JPH038792A - Boron nitride crucible - Google Patents

Boron nitride crucible

Info

Publication number
JPH038792A
JPH038792A JP14280489A JP14280489A JPH038792A JP H038792 A JPH038792 A JP H038792A JP 14280489 A JP14280489 A JP 14280489A JP 14280489 A JP14280489 A JP 14280489A JP H038792 A JPH038792 A JP H038792A
Authority
JP
Japan
Prior art keywords
crucible
boron nitride
thin film
density
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14280489A
Other languages
Japanese (ja)
Inventor
Tomoki Inada
稲田 知己
Masatomo Shibata
真佐知 柴田
Shoichi Nagao
彰一 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14280489A priority Critical patent/JPH038792A/en
Publication of JPH038792A publication Critical patent/JPH038792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To remarkably prolong life of crucible by forming boron nitride crucible for housing a raw material into a laminate structure of thin film each having different density in the above-mentioned crucible when crystal of semiconductor is grown. CONSTITUTION:A boron nitride(BN) crucible is prepared using NH3 gas and boron chloride or NH3 gas and boron fluoride according to a vapor phase growth method. In this case, a BN thin film is formed into a multi-layer thin film by integrating the thin film of BN and difference of density of adjacent each thin film is kept to about >=0.1g/cm<2>, since the structure is slightly different by preparation conditions and the difference is made in density of each part. Thereby each layer when used is uniformly released. As a result, thickness of the crucible can be uniformly kept in each part even when used for a long period and long life of crucible can be attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、るつぼ、特に化合物半導体単結晶成長用の窒
化ホウ素るつぼに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a crucible, particularly a boron nitride crucible for growing compound semiconductor single crystals.

[従来の技術] るつぼは半導体単結晶製造時に原料の融解用容器として
しばしば用いられており、石英(S02)るつぼがよく
知られているが、化合物半導体結晶を製造する場合は耐
熱性、耐薬品性に優れ成型性も良好な窒化ホウ素(BN
)るつぼが用いられる。特にアンモニアガスと塩化ホウ
素、或いはアンモニアガスとフッ化ホウ素を用いていわ
ゆる気相成長法により作製された窒化ホウ素るつぼは、
P B N (Pyrotytic Boron N1
tridelるつぼと称され、化合物半導体の結晶成長
用るつぼとして広く用いられている。このPBNるつぼ
はまた分子線エピタキシャル(MBE)法による薄膜成
長用としても用いられるが、例えばガリウム・ヒ素(G
aAs)半導体のようにいわゆる液体封止弓上げ(LE
C)法を用いて単結晶を成長させる場合は、焼結によっ
て作製された窒化ホウ素るつぼが用いられる。
[Prior Art] Crucibles are often used as containers for melting raw materials during the production of semiconductor single crystals, and quartz (S02) crucibles are well known, but when producing compound semiconductor crystals, heat-resistant and chemical-resistant crucibles are required. Boron nitride (BN) has excellent properties and moldability.
) A crucible is used. In particular, boron nitride crucibles made by so-called vapor phase growth using ammonia gas and boron chloride or ammonia gas and boron fluoride,
P B N (Pyrotytic Boron N1
It is called a tridel crucible and is widely used as a crucible for crystal growth of compound semiconductors. This PBN crucible is also used for thin film growth by the molecular beam epitaxial (MBE) method, for example, gallium arsenide (G
aAs) Semiconductor-like so-called liquid sealed arch
When growing a single crystal using method C), a boron nitride crucible made by sintering is used.

尚、PBNるつぼに代るものとしてはチツ化アルミニウ
ムるつぼや炭化ケイ素るつぼ等が考えられているが、純
度や成型性の点で劣るため現状ではPBNるつぼが最適
のるつぼとして用いられている。
Note that aluminum titanium crucibles, silicon carbide crucibles, and the like are being considered as alternatives to PBN crucibles, but PBN crucibles are currently used as the optimal crucibles because they are inferior in terms of purity and moldability.

[発明が解決しようとする課題] 上述したようにPBNるつぼは化合物半導体の単結晶を
製造する場合に高純度の単結晶が19られるため広く用
いられているが、最大の課題となるのは寿命の点である
[Problems to be Solved by the Invention] As mentioned above, PBN crucibles are widely used to produce single crystals of compound semiconductors because they produce high-purity single crystals, but the biggest problem is the lifespan. This is the point.

第1図はLEC法による単結晶製造装置を示すもので1
がPBNるつぼ、2は例えばGaASの融液、3は液体
封止剤の酸化ホウ素(B203)、4はGaAs結晶、
5は種結晶、6はヒータである。
Figure 1 shows a single crystal manufacturing apparatus using the LEC method.
is a PBN crucible, 2 is a melt of GaAS, 3 is boron oxide (B203) as a liquid sealant, 4 is a GaAs crystal,
5 is a seed crystal, and 6 is a heater.

LEC法の場合は結晶の成長が進むにつれて封止剤3が
ろつぼ1の内壁に強固に付着していわゆる共割れの現象
が生じ、るつぼ1の内壁が剥離して甚だしい場合はるつ
ぼ1が完全に破損する現象が発生する。例えすぐには破
損しなくとも使用の都度るつぼ内壁の剥離が進行し、結
局は破損に至ることになる。
In the case of the LEC method, as the crystal growth progresses, the sealant 3 firmly adheres to the inner wall of the crucible 1, causing a so-called co-crackling phenomenon, which causes the inner wall of the crucible 1 to peel off, and in severe cases, the crucible 1 to be completely damaged. A phenomenon of damage occurs. Even if the crucible does not break immediately, the inner wall of the crucible will continue to peel off each time it is used, eventually leading to breakage.

剥離の程度が比較的均一で肉厚が急激に減少しない場合
は比較的寿命の良いるつぼが1.9られることもあるが
、剥離現象はランダムに生ずるものであるからこれによ
って長寿命化を期待することはできない。この場合、予
めるつぼの肉厚を厚くしておくことも考えられるが、こ
れはコスト高になる反面初期稼動時に却ってylれ易い
現象が生じ不利である。
If the degree of peeling is relatively uniform and the wall thickness does not decrease rapidly, a crucible with a relatively long life may be obtained, but since the peeling phenomenon occurs randomly, this is expected to extend the life of the crucible. I can't. In this case, it is conceivable to increase the wall thickness of the pot in advance, but this increases the cost, but is also disadvantageous because it causes a phenomenon that it is more likely to collapse during initial operation.

前述したようにPBNるつぼは気相成長法によって作製
されるが気相成長法は過度性が低いので作製されたるつ
ぼは高価となるが、この高価なるつぼが短寿命では経済
的に極めて不利である。
As mentioned above, PBN crucibles are manufactured by the vapor phase growth method, but since the vapor phase growth method has low transient properties, the manufactured crucibles are expensive, but if this expensive crucible has a short lifespan, it is economically disadvantageous. be.

本発明の目的は、寿命を大幅に延長する窒化ホウ素るつ
ぼを提供することにある。
It is an object of the present invention to provide a boron nitride crucible that has a significantly extended service life.

[課題を解決するための手段] 本発明は、化合物半導体の単結晶を成長させる場合、原
料の収納、融解に用いる窒化ホウ素るつぼを、密度が夫
々異なる窒化ホウ素の薄膜を多層にWi層して構成した
ことを特徴とし、隣り合う各薄膜層の密度差が0.10
/Cat以上、又積層薄膜全体の平均密度が1.20/
C/lI”以上3.5CI/CfR3未満、各層の厚さ
が75μm以下であることを他の特徴とするもので、膜
の剥離が均一となり、長寿命のるつぼが得られるように
して目的の達成を計・つている。
[Means for Solving the Problems] The present invention, when growing a single crystal of a compound semiconductor, uses a boron nitride crucible used for storing and melting raw materials as a multi-layered Wi layer of boron nitride thin films each having a different density. The difference in density between adjacent thin film layers is 0.10.
/Cat or higher, and the average density of the entire laminated thin film is 1.20/
The other characteristics are that the thickness of each layer is 75 μm or less, and the thickness of each layer is 75 μm or less, so that the film can be peeled off uniformly and a long-life crucible can be obtained. I am planning to achieve this.

[作用] 窒化ホウ素るつぼは作製時の条件によって構造が微妙に
異なり各部の密度に差が生ずるので、本発明の窒化ホウ
素るつぼではるつぼを作製する場合、窒化ホウ素の薄膜
を集積させて多層薄膜とし、隣り合う各薄膜層の密度差
が0.10/cm3以上、全体の平均密度が1.20/
Ca+3以上3.5にl/cm3未満、各層の厚さが7
5μm以下となるようにし、使用時の各層が均一に剥離
されるようにしであるので、長期使用時にもるつぼの肉
厚を各部とも均一に保つことが可能となり長′R命化を
達成することができる。
[Function] A boron nitride crucible has a slightly different structure depending on the manufacturing conditions, and the density of each part varies. Therefore, when manufacturing a crucible using the boron nitride crucible of the present invention, thin films of boron nitride are accumulated to form a multilayer thin film. , the density difference between adjacent thin film layers is 0.10/cm3 or more, and the overall average density is 1.20/cm3 or more.
Ca+3 or more and 3.5 and less than l/cm3, thickness of each layer is 7
Since the thickness is set to 5 μm or less, and each layer is peeled off uniformly during use, it is possible to maintain the thickness of the crucible uniformly in each part even during long-term use, achieving a long life. I can do it.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1表に参考例、実施例及び比較例をまとめて示す。表
中における各層の密度とは二重の密度の屑を重ねたこと
を表わす。又寿命は内径150mm、高さ140mm、
肉厚1 mtnのるつぼにG a A 56 R9と酸
化ホウ素I Kgを入れてLEC法を用いてGaAs結
晶を作製した場合、この製造プロセスを繰返し行って、
るつぼが使用不能となるまでの使用回数で表わしである
Reference Examples, Examples, and Comparative Examples are collectively shown in Table 1. The density of each layer in the table indicates that layers of double density are layered. Also, the service life is 150mm in inner diameter, 140mm in height,
When a GaAs crystal is produced using the LEC method by placing Ga A 56 R9 and I kg of boron oxide in a crucible with a wall thickness of 1 mtn, this manufacturing process is repeated,
It is expressed as the number of times the crucible is used until it becomes unusable.

第1表で参考例として示したものは従来より市販されて
いるるつぼのデータを示すもので、このるつぼは多層で
はないから層数は0で示した。このるつぼの場合は寿命
は9回であった。これに対し本発明によるるつぼの場合
は実施例1〜5に示すように寿命が大幅に改善されてお
り、特に実施例5の場合は寿命は30回で格段に改善さ
れていることが認められる。
The reference examples shown in Table 1 show data for conventionally commercially available crucibles, and since this crucible is not multi-layered, the number of layers is shown as 0. The lifespan of this crucible was 9 cycles. On the other hand, in the case of the crucible according to the present invention, the life is significantly improved as shown in Examples 1 to 5, and in the case of Example 5 in particular, it is recognized that the life is significantly improved at 30 times. .

次に、比較例1,2に示すように一層の厚さが75μm
より厚い場合は、寿命は改善されないので一層の厚さを
75μm以下とすることが必要である。
Next, as shown in Comparative Examples 1 and 2, the thickness of one layer was 75 μm.
If it is thicker, the life will not be improved, so it is necessary to keep the thickness of each layer to 75 μm or less.

又、比較例3.4に示すように各層の密度差が0.1g
/cjI3より低い場合は寿命は改善されない。
Also, as shown in Comparative Example 3.4, the density difference between each layer was 0.1 g.
If it is lower than /cjI3, the life will not be improved.

又、比較例5に示すように平均密度が1.2g/c!R
3より低い場合比較例6,7に示すように3.5Q/c
ttr3より大きい場合も又寿命は改善されないことが
判る。
Also, as shown in Comparative Example 5, the average density is 1.2 g/c! R
When lower than 3.5Q/c as shown in Comparative Examples 6 and 7
It can also be seen that when ttr is larger than 3, the life is not improved.

このようにこのるつぼの場合は、各層に対し膜厚は75
μm以上、密度差は0.10/cm”以上、平均密度は
1.2q/cm  〜3.5Q/cm3とすることが必
要となる。
In this way, for this crucible, the film thickness is 75 mm for each layer.
μm or more, the density difference must be 0.10/cm” or more, and the average density must be 1.2 q/cm 2 to 3.5 Q/cm 3 .

尚、るつぼを作製する場合、最内層の密度を1.2Q/
cm3に定め、各層の厚さ1μm毎に0、110/c5
+”づつ密度を増加させて最外層の21層目の密度が3
.4Q/cm、平均密度が2.30/cm”となるよう
にしてテストした結果、寿命は20回で上記実施例の場
合と同様良好な結果が得られた。
In addition, when producing a crucible, the density of the innermost layer is 1.2Q/
cm3, and 0,110/c5 for each 1 μm thickness of each layer.
The density of the 21st layer, which is the outermost layer, is 3.
.. As a result of testing at 4Q/cm and an average density of 2.30/cm'', the life span was 20 times, and good results were obtained as in the above example.

[発明の効果1 以上述べたように本実施例によれば次のような効果が得
られる。
[Effects of the Invention 1 As described above, according to this embodiment, the following effects can be obtained.

(1)高価なるつぼの寿命を延長して繰返し使用するこ
とができるので経済的効果が極めて大きい。
(1) Since the life of an expensive crucible can be extended and used repeatedly, the economical effect is extremely large.

るつぼのrf命延長により単結晶、従ってウェハ及び素
子のコスト低下を実現することができる。
Extending the RF life of the crucible allows lower costs of single crystals and therefore wafers and devices.

【図面の簡単な説明】[Brief explanation of the drawing]

(2) 第1図はLEC法を用いるGaAs単結晶製造装置の説
明図である。 : PBNるつぼ、 ;融液、 :B2o3、 :GaAS単結晶。
(2) FIG. 1 is an explanatory diagram of a GaAs single crystal manufacturing apparatus using the LEC method. : PBN crucible, : melt, : B2o3, : GaAS single crystal.

Claims (1)

【特許請求の範囲】 1、半導体の結晶成長に際し、該半導体を構成する原料
を収納するための窒化ホウ素るつぼにおいて、該るつぼ
は、密度が夫々異なる窒化ホウ素の薄膜を多層に積層さ
せてなる構造を有することを特徴とする窒化ホウ素るつ
ぼ。 2、前記窒化ホウ素薄膜層の各隣りあう層の密度の差は
0.1g/cm^3以上である特許請求の範囲第1項記
載の窒化ホウ素るつぼ。 3、前記るつぼを構成する前記窒化ホウ素の薄膜層全体
の平均密度は1.2g/cm^3以上3.5g/cm^
3未満である特許請求の範囲第1項若しくは第2項記載
の窒化ホウ素るつぼ。 4、前記窒化ホウ素薄膜層の各層の厚さが75μm以下
である特許請求の範囲第1項乃至第3項記載の窒化ホウ
素るつぼ。
[Claims] 1. In a boron nitride crucible for storing raw materials constituting a semiconductor during crystal growth of the semiconductor, the crucible has a structure in which thin films of boron nitride with different densities are laminated in multiple layers. A boron nitride crucible characterized by having: 2. The boron nitride crucible according to claim 1, wherein the difference in density between adjacent layers of the boron nitride thin film layer is 0.1 g/cm^3 or more. 3. The average density of the entire thin film layer of boron nitride constituting the crucible is 1.2 g/cm^3 or more and 3.5 g/cm^
The boron nitride crucible according to claim 1 or 2, wherein the boron nitride crucible is less than 3. 4. The boron nitride crucible according to claims 1 to 3, wherein each layer of the boron nitride thin film layer has a thickness of 75 μm or less.
JP14280489A 1989-06-05 1989-06-05 Boron nitride crucible Pending JPH038792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14280489A JPH038792A (en) 1989-06-05 1989-06-05 Boron nitride crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14280489A JPH038792A (en) 1989-06-05 1989-06-05 Boron nitride crucible

Publications (1)

Publication Number Publication Date
JPH038792A true JPH038792A (en) 1991-01-16

Family

ID=15324025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14280489A Pending JPH038792A (en) 1989-06-05 1989-06-05 Boron nitride crucible

Country Status (1)

Country Link
JP (1) JPH038792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356674A (en) * 1989-07-21 1991-03-12 Shin Etsu Chem Co Ltd Vessel consisting of thermally decomposed boron nitride
EP1260357A3 (en) * 2001-05-24 2004-03-03 Advanced Ceramics Corporation Pyrolytic boron nitride crucible and method
JP2016028831A (en) * 2014-07-14 2016-03-03 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356674A (en) * 1989-07-21 1991-03-12 Shin Etsu Chem Co Ltd Vessel consisting of thermally decomposed boron nitride
JPH083144B2 (en) * 1989-07-21 1996-01-17 信越化学工業株式会社 Pyrolysis boron nitride container
EP1260357A3 (en) * 2001-05-24 2004-03-03 Advanced Ceramics Corporation Pyrolytic boron nitride crucible and method
JP2016028831A (en) * 2014-07-14 2016-03-03 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL

Similar Documents

Publication Publication Date Title
US9337024B2 (en) Methods and structures for preparing single crystal silicon wafers for use as substrates for epitaxial growth of crack-free gallium nitride FILMS and devices
US4773852A (en) Pyrolytic boron nitride crucible and method for producing the same
JP5517123B2 (en) Aluminum nitride single crystal and method and apparatus for manufacturing the same
JPH038792A (en) Boron nitride crucible
JP2010163288A (en) Method for producing group iii metal nitride single crystal and template substrate
WO2006011361A1 (en) Iii group nitride single crystal and method for preparation thereof, and semiconductor device
JPH10189452A (en) Thermal decomposition boron nitride crucible for electric beam epitaxy
EP0457444B1 (en) Boat of boron nitride and its production
US5182149A (en) Boron nitride boat and process for producing it
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JPH1112100A (en) Single crystal sic and its production
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
US11035055B2 (en) Group 13 nitride layer, composite substrate, and functional element
JP2006103997A (en) Method for manufacturing semiconductor crystal
JP4817099B2 (en) Carbide single crystal and manufacturing method thereof
JPH0784357B2 (en) Boron nitride coated crucible
RU2267565C2 (en) Substrate for growing epitaxial layers of gallium arsenide
JP2007091492A (en) Method for growing diboride single crystal
JP3193440B2 (en) Method for producing I-III-VI group 2 semiconductor single crystal
JP2588540B2 (en) Pyrolytic boron nitride container
JPS61168589A (en) Crucible for producing compound semiconductor
JPS6321278A (en) Ampule for growing single crystal
JPS61236685A (en) Crucible for growing compound semiconductor
JPH0432561A (en) Heat resistant vessel made of thermally decomposed boron nitride
JP2000044391A (en) Single crystal material and its production and substrate for film formation and electronic device using the same