JPS598690A - Preparation of gaas single crystal - Google Patents

Preparation of gaas single crystal

Info

Publication number
JPS598690A
JPS598690A JP11660782A JP11660782A JPS598690A JP S598690 A JPS598690 A JP S598690A JP 11660782 A JP11660782 A JP 11660782A JP 11660782 A JP11660782 A JP 11660782A JP S598690 A JPS598690 A JP S598690A
Authority
JP
Japan
Prior art keywords
boat
single crystal
gaas
gaas single
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11660782A
Other languages
Japanese (ja)
Inventor
Toshiya Toyoshima
豊島 敏也
Seiji Mizuniwa
清治 水庭
Tomoki Inada
稲田 知己
Junkichi Nakagawa
中川 順吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11660782A priority Critical patent/JPS598690A/en
Publication of JPS598690A publication Critical patent/JPS598690A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prepare a GaAs single crystal having high purity and low dislocation density, by using a boat assembly composed of an inner boat made of pyrolytic boron nitride and an outer boat made of a heat-insulating rigid material. CONSTITUTION:The inner boat 1 containing GaAs 4 is made of pyrolytic boron nitride and has a thickness of about 1mm.. The outer boat 2 supporting the inner boat 1 is made of a heat-insulating rigid material, e.g. quartz having a thickness of about 5mm.. The material 5 is a heat-insulating spacer. When 2.5kg of a GaAs single crystal is grown in the boat assembly without doping, a semiinsulating crystal having a specific resistance of 10<7>-10<8> excepting about 20mm. from the rear end of the ingot can be obtained. The dislocation density of the ingot excepting 20mm. from both ends of the ingot is about <=1X10<3>/cm<3>.

Description

【発明の詳細な説明】 本発明はGa As単結晶の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a GaAs single crystal.

■−v族化合物半導体のなかでもQa Asは3iの6
倍以上という高移動度をもつことから高速IC用材料と
して有望であり開発が活発である。
■- Among the V group compound semiconductors, Qa As is 3i 6
Because it has a high mobility of more than twice that, it is promising as a material for high-speed ICs and is being actively developed.

従来、G(JASAs単結晶転位密度結晶が得やすいこ
とから横型ボート法により製造されるのが一般的であっ
た。
Conventionally, G (JASAs) has been generally manufactured by the horizontal boat method because it is easy to obtain single crystal dislocation density crystals.

このときボートの材料としては、熱伝導率、強度等の理
由から石英が使われており、そのため石英とGaもしく
はGa ASとの反応により結晶成長過程でSiが結晶
中に混入される。
At this time, quartz is used as the material for the boat for reasons such as thermal conductivity and strength, and therefore Si is mixed into the crystal during the crystal growth process due to the reaction between quartz and Ga or Ga AS.

ところが、SiはQa As結晶中で浅いドナーレベル
を形成し、比抵抗1QIN2Ωcar程度の導電性とな
ることから、従来は深いアクセプターレベルを形成する
Crをドーピングし上記S1のレベルを補償していた。
However, since Si forms a shallow donor level in the QaAs crystal and has a conductivity of about 1QIN2Ωcar, conventionally the level of S1 was compensated for by doping with Cr, which forms a deep acceptor level. .

このように得られたCrドープ半絶縁性Qa AS基板
は、■Crの偏析により結□晶内および基板内にCr1
l!度の不均一が生じ、イオン打込等で形成された素子
間の特性が大きくばらつき、特にIC化の大きな障害と
なっている。■半絶縁性G11AS基板にイオン打込を
行なった後イオンを活性化させるため800℃程度の熱
処理を行うのが一般的であるが、Crはこの温度で拡散
するためSiのドナーレベルが現れ、基板表面から導電
性に変性し、本来の半絶縁性基板としての機能が損なわ
れる。など、GaASIC等の実現に大ぎな障害となっ
ていた。
The thus obtained Cr-doped semi-insulating Qa AS substrate has Cr1 in the crystal and substrate due to the segregation of Cr.
l! As a result, the characteristics of elements formed by ion implantation or the like vary widely, which is a major hindrance to IC implementation. ■After ion implantation into a semi-insulating G11AS substrate, it is common to perform heat treatment at around 800°C to activate the ions, but since Cr diffuses at this temperature, a Si donor level appears. The substrate surface becomes conductive, and its original function as a semi-insulating substrate is lost. This was a major obstacle to the realization of GaASIC.

このようなボート法による半絶縁性Ga AS基板の欠
点を解消するため、最近高圧引上法による半絶縁性Ga
 As *結晶の成長方法が検討されでいる。
In order to overcome the drawbacks of semi-insulating Ga AS substrates produced by the boat method, semi-insulating Ga AS substrates have recently been developed using the high-pressure pulling method.
As *crystal growth methods are being studied.

この方法は、石英以外の例えばパイロリティックボロン
ナイトライト(P−BN)性るつぼを使うことが可能で
あり、パイロリティックボロンナイトライドはGaおよ
びGaASと反応しない。
This method can use a crucible other than quartz, such as pyrolytic boron nitrite (P-BN), and pyrolytic boron nitride does not react with Ga and GaAS.

このようなるつぼを用いた直接合成にJ:る引上法であ
れば、Siのような不純物の低減ができ、Cr等のドー
ピングなしで比抵抗107Ωapt以上の半絶縁性基板
が得られる。
If the pulling method is used for direct synthesis using such a crucible, impurities such as Si can be reduced, and a semi-insulating substrate with a specific resistance of 10 7 Ωapt or more can be obtained without doping with Cr or the like.

しかし、この引−1−法によるQa As結晶は転位密
度が高く、現在の一般的技術水準では104/C#1程
度の転位密度である。
However, the Qa As crystal produced by this pull-1 method has a high dislocation density, which is about 104/C#1 at the current general technology level.

横型ボート法で製造した場合には103/ci以下であ
り、引上法による素子の特性が不十分であることは明ら
かである。
When manufactured by the horizontal boat method, it was less than 10 3 /ci, and it is clear that the characteristics of the device manufactured by the pulling method are insufficient.

以上説明したように、従来は、横型ボート法によれば熱
伝導率などの点でパイロリティックボロンナイトライト
製ボートは不適当であり、かつ石英ボートでは高純度結
晶が得られないという欠点があり、また引−FP′1i
では低転位密度の結晶が得られないという欠点があった
As explained above, conventionally, when using the horizontal boat method, boats made of pyrolytic boron nitrite are unsuitable in terms of thermal conductivity, and quartz boats have the disadvantage that high-purity crystals cannot be obtained. , also pull-FP'1i
However, the disadvantage was that crystals with low dislocation density could not be obtained.

本発明は前記した従来技術の欠点を解消し、高純度かつ
低転位密度のGaAS単結晶を得ることのできる製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of solving the above-mentioned drawbacks of the prior art and producing a GaAS single crystal with high purity and low dislocation density.

すなわち本発明の要旨は横型ボート法にJ5いて、ボー
トを二重構造とし、GaAsと接する内側ボートにはQ
a及びGa ASと反応としないパイロリティックボロ
ンナイトライド<P−BN)類ボートを用い、かつ該内
側ボートの外壁に概ね内接し、機械的補強および熱収支
のバランスの機能をもたせた断面性剛体材料の外側ボー
1〜を配置することにある。
In other words, the gist of the present invention is based on the horizontal boat method, where the boat has a double structure, and the inner boat in contact with GaAs has a Q.
A cross-sectional rigid body that uses a pyrolytic boron nitride <P-BN) type boat that does not react with a and Ga AS, and is generally inscribed in the outer wall of the inner boat, and has the functions of mechanical reinforcement and heat balance. The purpose is to arrange the outer bow 1 of the material.

パイロリティックボロンナイトライドは、Qa ASの
融点1238℃以上においても強度が優れ、かつGaA
sとは反応しない物質である。
Pyrolytic boron nitride has excellent strength even at the melting point of Qa AS of 1238°C or higher, and
s is a substance that does not react.

一般に、パイロリティックボロンナイトライトは、20
00 ’CLX−1−の高温で気相法により作成される
もので肉厚は1 mm以下程度であり、比較439柔軟
性を有している。肉厚の厚いものは製造しにくく、著し
く高価となる。このため、ボートとして使用した場合、
Qa Asの重量により変形し、単独で使用することは
麹しい。また、GaAS結晶成長においてはボートの熱
伝導率が、結晶化の界面形状に影響し、転位発生の要因
となるので、熱伝導率のよいパイロリティックボロンナ
イトライド製ボートは肉厚をある程磨厚くしても単独で
使用することができない。
Generally, pyrolytic boron nitrite is 20
00' CLX-1- is produced by a vapor phase method at a high temperature, has a wall thickness of about 1 mm or less, and has a comparative 439 flexibility. Thick walls are difficult to manufacture and are extremely expensive. Therefore, when used as a boat,
It deforms due to the weight of Qa As, and it is difficult to use it alone. In addition, during GaAS crystal growth, the thermal conductivity of the boat affects the crystallization interface shape and becomes a factor in the generation of dislocations. Even if it is thick, it cannot be used alone.

本発明の構成を、実施例を示す図面を参照して具体的に
説明する。
The configuration of the present invention will be specifically explained with reference to drawings showing embodiments.

第1図及び第2図は、ともに本発明の製造方法に用いる
vI型ボート及び反応管の例を示す断面図であり、石英
反応管3内に内外2層構造の横型ボートが配置されてい
る。
1 and 2 are cross-sectional views showing examples of a vI type boat and a reaction tube used in the manufacturing method of the present invention, in which a horizontal boat with a two-layered structure, inside and outside, is arranged inside a quartz reaction tube 3. .

Ga AS 4を収容する内側ボート1はパイロリティ
ックボロンナイトライド製であり、例えば厚さは1 m
m程度のものである。
The inner boat 1 containing the Ga AS 4 is made of pyrolytic boron nitride and has a thickness of, for example, 1 m.
It is about m.

内側ボート1を支持する外側ボート2は断熱性剛体材料
製であり、例えば厚さ5#程度の石英でできている。5
は断熱性スペーサである。
The outer boat 2 supporting the inner boat 1 is made of a heat insulating rigid material, for example, quartz with a thickness of about 5#. 5
is an insulating spacer.

このようなボートを用い、ドーピングなしで2.5に’
jのGaAS単結晶の成長を行ったところ、インゴット
後端部的20mを除き比抵抗10’〜108Ωαの半絶
縁性結晶が得られ、インゴットの前後端各20trmを
除き転位密度1×103/cd以下であった。
2.5' without doping using such a boat.
When a GaAS single crystal of j was grown, a semi-insulating crystal with a specific resistance of 10' to 108 Ωα was obtained except for the 20 m at the rear end of the ingot, and a dislocation density of 1 × 103/cd was obtained except at 20 trm at each of the front and rear ends of the ingot. It was below.

なお、ボートの変形はほとんどなく、パイロリティック
ボロンナイトライドの損傷もほとんどなかった。
There was almost no deformation of the boat, and there was almost no damage to the pyrolytic boron nitride.

以上の説明から明らかな通り、本発明の製造方法によれ
ば、Qa Asに接触する内側ボートにはパイロリティ
ックボロンライドを用いているので、crトド−ングの
必要がなく、高純度の(3a As単結晶を得るとがで
き、同時に横型ボート法であり主たる外側ボートには断
熱性剛体材料を用いているので低転位密度のGaAs単
結晶を得ることができる。
As is clear from the above explanation, according to the manufacturing method of the present invention, since pyrolytic boronide is used for the inner boat that contacts QaAs, there is no need for Cr doping and high purity (3a It is possible to obtain an As single crystal, and at the same time, since it is a horizontal boat method and a heat insulating rigid material is used for the main outer boat, a GaAs single crystal with a low dislocation density can be obtained.

このよう<Z高品質のGaAs単結晶は他のいがなる方
法によっても未だ実現されておらず、GaΔSIG、デ
バイスの発展に大きく貢献するものである。
Such a <Z high quality GaAs single crystal has not yet been achieved by any other method, and will greatly contribute to the development of GaΔSIG and devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の製造方法に用いる横型ボー
ト及び反応管の2通りの例を示す断面図である。 1:パイロリティックボロンナイトライト製内側ボート
、2:外側ボート、3:石英反応管、4:GaAS融液
、5:断熱スペーサ。 7− 第 1 図         算Z目
1 and 2 are sectional views showing two examples of a horizontal boat and a reaction tube used in the manufacturing method of the present invention. 1: Inner boat made of pyrolytic boron nitrite, 2: Outer boat, 3: Quartz reaction tube, 4: GaAS melt, 5: Heat insulating spacer. 7- Figure 1 Calculation Z

Claims (1)

【特許請求の範囲】 1 石英反応管3内に横型ボートを配置し、該横型ボー
ト内にGa As 4を収容しGa As単結晶を製造
する方法において、前記横型ボートは内外2層のボート
で構成されており、Ga As4と接触する内側ボート
1はパイロリティックボロンナイトライド製であり、外
側ボード2は断熱性剛体材料製であることを特徴とする
GaAs単結晶の製造方法。 2 外側ボート2が石英製であることを特徴とする前項
記載のGa As単結晶の製造方法。
[Claims] 1. In a method for producing a GaAs single crystal by disposing a horizontal boat in a quartz reaction tube 3 and storing GaAs 4 in the horizontal boat, the horizontal boat is a two-layered boat with an inner and outer layer. A method for producing a GaAs single crystal, characterized in that the inner board 1 in contact with GaAs is made of pyrolytic boron nitride, and the outer board 2 is made of a heat-insulating rigid material. 2. The method for producing a GaAs single crystal as described in the preceding paragraph, characterized in that the outer boat 2 is made of quartz.
JP11660782A 1982-07-05 1982-07-05 Preparation of gaas single crystal Pending JPS598690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11660782A JPS598690A (en) 1982-07-05 1982-07-05 Preparation of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11660782A JPS598690A (en) 1982-07-05 1982-07-05 Preparation of gaas single crystal

Publications (1)

Publication Number Publication Date
JPS598690A true JPS598690A (en) 1984-01-17

Family

ID=14691350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11660782A Pending JPS598690A (en) 1982-07-05 1982-07-05 Preparation of gaas single crystal

Country Status (1)

Country Link
JP (1) JPS598690A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147077U (en) * 1984-08-31 1986-03-29 日立電線株式会社 Gallium arsenide single crystal production equipment
JPS62278184A (en) * 1986-05-26 1987-12-03 Sumitomo Electric Ind Ltd Boat for crystal growth
JPS6321278A (en) * 1986-07-11 1988-01-28 Nippon Mining Co Ltd Ampule for growing single crystal
JPH01230493A (en) * 1988-03-09 1989-09-13 Nippon Mining Co Ltd Apparatus for producing iii-v compound semiconductor single crystal and apparatus therefor
EP0401387A1 (en) * 1988-12-14 1990-12-12 Mitsui Mining Company, Limited Process for producing single crystal
US4999082A (en) * 1989-09-14 1991-03-12 Akzo America Inc. Process for producing monocrystalline group II-IV or group III-V compounds and products thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147077U (en) * 1984-08-31 1986-03-29 日立電線株式会社 Gallium arsenide single crystal production equipment
JPS62278184A (en) * 1986-05-26 1987-12-03 Sumitomo Electric Ind Ltd Boat for crystal growth
JPS6321278A (en) * 1986-07-11 1988-01-28 Nippon Mining Co Ltd Ampule for growing single crystal
JPH01230493A (en) * 1988-03-09 1989-09-13 Nippon Mining Co Ltd Apparatus for producing iii-v compound semiconductor single crystal and apparatus therefor
EP0401387A1 (en) * 1988-12-14 1990-12-12 Mitsui Mining Company, Limited Process for producing single crystal
US5167759A (en) * 1988-12-14 1992-12-01 Mitsui Mining Company, Limited Production process of single crystals
US4999082A (en) * 1989-09-14 1991-03-12 Akzo America Inc. Process for producing monocrystalline group II-IV or group III-V compounds and products thereof
EP0417843A2 (en) * 1989-09-14 1991-03-20 Akzo Nobel N.V. Process for producing monocrystalline group II-VI or group III-V compounds and products thereof
EP0417843A3 (en) * 1989-09-14 1994-08-24 Akzo Nobel Nv Process for producing monocrystalline group ii-vi or group iii-v compounds and products thereof

Similar Documents

Publication Publication Date Title
JPS598690A (en) Preparation of gaas single crystal
Kadokura et al. Germanium-silicon single crystal growth using an encapsulant in a silica ampoule
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
US6238477B1 (en) Process and device for the production of a single crystal
Kondo et al. Low dislocation density GaSb single crystals grown by LEC technique
JP2001509768A (en) High-resistance silicon carbide substrate for high-power microwave equipment
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2000219594A (en) Crucible, crystal growth device and crystal growth method
US3322501A (en) Preparation of gallium arsenide with controlled silicon concentrations
JP2001192299A (en) Method and device for producing silicon carbide single crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JPH02239195A (en) Compound semiconductor single crystal
JP2879078B2 (en) Method for producing compound semiconductor crystal and crucible used therefor
JPH0283295A (en) Pulling up apparatus for single crystal
JPS59131598A (en) Production of gaas single crystal
JPH101392A (en) Formation of crystalline silicon thin film
JPS5929558B2 (en) Semi-insulating gallium arsenide crystal
JPS61227983A (en) Preparation of ga-as single crystal
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal
JP2000264798A (en) Method for growing ii-vi group compound semiconductor crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPS6042292A (en) Method and device for growing gallium arsenide single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH0585517B2 (en)
JPH10139597A (en) Growth vessel for iii-v group compound semiconductor single crystal