JPS6321278A - Ampule for growing single crystal - Google Patents

Ampule for growing single crystal

Info

Publication number
JPS6321278A
JPS6321278A JP16199486A JP16199486A JPS6321278A JP S6321278 A JPS6321278 A JP S6321278A JP 16199486 A JP16199486 A JP 16199486A JP 16199486 A JP16199486 A JP 16199486A JP S6321278 A JPS6321278 A JP S6321278A
Authority
JP
Japan
Prior art keywords
inner tube
single crystal
pbn
ampoule
ampule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16199486A
Other languages
Japanese (ja)
Inventor
Kazuto Hirata
和人 平田
Osamu Oda
修 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16199486A priority Critical patent/JPS6321278A/en
Publication of JPS6321278A publication Critical patent/JPS6321278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain an ampule for growing single crystal wherein the growth of a high-quality compound semiconductor is easy by constituting the titled ampule of a double structure of an outer tube and an inner tube and making the inner tube to a crucible shape made of pBN. CONSTITUTION:The titled ampule is constituted of a double structure of an outer tube and an inner tube and this inner tube is made to a crucible shape made of pBN. The above-mentioned pBN in boron nitride produced by a chemical vapor growing method and for example, it is a high-purity material synthesized by allowing gaseous boron chloride to chemically react with gaseous ammonia at high temp. pBN is not rigid like high-purity quartz and shows proper flexibility. Further it is not closely stuck or fused for a compound semiconductor material especially for CdTe from a point of wettability. Therefore at a time for growing single crystal or cooling it, oppressing force is not applied by the crucible made of pBN for the single crystal material incorporated therein.

Description

【発明の詳細な説明】 本発明は、化合物半導体単結晶成長用のアンプルに関す
るものであり、特には転位エッチピット密度の低い高品
質の化合物半導体単結晶を製造するべく構造及び材質面
から検討を加えたアンプルに関する。本発明アンプルは
、特にCdTe。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ampoule for growing compound semiconductor single crystals, and in particular, in order to manufacture high-quality compound semiconductor single crystals with a low density of dislocation etch pits, studies have been made in terms of structure and material. Regarding added ampoules. The ampoule of the invention is particularly made of CdTe.

HgCdTe等の■−■族化合物半導体及びQ a A
 85InP等の■−■族化合物半導体の単結晶成長に
好適であるが、その他にも金埴、ハロゲン化物、圧電累
子や電気光学結晶の作成に用いられる強誘電性物質、フ
ェライト等を含めて無機材料の単結晶或いは肥大結晶粒
を製造するのにも用いることが出来る。
■-■ group compound semiconductors such as HgCdTe and Q a A
Suitable for single crystal growth of ■-■ group compound semiconductors such as 85InP, but also includes gold clay, halides, ferroelectric substances used for making piezoelectric crystals and electro-optic crystals, ferrites, etc. It can also be used to produce single crystals or enlarged grains of inorganic materials.

発明の背景 上記のよう力比合物半導体の単結晶成長の為の方法とし
て、垂直ブリッジマン法か知られている。
BACKGROUND OF THE INVENTION As described above, the vertical Bridgman method is known as a method for growing single crystals of compound semiconductors.

この方法では、原料を容器中に収納し、ある適当な温度
勾配をもった電気炉内で原料を溶解し、容器と炉を相対
的に垂直方向に移動して徐々に温度を下げることにより
原料融液の同化及び単結晶化が行われる。容器としては
、丸!料の酢化等による汚染や易蒸発性成分の揮化損失
を防止する為に原料を真窒封入するアンプルが多く用い
られる。
In this method, raw materials are stored in a container, melted in an electric furnace with an appropriate temperature gradient, and the temperature of the raw materials is gradually lowered by moving the container and furnace in a relative vertical direction. Assimilation and single crystallization of the melt takes place. As a container, it is round! In order to prevent contamination due to acetylation of the raw material and volatilization loss of easily evaporable components, ampules in which the raw material is sealed with true nitrogen are often used.

従来技術とその問題点 従来、結晶成長用アンプル材料としては、高純度石英が
一般に使用されていた。しかしながら、石英製アングル
は、単結晶材料に対して、特にCdTeに対して隅い転
位密度のものを生成しやすく、生成単結晶の品ガ低下を
招きやすいことがし識されるようになった。これと関連
して、生成単結晶のアンプルからの抜出し性が悪く、ア
ンプルを破壊しなげれば生成単結晶が取出しえない状況
もしばしば発生した。石英製アンプルは、その封着性等
の観点から、それに代替しうるものが見出せず、こうし
た欠点にもかかわらず使用されているのが現状である。
Prior Art and its Problems Conventionally, high purity quartz has generally been used as an ampoule material for crystal growth. However, it has been recognized that quartz angles tend to produce corner dislocation densities in single crystal materials, especially in CdTe, which tends to lead to a decline in the quality of the produced single crystals. . In connection with this, the ease with which the produced single crystal can be extracted from the ampoule is poor, and a situation has often arisen in which the produced single crystal cannot be extracted without breaking the ampoule. Quartz ampules have not been found to be able to replace them from the viewpoint of their sealing properties, and are currently used despite these drawbacks.

生成単結晶と石英とのゆ着を避けるために、あるいは石
英からの汚染を避けるために石英アンプルの内面にカー
ボンコーティングを施すこと等の方法も用いられたが、
実効性は々かった。
Methods such as applying a carbon coating to the inner surface of the quartz ampoule have been used to avoid adhesion between the single crystal produced and the quartz, or to avoid contamination from the quartz.
It was highly effective.

発明の概要 上記欠点の根本的原因は、石英の材質上単結晶の成長時
或いは冷却時に単結晶に応力がかかり、転位の発生を誘
発したことによるものと思われる。
SUMMARY OF THE INVENTION The fundamental cause of the above drawbacks is thought to be that stress is applied to the single crystal during growth or cooling due to the quartz material, which induces the generation of dislocations.

また、多くの材料に対して、殊にCdTeに対して、石
英はぬれ性が良く、そのため前述したようなゆ着を生じ
やすかった。そこで、本発明者等は、こうした欠点を解
消するぺ〈アンプルの構造と材質面から検討を重ねた。
In addition, quartz has good wettability with many materials, especially CdTe, and therefore tends to cause sagging as described above. Therefore, the present inventors have repeatedly investigated the structure and material of the ampule to eliminate these drawbacks.

その結果、 (1)アンプルの構造を外管と内管とから成る二重構造
とすること、及び (2)内管をPBN製ルツルツボることによって上記欠
点が根本的に解消しうるとの知見を得た。pBN製るつ
ほは石英に較べて可撓性がある、即ち石英程制性でない
ため、変形し7やすくその内部で成長した単結晶に対し
て圧迫力を行使し力い。更に、特にCdTeに対しては
ぬれ性の点からCdTeに密着せず、単結晶の抜出しが
容易である。
As a result, it was discovered that the above drawbacks could be fundamentally solved by (1) making the ampoule a double structure consisting of an outer tube and an inner tube, and (2) making the inner tube a crucible made of PBN. I got it. Since the pBN rutsuho is more flexible than quartz, that is, it is not as rigid as quartz, it easily deforms and exerts a compressive force on the single crystal grown inside it. Furthermore, especially with respect to CdTe, it does not adhere closely to CdTe from the viewpoint of wettability, and the single crystal can be extracted easily.

こうして、アンプルを二重構造とし、外管と内管との構
造及び(或いは)材質を別々に選択することを可能なら
しめることにより、内管はもっばら成長単結晶に対する
応力の緩和、密着性の緩和、非汚染性等の観点からその
材質と構造を選定しそして外管は封着性その他の一般的
考慮事項からその材質と構造を選定することができるの
である。
In this way, by making the ampoule a double structure and making it possible to select the structure and/or material of the outer tube and inner tube separately, the inner tube can be used to relax stress and improve adhesion to the growing single crystal. The material and structure of the outer tube can be selected from the viewpoints of mitigation of pollution, non-contamination, etc., and the material and structure of the outer tube can be selected from the viewpoint of sealability and other general considerations.

斯くして、本発明は、外管と内管との二重構造を有しそ
して該内管をpBN製ルツルツボ形態たことを特徴とす
る単結晶成長用アンプルを提供する。
Thus, the present invention provides an ampoule for single crystal growth, which has a dual structure of an outer tube and an inner tube, and the inner tube is in the form of a pBN crucible.

垂直ブリッジマン法においては、第2図に示すように、
所定の温度勾配を有する電気炉において原料融液を収納
するアンプルと炉との相対的垂直移動を与えることによ
り融液を固化し、単結晶化がもたらされる。垂直ブリッ
ジマン法においてはアンプルが降下される。
In the vertical Bridgman method, as shown in Figure 2,
In an electric furnace having a predetermined temperature gradient, the ampoule containing the raw material melt and the furnace are given relative vertical movement to solidify the melt, resulting in single crystallization. In the vertical Bridgman method, the ampoule is lowered.

本発明は、こうした単結晶成長法においてm−るに好適
なアンプルを提供する。第1(a)図は、本発明アンプ
ルの具体例を示す。アンプルは、外管1と内管2とから
構成される二重構造を有し、そして内管2はpBN製ル
ツルツボ態を有する。結晶成長させるべき単結晶材料は
内管2内に目標組成に合うよう秤量して収納され、外管
1の上端はアンプル内部を真空排気した後適宜の手段に
より封止される。
The present invention provides an ampoule most suitable for such a single crystal growth method. FIG. 1(a) shows a specific example of the ampoule of the present invention. The ampoule has a double structure consisting of an outer tube 1 and an inner tube 2, and the inner tube 2 has a pBN crucible shape. A single crystal material to be grown is weighed and stored in the inner tube 2 to match the target composition, and the upper end of the outer tube 1 is sealed by appropriate means after the inside of the ampoule is evacuated.

pBNは、化学的気相成長法によるチツ化ホウ素であり
、例えば塩化ホウ素ガスとアンモニアガスを高温下で化
学反応させることにより合成される高純度材料である。
pBN is boron nitride produced by chemical vapor deposition, and is a high-purity material synthesized by, for example, chemically reacting boron chloride gas and ammonia gas at high temperatures.

pBNは従来からの一般的アンプル材である高純度石英
のように剛性でなく、適度の可撓性を示す。また、化合
物半導体材料に対して、特にCdTeに対してぬれ性の
点から密着或いはゆ着しない。従って、単結晶成長時あ
るいは冷却時、pBN製ルツルツボその内部の単結晶材
料に対して圧迫力を行使しない。従来石英材料の場合、
その剛性のゆえに内部単結晶に対して周囲から圧締する
結果を招き、それ故多くの転位を誘発したのに対し、p
BN製ルツルツボの適度の可撓性のゆえに変形可能であ
り、単結晶材料の状態に応じてそれを圧締しないよう外
方に僅かに変形しうる。これによって、単結晶の応力を
緩和する。
pBN is not rigid like high-purity quartz, which is a conventional common ampoule material, and exhibits appropriate flexibility. Furthermore, it does not adhere or adhere to compound semiconductor materials, particularly CdTe, from the viewpoint of wettability. Therefore, no compressive force is applied to the single crystal material inside the pBN crucible during single crystal growth or cooling. In the case of conventional quartz materials,
Because of its rigidity, it caused pressure on the internal single crystal from the surroundings, thus inducing many dislocations, whereas p
Due to the moderate flexibility of the BN crucible, it is deformable and depending on the state of the single crystal material it can be slightly deformed outwards so as not to compress it. This relieves the stress in the single crystal.

第1(b)〜(d)図は、更に一層の応力緩和及び抜出
し容易性を促進するだめの変更例を示す。
Figures 1(b)-(d) illustrate modifications to the barrel that further promote stress relief and ease of extraction.

第1(b)図では、内管のpBNuルツボがその01+
1壁部と底部との接合部においてアールRをつけられて
いる。これによりpBNルツボの可撓性が向上しうる。
In Figure 1(b), the pBNu crucible in the inner tube is
1. A radius is formed at the joint between the wall and the bottom. This may improve the flexibility of the pBN crucible.

第1(c)図では、内管のpBN製ルツルツボ部全体に
アールRがつけられている。この構造もpBNルツボの
可撓性の向上に効果的である。
In FIG. 1(c), the entire pBN crucible portion of the inner tube is rounded. This structure is also effective in improving the flexibility of the pBN crucible.

第1(d)図は、pBN製ルツルツボ部から開口部に向
って拡大するテーパTをつけられている構造例を示す。
FIG. 1(d) shows an example of a structure in which a taper T is provided that widens from the pBN crucible toward the opening.

これは第1(b)及び(c)図面方に適用しうる。これ
により単結晶の応力緩和と抜出しが一層増進される。
This is applicable to the first (b) and (c) drawings. This further enhances stress relaxation and extraction of the single crystal.

pBNvVルツボの肉厚は約1鉗乃至それ以下とするこ
とが好ましい。
Preferably, the wall thickness of the pBNvV crucible is about 1 inch or less.

外管は、石英、パイレックスガラス、ガラス等封着性、
強度、価格等アンプルの一般的配慮事項に基いて任意の
材料から作成しうる。
The outer tube is made of quartz, Pyrex glass, glass, etc. with sealing properties.
It can be made from any material based on general ampoule considerations such as strength, cost, etc.

こうしてアンプルを二″M′格造とすることにより、外
管と内管とがその構造及び材質について選択の自由度が
大きく々す、それぞれの作用目的別に自由に構造及び材
質を選定しうろことを可能々らしめたことが本発明の特
徴である。更に、外管と内管との間に存在する真空ギャ
ップは、アンプル外側の温度変動がアンプル内管内部に
及ぶのを最小限に防止し、亜粒界の々い良質の単結晶の
成長を増進しうる点でも有効である。また、万一熱膨張
差により内管が破裂しても外管が単結晶と外気との接触
を防止する。但し、こうした破裂事故は、本発明に従い
激減しうる。
In this way, by making the ampoule a 2"M' structure, there is a great degree of freedom in selecting the structure and material of the outer tube and inner tube. The structure and material can be freely selected depending on the purpose of each function. It is a feature of the present invention that the vacuum gap existing between the outer tube and the inner tube minimizes the influence of temperature fluctuations on the outside of the ampoule into the inside of the inner tube of the ampoule. However, it is also effective in promoting the growth of high-quality single crystals with close subgrain boundaries.Also, even if the inner tube ruptures due to the difference in thermal expansion, the outer tube will prevent the single crystal from coming into contact with the outside air. However, such rupture accidents can be drastically reduced according to the present invention.

発明の効果 1 アンプルを二重構造とし、pBNルツボ内管の使用
により生成単結晶の転位誘発を防止しそして抜出しを容
易とする。
Effects of the Invention 1 The ampoule has a double structure and the use of a pBN crucible inner tube prevents the induction of dislocation in the produced single crystal and facilitates extraction.

2、単結晶への汚染を防止しうる。2. Contamination of the single crystal can be prevented.

& 内管及び外管の構造を自由に設計できるので、単結
晶の品質及び作業性の観点から最適のアンプルを作成し
うる。
& Since the structure of the inner tube and outer tube can be freely designed, it is possible to create the optimal ampoule from the viewpoint of single crystal quality and workability.

4、 内管と外管との間の真空ギャップの存在により、
結晶成長中アンプルの外壁の温厚変動が生成単結晶に与
える影響が最小限とカリ、外壁での結晶核の発生が抑制
され、亜粒界の少々い高品質単結晶を生成しうる。
4. Due to the existence of a vacuum gap between the inner tube and the outer tube,
During crystal growth, variations in the temperature and thickness of the outer wall of the ampoule have minimal influence on the produced single crystal, and the generation of crystal nuclei on the outer wall is suppressed, making it possible to produce high-quality single crystals with few sub-grain boundaries.

5 以上の点から、特にきわめて茜品質の化合物半導体
の成長が容易となる。
5. From the above points, it is particularly easy to grow compound semiconductors of extremely madder quality.

実施例 CdTe結晶を用いて、本発明アンプルの効果を確認し
た。結晶成長には、第2図に示したような二段炉を用い
、上段炉を1150℃にそして下段炉を800℃と設定
し7、アンプルとしては第1(d)図に示した構造のも
のを用いた。結晶成長法としては、ブリッジマンについ
て検討した。結晶成長条件は次の通りとしまた: アンプル降下速度   1 mm / h r温度勾配
       3℃/ぼ アンプル内径     2wσ 比較目的のため、従来からの石英製アンプルを用いて同
条件で結晶成長を行った。
Example The effect of the ampoule of the present invention was confirmed using a CdTe crystal. For crystal growth, a two-stage furnace as shown in Figure 2 was used, with the upper stage set at 1150°C and the lower stage set at 800°C7, and an ampoule with the structure shown in Figure 1(d) was used. I used something. Bridgman was considered as a crystal growth method. The crystal growth conditions were as follows: Ampoule lowering speed: 1 mm/hr Temperature gradient: 3°C/Ampoule inner diameter: 2wσ For comparison purposes, crystal growth was performed under the same conditions using a conventional quartz ampoule.

生成単結晶に対し、Naka gawaエッチャントを
使用しエッチビット密度及びその分布状況を調べた。そ
の結果、石英製アンプルでは作成されたCdTe単結晶
のエッチビットがセル状に分布し7、エッチピット密度
もlX10’〜3X10@[:crrL−”)であった
。しかしガから、pBN製アファンプルいると、エッチ
ピットは均一に分布し、かつ、ビット恒産も、lX10
’〜5X10’(CIrL−”)とカリ、高品質なCd
Te単結晶が得られた。
The etch bit density and its distribution were investigated for the produced single crystal using Nakagawa etchant. As a result, the etch bits of the CdTe single crystal produced in the quartz ampoule were distributed in a cell-like manner7, and the etch pit density was lX10' to 3X10@[:crrL-''). With this, the etch pits are uniformly distributed and the bit constant is 1X10.
'~5X10'(CIrL-'') and potash, high quality Cd
A Te single crystal was obtained.

第1(a)、1(b)、1(c)及び1(d)図は本発
明に従うアンプルの具体例を示し、そして第2図は実施
例で使用した結晶成長装置の断面及びその温度分布を示
す。
Figures 1(a), 1(b), 1(c) and 1(d) show specific examples of ampules according to the invention, and Figure 2 shows the cross section of the crystal growth apparatus used in the examples and its temperature. Show the distribution.

1 : 外管 2 : 内管 R: アール T : テーパ 第1(q)図1: Outer tube 2: Inner tube R: Earl T: Taper Figure 1 (q)

Claims (1)

【特許請求の範囲】 1)外管と内管との二重構造を有しそして該内管をpB
N製ルツボ形態としたことを特徴とする単結晶成長用ア
ンプル。 2)内管のpBN製ルツボがその側壁部と底部との接合
部においてアールをつけられている特許請求の範囲第1
項記載のアンプル。 3)内管のpBN製ルツボの底部全体にアールがつけら
れている特許請求の範囲第1項記載のアンプル。 4)内管のpBN製ルツボが底部から開口部に向つて拡
大するテーパをつけられている特許請求の範囲第1〜3
項のうちのいずれか一項記載のアンプル。 5)外管が石英、パイレックスガラス、ガラス等から作
製される特許請求の範囲第1項〜4項のうちのいずれか
一項記載のアンプル。 6)II−VI族及びIII−V族化合物半導体単結晶の成長
のための特許請求の範囲第1〜5項のうちのいずれか一
項記載のアンプル。 7)CdTe単結晶成長のための特許請求の範囲第6項
記載のアンプル。
[Claims] 1) It has a double structure of an outer tube and an inner tube, and the inner tube has a pB
An ampoule for single crystal growth characterized by being in the form of a crucible made of N. 2) Claim 1, in which the pBN crucible of the inner tube is rounded at the joint between its side wall and bottom.
Ampoule as described in section. 3) The ampoule according to claim 1, wherein the entire bottom of the inner tube of the pBN crucible is rounded. 4) Claims 1 to 3 in which the pBN crucible of the inner tube is tapered to expand from the bottom toward the opening.
An ampoule as described in any one of the following paragraphs. 5) The ampoule according to any one of claims 1 to 4, wherein the outer tube is made of quartz, Pyrex glass, glass, or the like. 6) An ampoule according to any one of claims 1 to 5 for growing II-VI group and III-V compound semiconductor single crystals. 7) An ampoule according to claim 6 for growing a CdTe single crystal.
JP16199486A 1986-07-11 1986-07-11 Ampule for growing single crystal Pending JPS6321278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16199486A JPS6321278A (en) 1986-07-11 1986-07-11 Ampule for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16199486A JPS6321278A (en) 1986-07-11 1986-07-11 Ampule for growing single crystal

Publications (1)

Publication Number Publication Date
JPS6321278A true JPS6321278A (en) 1988-01-28

Family

ID=15746014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16199486A Pending JPS6321278A (en) 1986-07-11 1986-07-11 Ampule for growing single crystal

Country Status (1)

Country Link
JP (1) JPS6321278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046193A (en) * 1990-04-21 1992-01-10 Toru Katsumata Method for growing single crystal of oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091608A (en) * 1973-12-19 1975-07-22
JPS598690A (en) * 1982-07-05 1984-01-17 Hitachi Cable Ltd Preparation of gaas single crystal
JPS5914440A (en) * 1982-07-09 1984-01-25 Hitachi Seiki Co Ltd Automatic tool changer (atc)
JPS61281095A (en) * 1985-06-06 1986-12-11 Nippon Mining Co Ltd Ampule for crystal growth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091608A (en) * 1973-12-19 1975-07-22
JPS598690A (en) * 1982-07-05 1984-01-17 Hitachi Cable Ltd Preparation of gaas single crystal
JPS5914440A (en) * 1982-07-09 1984-01-25 Hitachi Seiki Co Ltd Automatic tool changer (atc)
JPS61281095A (en) * 1985-06-06 1986-12-11 Nippon Mining Co Ltd Ampule for crystal growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046193A (en) * 1990-04-21 1992-01-10 Toru Katsumata Method for growing single crystal of oxide

Similar Documents

Publication Publication Date Title
EP1574602B1 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JPS6321278A (en) Ampule for growing single crystal
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
Feigelson et al. Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles
GB2125706A (en) Process for growing crystalline material
JPH11147785A (en) Production of single crystal
US4559217A (en) Method for vacuum baking indium in-situ
JPH0321511B2 (en)
JP2004203721A (en) Apparatus and method for growing single crystal
JPH08133882A (en) Crucible for producing compound semiconductor
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2988434B2 (en) Method for growing II-IV compound semiconductor crystal
JPH0380180A (en) Device for producing single crystal
JPS60215597A (en) Crucible for producing crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH10139597A (en) Growth vessel for iii-v group compound semiconductor single crystal
JPH11322489A (en) Production of semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
De Sandro et al. Novel design of graphite crucible for AgGaSe2 single-crystal growth
JPH05262596A (en) Production of single crystal of lithium tetraborate
JPS6036397A (en) Apparatus for growing compound single crystal