JPS63277590A - Boron nitride crucible - Google Patents

Boron nitride crucible

Info

Publication number
JPS63277590A
JPS63277590A JP10981087A JP10981087A JPS63277590A JP S63277590 A JPS63277590 A JP S63277590A JP 10981087 A JP10981087 A JP 10981087A JP 10981087 A JP10981087 A JP 10981087A JP S63277590 A JPS63277590 A JP S63277590A
Authority
JP
Japan
Prior art keywords
layer
crucible
thickness
wall
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10981087A
Other languages
Japanese (ja)
Other versions
JPH0511073B2 (en
Inventor
Mitsuyoshi Iwasa
光芳 岩佐
Masaru Ide
勝 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10981087A priority Critical patent/JPS63277590A/en
Publication of JPS63277590A publication Critical patent/JPS63277590A/en
Publication of JPH0511073B2 publication Critical patent/JPH0511073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prolong the working life of the crucible of multiple wall structure, by making it by the CVD process with reaction gases of stream rates over specific values and specifying the thicknesses of the first layer, second layer and the whole walls respectively. CONSTITUTION:The subject crucible is made by the CVD process in a reactor where reaction gases are allowed to flow over 50m/sec. The crucible is composed of alternative lamination with the first layer of 1-20mu thickness and the second layer with 1/50-1/2 thickness of the first layer and the total thickness of the wall is 0.5-3mm. In case of 50m/sec or less gas flow rate, the discrimination between individual layers becomes nuclear and layer peeling becomes difficult. When the first layer is less than 1mu thick, the working life becomes short, over 20mu cannot achieve satisfactory life-prolonging effect. When the second layer is thinner than the minimum limit, the layer-peeling behavior becomes wrong, while over upper-limit causes lamination with the first layer. Further, less than 0.5mm wall thickness induces unsatisfactory strength, over 3mm thickness increases internal stress to cause autogenous lamination.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、使用寿命の改良された窒化ホウ素るつぼ、特
に分子ビームエピタキシーCMBE)や液体封止チョク
ラルスキー(LEC)法などで用いる金属及び化合物溶
融用の窒化ホウ素るつぼに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides boron nitride crucibles with improved service life, particularly for metal and This invention relates to a boron nitride crucible for melting compounds.

〔従来の技術〕[Conventional technology]

熱分解窒化ホウ素(PBN)は、高純度・高品質の窒化
ホウ素(BN)として化合物半導体や特殊合金の製造な
どの巾広い分野で用いられている材料である。特にGa
AB表どの化合物半導体の製造においては、PBNのす
ぐれた耐食性と高純度が最大限有効に発揮されており、
不純物が少なく電気特性の優れた化合物半導体単結晶を
育成する上で不可欠な材料となっている。
Pyrolytic boron nitride (PBN) is a high-purity, high-quality boron nitride (BN) that is used in a wide range of fields such as the production of compound semiconductors and special alloys. Especially Ga
AB Table In the production of compound semiconductors, PBN's excellent corrosion resistance and high purity are utilized to the maximum extent possible.
It is an essential material for growing compound semiconductor single crystals with few impurities and excellent electrical properties.

たとえば、GaAs単結晶育成において、PBNは、L
EC法におけるるつぼとして、またHB法(水平グリッ
ジマン法)におけるボートとしてそれぞれ用いられてい
る。また、GaAs単結晶ウェハー上にGa1−〇)、
tzAaなどの混晶化合物半導体をエビタキクヤル成長
させる一方法である分子ビーム エピタキシー法におけ
る金属溶融用容器(るりぼ)としてもPBNがほぼ独占
的に用いられている。
For example, in GaAs single crystal growth, PBN is
It is used as a crucible in the EC method and as a boat in the HB method (horizontal Grizzman method). In addition, Ga1-〇) on a GaAs single crystal wafer,
PBN is also almost exclusively used as a container for metal melting in the molecular beam epitaxy method, which is a method for growing mixed crystal compound semiconductors such as tzAa.

PBN ハ、タトエば米国特許第3,152,006号
811細書で開示されているように、三塩化ホウ素(B
α3)のようなハロゲン化ホウ素とアンモニアを気体状
原料とし、温度1,450℃〜2,300’O1圧力5
0 torr未満の条件下で適当な基材表面上にBNを
析出させるいわゆる化学気相蒸着法CCVD法)により
合成される。基材材料とcvD条件を適切に選べば、析
出したPBN膜を基材から分離し、自立型PBN物品を
得ることができる。
PBN As disclosed in U.S. Pat. No. 3,152,006, 811, boron trichloride (B
α3) Boron halide and ammonia are used as gaseous raw materials, and the temperature is 1,450°C to 2,300°C, the pressure is 5.
It is synthesized by so-called chemical vapor deposition (CCVD) in which BN is deposited on the surface of a suitable substrate under conditions of less than 0 torr. By appropriately selecting the substrate material and CVD conditions, the deposited PBN film can be separated from the substrate and a free-standing PBN article can be obtained.

このようにして得られるPBNは膜の成長方向に対し垂
直な方向に六方晶BN OC面が高度に配向した構造を
しており、このため、たとえばLEC法におけるるつぼ
として繰り返し、使用する場合、封止剤でおる酸化ホウ
素(B203)を除去する際に不均一な層剥X1it−
起こしやすく、そのため寿命が短かく、また一定の寿命
をもつことか保証され難いという欠点があった。
The PBN obtained in this way has a structure in which the hexagonal BN OC planes are highly oriented in the direction perpendicular to the film growth direction, and therefore, when used repeatedly as a crucible in the LEC method, for example, Uneven layer peeling when removing boron oxide (B203) with an inhibitor
This has the disadvantage that it is easy to cause damage and therefore has a short lifespan, and it is difficult to guarantee that it will have a certain lifespan.

このような欠点を解決する方法として、中間壁を介在さ
せつつおる特定範囲の厚さからなる多数の個別壁で構成
された多重壁構造るつぼが提案されている(特開昭61
−285383号公報)。
As a method to solve these drawbacks, a multi-walled crucible has been proposed, which is composed of a large number of individual walls with thicknesses in a specific range with an intervening intermediate wall (Japanese Patent Laid-Open No. 61
-285383).

このような多重壁構造るつぼは、たとえばIJC法によ
る結晶育成後にB2O3を除去する際に、常にるつぼの
最内壁層で剥離が起こり、かつ剥離が深くなることなく
部分剥離層を除去できるので、るつぼの寿命が従来のも
のよりも大巾に伸び、しかもるつぼ間での寿命のバラツ
キが少なかという長所を有している。さらには、このよ
うな多重壁構造るつぼを製造するにあたっては、原料ガ
スのアンモニア対ハロゲン化ホウ素配合モル比を異なら
せ、交互に繰り返しながら形成させていくので、膜形成
を一時的に中断する必要がなく、不必要に長時間を要す
ることなくるつぼが製造できるという利点がある。
In such a multi-wall structure crucible, for example, when removing B2O3 after crystal growth using the IJC method, exfoliation always occurs at the innermost wall layer of the crucible, and the partial exfoliation layer can be removed without deepening the exfoliation. It has the advantage that the lifespan of the crucible is significantly longer than that of conventional crucibles, and there is little variation in the lifespan between crucibles. Furthermore, in manufacturing such a multi-walled crucible, the molar ratio of ammonia to boron halide in the raw material gas is varied and film formation is repeated alternately, making it necessary to temporarily interrupt film formation. This method has the advantage that the crucible can be manufactured without requiring an unnecessarily long time.

このような多重壁構造るつぼにおいては各個別壁の厚み
が薄いほど寿命が向上するわけであるが、特開昭61−
285383号公報に記載された方法では、第1の壁の
厚みを20μm未満とすると個々の壁の間での区分が明
確でなくなり、前記するような多重壁構造の効果を十分
に得られないという欠点がめった。
In such a multi-walled crucible, the thinner the individual walls are, the longer the life will be.
According to the method described in Japanese Patent No. 285383, if the thickness of the first wall is less than 20 μm, the divisions between the individual walls become unclear, and the effect of the multi-wall structure as described above cannot be sufficiently obtained. There were many shortcomings.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、上記欠点を解決することを目的として種々
検討した結果、CVD反応室における原料ガスの流速を
毎秒50m以上として製造したるつぼは、その第1の壁
の厚みを20μm未満としても壁間の区分が明確になる
ことを見い出し、本発BAを完成した。
As a result of various studies aimed at solving the above-mentioned drawbacks, the inventors of the present invention found that a crucible manufactured with a flow rate of raw material gas in the CVD reaction chamber of 50 m/s or more can be used even if the thickness of the first wall is less than 20 μm. We found that the division between the two was clear and completed the original BA.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、反応室における原料ガスの流速を
毎秒50m以上として化学気相蒸着法により製造された
窒化ホウ素るつぼであって、1層の厚みが1μm以上2
0μm未満である第1の壁と、厚みが第1の壁の化。−
1/2である第2の壁とが、互いに結合をもって交互に
積層されてなっており、かつ、全体の壁厚が0.5〜3
龍であることを特徴とする多重壁構造からなる窒化ホウ
素るつぼでおる。
That is, the present invention provides a boron nitride crucible manufactured by a chemical vapor deposition method with a flow rate of raw material gas in a reaction chamber of 50 m/s or more, and in which the thickness of one layer is 1 μm or more.
The first wall is less than 0 μm and the thickness of the first wall is less than 0 μm. −
1/2 of the second wall are laminated alternately with bonding to each other, and the total wall thickness is 0.5 to 3.
It is a boron nitride crucible with a multi-walled structure characterized by the shape of a dragon.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明の多重壁構造るつぼは、第1の壁の厚みが1μm
以上20細未満の範囲である。厚みが1μm未満である
と壁を構成するPBN膜の強度が十分でないために、単
結晶育成に用いた場合に寿命が短かく、また20μm以
上では従来の多重壁るつぼと同一の構造となり、寿命延
長効果が十分でなくなる。次に、第1の壁に隣接する第
2の壁の厚みは第1の壁の塊。−匙である。化。より厚
みが薄いと層毎の剥離性が悪く、中間壁としての機能が
十分に得られなくなる。また、匙より厚くなると第1の
壁との間でラミネーションを起こす傾向があるので好ま
しくない。るつぼの全体壁厚としては0.5〜6罵であ
る。壁厚が0.5J11未満ではるつぼ全体の強度が不
足し、また3層真をこえると内部応力が増大し、自発的
なラミネーションの発生を耀来することになるので好ま
しくない。本発明のるつぼは従来のものに比べ、個々の
壁の厚みが薄層ために概ね10〜100倍の多重壁とす
ることができる。
In the multi-wall structure crucible of the present invention, the thickness of the first wall is 1 μm.
The range is less than 20 fine. If the thickness is less than 1 μm, the strength of the PBN film constituting the wall will be insufficient, resulting in a short life when used for single crystal growth.If the thickness is more than 20 μm, the structure will be the same as that of a conventional multi-walled crucible, resulting in a short life. The extension effect will not be sufficient. Next, the thickness of the second wall adjacent to the first wall is the thickness of the first wall. -It's a spoon. ification. If the thickness is thinner, the peelability of each layer will be poor, and the function as an intermediate wall will not be obtained sufficiently. Moreover, if it is thicker than a spoon, it is not preferable because it tends to cause lamination with the first wall. The overall wall thickness of the crucible is 0.5 to 6 mm. If the wall thickness is less than 0.5J11, the strength of the entire crucible will be insufficient, and if it exceeds 3 layers, internal stress will increase, resulting in spontaneous lamination, which is not preferable. The crucible of the present invention can have multiple walls approximately 10 to 100 times thicker than conventional crucibles because the thickness of each wall is thinner.

本発明においては、個々の壁を形成する際のCVD反応
室内の原料ガスの流速を毎秒50m以上とすることが重
要なことである。流速が毎秒50m未満では、個々の壁
の間での区分が明確でなくなるために層毎の剥離性の良
好なるつぼを得ることができない。流速を毎秒50m以
上とすることにより壁間の区分が明確となる理由は、原
料ガス条件の切り換わりが迅速になるためと推定される
In the present invention, it is important that the flow rate of the raw material gas in the CVD reaction chamber when forming the individual walls is 50 m/s or more. When the flow rate is less than 50 m/s, the divisions between the individual walls become unclear, making it impossible to obtain a crucible with good layer-by-layer peelability. The reason why the separation between the walls becomes clearer by setting the flow velocity to 50 m/s or more is presumed to be that the source gas conditions can be changed quickly.

次に、本発明の多重壁構造るつぼの製造法について説明
すると、多重壁構造のPBNるつぼを形成する個々の壁
は、三塩化ホウ素などのハcXrン化ホウ素ガスとアン
モニアガスとを原料とするCVD法により形成されるが
、そのときの圧力は5torr’以下、温度は1850
 ’0以上であればよい。圧力が5 torr f:こ
えるとBNの微粒子が副生じ、PBN膜中に取り込まれ
て組織の均一性が損なわれる傾向にある。温度が185
0℃未満では生成するPBNの強度が低く、るつぼとし
ての実用強度が不足する傾向にある。このような条件下
で形成される壁同志を互いに弱く結合させるためには、
第1の壁とそれに隣接する第2の壁(中間壁)とを互い
に異なったアンモニア対ハc1デン化ホウ素の配合モル
比で蒸着すればよい。すなわち、第1の壁を形成すると
きの前記モル比は2〜10.第2の壁の前記モル比は邪
以上2未満とすればよい。
Next, the manufacturing method of the multi-wall structure crucible of the present invention will be explained. The individual walls forming the multi-wall structure PBN crucible are made of boron trichloride gas such as boron trichloride and ammonia gas as raw materials. It is formed by the CVD method, at a pressure of 5 torr' or less and a temperature of 1850℃.
'It is sufficient if it is 0 or more. When the pressure exceeds 5 torr f: fine particles of BN are generated as a by-product and are incorporated into the PBN film, which tends to impair the uniformity of the structure. temperature is 185
If the temperature is lower than 0°C, the strength of the PBN produced is low, and the strength for practical use as a crucible tends to be insufficient. In order to weakly bond the walls formed under these conditions to each other,
The first wall and the second wall (intermediate wall) adjacent thereto may be deposited at different molar ratios of ammonia to boron halide. That is, the molar ratio when forming the first wall is 2 to 10. The molar ratio of the second wall may be greater than or equal to 2 and less than 2.

CVD反応室における原料ガスの流速を毎秒50m以上
に調節するには、導入ガス量とるっぽ墓黒鉛基材とcv
p反応室壁の間の空間断面積、及びC’VD反応室の温
度、圧力を調整することによって行うことができる。
In order to adjust the flow rate of the raw material gas in the CVD reaction chamber to 50 m/s or more, it is necessary to
This can be done by adjusting the cross-sectional area of the space between the walls of the p-reaction chamber, and the temperature and pressure of the C'VD reaction chamber.

次に実施例と比較例tSげてさらに具体的に本発明を説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

〔実施例 比較例〕[Example Comparative example]

5c!!L巾X 60cIIl長X1c*厚の黒鉛板8
枚を使い、直径20αの黒鉛板(底板)の上面に8角形
の断面を有する反応室を形成した。底板の中央にはガス
導入のため直径5儒の孔′fcあげ、原料ガス導入管と
して予めPBN@Jした黒鉛パイプ2本(外径5c!l
L及び2.5cR)を同軸になるよう接続し、反応室上
部から直径5c!rL1長さ6ぼの黒鉛基材を吊り下げ
た。この反応室全体を高温抵抗加熱真空炉内に装入し、
原料ガス導入管の黒鉛パイプの内外管には各々BCt3
 、  NH3ガスを供給できるよう、ステンレス製ガ
ス配管を接続した。前記真空炉を10″″3torr台
に排気しながら、1900 ’Cにまで加熱した。
5c! ! L width x 60c IIl length x 1c * thickness graphite plate 8
A reaction chamber having an octagonal cross section was formed on the top surface of a graphite plate (bottom plate) with a diameter of 20α. In the center of the bottom plate, there was a hole with a diameter of 5 cm for gas introduction, and two graphite pipes (outside diameter 5 c!
L and 2.5cR) are connected coaxially, and the diameter is 5c from the top of the reaction chamber! A graphite substrate with rL1 length of 6 mm was suspended. The entire reaction chamber is placed in a high-temperature resistance heating vacuum furnace.
BCt3 is applied to the inner and outer tubes of the graphite pipe of the raw material gas introduction tube.
, Stainless steel gas piping was connected to supply NH3 gas. The vacuum furnace was heated to 1900'C while evacuating to 10''3 Torr.

次に、1torrの圧力下、第1の壁はアンモニア対三
塩化ホウ素配合モル比を4とし、第2の壁は配合モル地
金1として表に示す条件で交互に蒸着し、全体壁厚1關
のPBNるつぼを作製した。得られたるつぼについて、
LEC法による単結晶育成を想定した寿命テストヲ次の
方法により実施した。
Next, under a pressure of 1 torr, the first wall was deposited with a molar ratio of ammonia to boron trichloride of 4, and the second wall was deposited with a molar ratio of 1 as shown in the table, and the total wall thickness was 1. A related PBN crucible was prepared. Regarding the obtained crucible,
A lifespan test assuming single crystal growth by the LEC method was conducted using the following method.

すなわち、るつぼ内に50yのB2O3t−入れ、N2
W囲気中で1280℃に加熱してB2O3を溶融した後
室温まで冷却する。るつぼ内壁に付着したB2O3は、
るつぼ全体をメタノール中に浸し、20〜40分間超音
波洗浄することにより取り除かれるが、この際、B2O
3の冷却収縮時にB2O3に付着していたPBNるつぼ
内壁面の一部が剥がれる。これをるつぼが破損するまで
繰り返した。各々のるつぼの破損までの回数は表に示し
た。
That is, 50y of B2O3t- is placed in the crucible, and N2
It is heated to 1280° C. in a W atmosphere to melt B2O3, and then cooled to room temperature. B2O3 attached to the inner wall of the crucible is
The entire crucible is immersed in methanol and removed by ultrasonic cleaning for 20-40 minutes;
During the cooling contraction in step 3, a part of the inner wall surface of the PBN crucible adhering to B2O3 peels off. This was repeated until the crucible was damaged. The number of times until failure of each crucible is shown in the table.

表から、本発明の実施例はいずれも40回以上の寿命を
示し、比較例よりも長寿命であることがわかる。
From the table, it can be seen that all of the examples of the present invention have a lifespan of 40 times or more, and have a longer lifespan than the comparative examples.

〔発明の効果〕〔Effect of the invention〕

本発明の多重壁構造からなる望化ホウ素るつぼは、MB
E法やIJC法において、その使用寿命を著しく延長さ
せることができるので、化合物半導体の製造コストを低
減できる。
The present invention's multi-walled boron crucible has MB
In the E method and the IJC method, the service life can be significantly extended, so the manufacturing cost of compound semiconductors can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 1、反応室における原料ガスの流速を毎秒50m以上と
して化学気相蒸着法により製造された窒化ホウ素るつぼ
であつて、1層の厚みが1μm以上20μm未満である
第1の壁と、厚みが第1の壁の1/50〜1/2である
第2の壁とが互いに結合をもつて交互に積層されてなつ
ており、かつ、全体の壁厚が0.5〜3mmであること
を特徴とする多重壁構造からなる窒化ホウ素るつぼ。
1. A boron nitride crucible manufactured by chemical vapor deposition with a flow rate of raw material gas in the reaction chamber of 50 m/s or more, the first wall having a thickness of 1 μm or more and less than 20 μm, and the first wall having a thickness of 1 μm or more and less than 20 μm. The second wall, which is 1/50 to 1/2 of the first wall, is bonded to and alternately stacked, and the total wall thickness is 0.5 to 3 mm. A boron nitride crucible with a multi-walled structure.
JP10981087A 1987-05-07 1987-05-07 Boron nitride crucible Granted JPS63277590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10981087A JPS63277590A (en) 1987-05-07 1987-05-07 Boron nitride crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10981087A JPS63277590A (en) 1987-05-07 1987-05-07 Boron nitride crucible

Publications (2)

Publication Number Publication Date
JPS63277590A true JPS63277590A (en) 1988-11-15
JPH0511073B2 JPH0511073B2 (en) 1993-02-12

Family

ID=14519778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10981087A Granted JPS63277590A (en) 1987-05-07 1987-05-07 Boron nitride crucible

Country Status (1)

Country Link
JP (1) JPS63277590A (en)

Also Published As

Publication number Publication date
JPH0511073B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
EP0206120B1 (en) Pyrolytic boron nitride crucible and method for producing the same
US3986822A (en) Boron nitride crucible
US4058579A (en) Process for producing an improved boron nitride crucible
US5032366A (en) Boron nitride boat and process for producing it
JPS63277590A (en) Boron nitride crucible
JPH10189452A (en) Thermal decomposition boron nitride crucible for electric beam epitaxy
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
US5182149A (en) Boron nitride boat and process for producing it
JP2507739B2 (en) Pyrolytic boron nitride container
JPH0456766B2 (en)
JP2588540B2 (en) Pyrolytic boron nitride container
JPH0798708B2 (en) Method for producing pyrolytic boron nitride coated article
JPH0455160B2 (en)
JPH0455159B2 (en)
JPH03243776A (en) Graphite member for cvd
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JP4386663B2 (en) Carbon composite material
JPH0784357B2 (en) Boron nitride coated crucible
JPS62132798A (en) Crucible for growing compound semiconductor and production thereof
JPS61236683A (en) Crucible for pulling single crystal
JP4059425B2 (en) CVD-SiC free-standing film structure
JPH05124864A (en) Production of high purity silicon carbide body
JPH038792A (en) Boron nitride crucible
JP2000128694A (en) Production of epitaxial wafer
JPS61236684A (en) Jig for pulling single crystal