り、良質の鋳片を製造できることを確認できた。
From Table 2, the thermometer was installed in the range of 0.4D or more and 0.65D or less, the surface temperature of the slab was measured, and the surface temperature difference in the width direction of the slab exceeded 300 ° C. In the range downstream from the cooling range and upstream from the position of 0.4D, the density of the spray water sprayed on the slab is reduced from the density of the coolant water sprayed on the slab at the above-mentioned conditions. It was confirmed that the crack generation rate of the piece could be improved to less than 5% (Examples 3 to 5 in Table 2).
In addition, about the steel grade, the result substantially equivalent to Si containing steel was obtained also about 10 mass% or more Cr containing steel and 0.5 mass% or more C containing steel.
From the above, by using the steel continuous casting method of the present invention, the temperature deviation in the width direction of the slab and the overcooling of the surface of the slab are suppressed, and the internal crack prevention and surface of the slab are suppressed. It was confirmed that good quality slabs could be manufactured while preventing cracking.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の鋼の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the steel continuous casting method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:鋳型、11:二次冷却帯、12:連続鋳造機、13:鋳片、14:曲げ戻し部 10: mold, 11: secondary cooling zone, 12: continuous casting machine, 13: slab, 14: bent back part

Claims (4)

鋳型と、該鋳型の下流側に配置された二次冷却帯とを有する連続鋳造機を用い、前記鋳型から、Siを1.0質量%以上、又はCrを10質量%以上、又はCを0.5質量%以上含む鋳片を引き抜き、該鋳片を前記二次冷却帯に設けられた多数の冷却用ノズルで冷却する鋼の連続鋳造方法において、
前記鋳型内に供給するパウダーの消費量Pwを0.2kg/m以上0.6kg/m以下とし、前記二次冷却帯のうち、前記鋳型の直下から、鋳造方向に1.2mまでの冷却範囲で、前記冷却用ノズルから前記鋳片に吹き付けられる冷却水の水量密度Wを300リットル/m/分以上700リットル/m/分以下とすることを特徴とする鋼の連続鋳造方法。
Using a continuous casting machine having a mold and a secondary cooling zone disposed on the downstream side of the mold, 1.0 mass% or more of Si, 10 mass% or more of Cr, or 0 of C is extracted from the mold. In a continuous casting method of steel in which a slab containing 5% by mass or more is drawn and the slab is cooled by a number of cooling nozzles provided in the secondary cooling zone,
The consumption Pw powder supplied into the mold and 0.2 kg / m 2 or more 0.6 kg / m 2 or less, of the secondary cooling zone, from immediately below the mold, until 1.2m in the casting direction A continuous casting method of steel, characterized in that, in a cooling range, the water density W of cooling water sprayed from the cooling nozzle to the slab is 300 liters / m 2 / min or more and 700 liters / m 2 / min or less. .
請求項1記載の鋼の連続鋳造方法において、少なくとも前記冷却範囲で冷却水を吹き付ける前記冷却用ノズルに、気水ノズルを用いることを特徴とする鋼の連続鋳造方法。 The continuous casting method for steel according to claim 1, wherein an air-water nozzle is used as the cooling nozzle for blowing cooling water at least in the cooling range. 請求項1又は2記載の鋼の連続鋳造方法において、前記二次冷却帯には、前記鋳型から引き抜かれた前記鋳片を、厚み方向から挟み込んで鋳造方向に搬送する多数のロールが配置され、該多数のロールの一部又は全部に、前記鋳片の幅方向両端部を除く位置で分割された分割ロールを用いることを特徴とする鋼の連続鋳造方法。 In the continuous casting method of steel according to claim 1 or 2, in the secondary cooling zone, a large number of rolls are disposed that sandwich the slab drawn from the mold from the thickness direction and convey it in the casting direction, A steel continuous casting method characterized in that a split roll divided at a position excluding both ends in the width direction of the slab is used for a part or all of the multiple rolls. 請求項1〜3のいずれか1項に記載の鋼の連続鋳造方法において、前記鋳型の直下から前記連続鋳造機の曲げ戻し部までの距離をDとして、前記鋳型の直下から0.4Dの位置から0.65Dの位置までの範囲内に温度計を設置して前記鋳片の表面温度を測定し、前記鋳片の幅方向両端から中央部へ向けて100mmまでの範囲を除いた領域の前記鋳片の幅方向の表面温度差が300℃を超えたことを条件として、前記冷却範囲より下流、かつ前記0.4Dの位置より上流の範囲の全部又は一部で前記冷却用ノズルから前記鋳片に吹き付けられる冷却水の水量密度を減少させることを特徴とする鋼の連続鋳造方法。 The steel continuous casting method according to any one of claims 1 to 3, wherein D is a distance from a position immediately below the mold to a bending return portion of the continuous casting machine, and a position of 0.4D from directly below the mold. The surface temperature of the slab is measured by installing a thermometer within the range from the position of 0.65D to the position of 0.65D, and the region in the range excluding the range up to 100 mm from both ends in the width direction toward the center portion is measured. On the condition that the surface temperature difference in the width direction of the slab has exceeded 300 ° C., the casting nozzle is moved from the cooling nozzle in the whole or part of the range downstream from the cooling range and upstream from the position of 0.4D. A continuous casting method of steel, characterized in that the density of cooling water sprayed on a piece is reduced.
JP2009292958A 2009-12-24 2009-12-24 Steel continuous casting method Active JP5397214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292958A JP5397214B2 (en) 2009-12-24 2009-12-24 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292958A JP5397214B2 (en) 2009-12-24 2009-12-24 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2011131242A true JP2011131242A (en) 2011-07-07
JP5397214B2 JP5397214B2 (en) 2014-01-22

Family

ID=44344545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292958A Active JP5397214B2 (en) 2009-12-24 2009-12-24 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5397214B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737896A (en) * 2017-11-15 2018-02-27 中冶赛迪工程技术股份有限公司 A kind of conticaster secondary cooling method and device
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel
CN114096362A (en) * 2019-07-11 2022-02-25 杰富意钢铁株式会社 Secondary cooling method and apparatus for continuously cast slab

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139455A (en) * 1981-02-24 1982-08-28 Kawasaki Steel Corp Continuous casting method for sea water resistant steel
JPS6014108A (en) * 1983-07-05 1985-01-24 Nippon Steel Corp Measuring device of thickness of powder film
JPS635857A (en) * 1986-06-24 1988-01-11 Nippon Steel Corp Continuous casting method for steel containing high silicon
JPS63278655A (en) * 1987-05-12 1988-11-16 Nkk Corp Light rolling reduction casting method
JPH02263550A (en) * 1989-04-04 1990-10-26 Nippon Steel Corp Production of cast slab for direct rolling
JPH07214263A (en) * 1994-02-01 1995-08-15 Sumitomo Metal Ind Ltd Molding powder for continuous casting
JPH10166123A (en) * 1996-12-03 1998-06-23 Nippon Steel Corp Method for heat-conducting and promoting continuous casting mold and device therefor
JP2004202523A (en) * 2002-12-24 2004-07-22 Jfe Steel Kk Continuous casting method and continuously cast slab produced by the method
JP2006224171A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for continuously casting steel
JP2006239726A (en) * 2005-03-02 2006-09-14 Jfe Steel Kk Mold powder for continuously casting steel
JP2008055454A (en) * 2006-08-30 2008-03-13 Nippon Steel Corp Method for producing cast slab excellent in surface and inner qualities
JP2008200704A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Slab cooling method in continuous casting machine
JP2011131239A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method for steel

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139455A (en) * 1981-02-24 1982-08-28 Kawasaki Steel Corp Continuous casting method for sea water resistant steel
JPS6014108A (en) * 1983-07-05 1985-01-24 Nippon Steel Corp Measuring device of thickness of powder film
JPS635857A (en) * 1986-06-24 1988-01-11 Nippon Steel Corp Continuous casting method for steel containing high silicon
JPS63278655A (en) * 1987-05-12 1988-11-16 Nkk Corp Light rolling reduction casting method
JPH02263550A (en) * 1989-04-04 1990-10-26 Nippon Steel Corp Production of cast slab for direct rolling
JPH07214263A (en) * 1994-02-01 1995-08-15 Sumitomo Metal Ind Ltd Molding powder for continuous casting
JPH10166123A (en) * 1996-12-03 1998-06-23 Nippon Steel Corp Method for heat-conducting and promoting continuous casting mold and device therefor
JP2004202523A (en) * 2002-12-24 2004-07-22 Jfe Steel Kk Continuous casting method and continuously cast slab produced by the method
JP2006224171A (en) * 2005-02-21 2006-08-31 Nippon Steel Corp Method for continuously casting steel
JP2006239726A (en) * 2005-03-02 2006-09-14 Jfe Steel Kk Mold powder for continuously casting steel
JP2008055454A (en) * 2006-08-30 2008-03-13 Nippon Steel Corp Method for producing cast slab excellent in surface and inner qualities
JP2008200704A (en) * 2007-02-19 2008-09-04 Kobe Steel Ltd Slab cooling method in continuous casting machine
JP2011131239A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method for steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737896A (en) * 2017-11-15 2018-02-27 中冶赛迪工程技术股份有限公司 A kind of conticaster secondary cooling method and device
WO2020122061A1 (en) * 2018-12-10 2020-06-18 日本製鉄株式会社 Continuous casting method for steel
CN113165060A (en) * 2018-12-10 2021-07-23 日本制铁株式会社 Method for continuously casting steel
JPWO2020122061A1 (en) * 2018-12-10 2021-09-27 日本製鉄株式会社 Continuous steel casting method
JP7020568B2 (en) 2018-12-10 2022-02-16 日本製鉄株式会社 Continuous steel casting method
CN114096362A (en) * 2019-07-11 2022-02-25 杰富意钢铁株式会社 Secondary cooling method and apparatus for continuously cast slab

Also Published As

Publication number Publication date
JP5397214B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5775879B2 (en) Martensitic stainless steel and method for producing the same
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
TW202039117A (en) Method for continuous steel casting
JP5397214B2 (en) Steel continuous casting method
JP5577655B2 (en) Hot-rolled steel sheet cooling equipment and cooling method
JP2008183608A (en) Continuous casting method of steel
JP5423719B2 (en) Steel continuous casting method
JP2010253481A (en) Surface crack preventing method for continuously cast slab
JP5200264B2 (en) Steel continuous casting method
JP4987545B2 (en) Secondary cooling device for continuous casting machine and its secondary cooling method
JP2003062647A (en) Direct rolling method for continuous cast steel piece
TWI630962B (en) Continuous casting mold and steel continuous casting method
JP2007245232A (en) Method for preventing surface crack of continuously cast slab
JP4924104B2 (en) Method for producing high Ni content steel slab
JP6841028B2 (en) Continuous steel casting method
CN113165060B (en) Method for continuously casting steel
JP2007307574A (en) Continuous casting method of billet
WO2018055799A1 (en) Continuous steel casting method
JP5423714B2 (en) Steel continuous casting method
CN109689247B (en) Method for continuously casting steel
JP5825087B2 (en) Continuous casting method
JP2000237858A (en) Continuous casting method
JP2009142876A (en) Method for continuously casting steel
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350