JPH0356674A - Vessel consisting of thermally decomposed boron nitride - Google Patents

Vessel consisting of thermally decomposed boron nitride

Info

Publication number
JPH0356674A
JPH0356674A JP19016589A JP19016589A JPH0356674A JP H0356674 A JPH0356674 A JP H0356674A JP 19016589 A JP19016589 A JP 19016589A JP 19016589 A JP19016589 A JP 19016589A JP H0356674 A JPH0356674 A JP H0356674A
Authority
JP
Japan
Prior art keywords
boron nitride
density
layers
pyrolytic boron
thermally decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19016589A
Other languages
Japanese (ja)
Other versions
JPH083144B2 (en
Inventor
Yoshihiro Kubota
芳宏 久保田
Kesaji Harada
原田 今朝治
Atsuo Kawada
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1190165A priority Critical patent/JPH083144B2/en
Publication of JPH0356674A publication Critical patent/JPH0356674A/en
Publication of JPH083144B2 publication Critical patent/JPH083144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the vessel consisting of thermally decomposed boron nitride useful for a crucible for production of a single crystal, etc., by alternately laminating high density layers and low density layers of thermally decomposed boron nitride and specifying the thicknesses of the respective layers. CONSTITUTION:Boron trichloride and ammonia are introduced into a reaction furnace and the thermally decomposed boron nitride is deposited by a thermochemical vapor deposition method onto the substrate kept at about 1000 to 2000 deg.C. At least two layers of the high density layers having 2.15 to 2.30g/cm<3> and the low density layers having 1.80 to 2.10g/cm<2> are formed by lowering the reaction pressure to about 0.1 to 1mmHg for the former and increasing the reaction pressure to about 1 to 10mmHg for the latter; in addition, the thicknesses of the respective layers are specified to 1 to 20mu. The vessel consisting of the thermally decomposed boron nitride useful as a crucible, boat, etc., for producing the single crystal is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱分解窒化ほう素容器、特には局部破壊などを
起り難くした、したがって寿命の長い、金属蒸着用また
はMBE用セル、ガリウムー砒素などの単結晶製造用る
つぼ、ボートとして有用とされる熱分解窒化ほう素容器
に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a pyrolytic boron nitride container, particularly a cell for metal deposition or MBE, which is less prone to local breakage, and therefore has a long life, and a cell for gallium-arsenic, etc. This invention relates to a pyrolytic boron nitride container useful as a crucible or boat for producing single crystals.

(従来の技術) 熱分解窒化ほう素容器は三塩化ほう素(BCu3)など
のほう素化合物とアンモニアとを原料とし、これらを高
温下に減圧で熱分解窒化ほう素とし、これを黒鉛、グラ
フアイトなどの表面にくC面〉方向に蒸着させ、またさ
らにこれをその表面から引剥すことによって製造されて
いる。
(Prior art) A pyrolytic boron nitride container uses a boron compound such as boron trichloride (BCu3) and ammonia as raw materials, converts these into pyrolytic boron nitride under reduced pressure at high temperature, and converts this into graphite and graphite. It is produced by depositing it on the surface of an atom, etc., in the C-plane direction, and then peeling it off from the surface.

しかして、このようにして作られた耐熱容器は金属蒸着
用あるいはMBE用セル、ガリウムー砒素などのような
III − V族化合物単結晶製造用るつぼ、ボートと
して用いられているが、これらの用途は使用温度が極め
て高温であるために室温にまで冷却されたときの内容物
の収縮変化が大きく、一方、熱分解窒化ほう素が成長方
向に垂直な(C面)に高度に配向しているためにくC面
〉方向に剥離し易いため、この方向に破壊し易いという
欠点がる. (発明が解決しようとする課題) そのため、この種の熱分解窒化ほう素容器について、本
発明者らはさきにこの密度の高い層とこれより密度の低
い層とを少なくとも2Fl交互辷設けて応力を緩和する
多層構造の耐熱容器を提案した(特開昭61−2884
42号公報参照)が、このものはこれを例えばガリウム
ー砒素などのようなIII −V族化合物の引上げ用る
つぼとして使用すると、多層構造としないものに比べて
その密度は軽いというものの使用中にクラックやピンホ
ールあるいは局部剥離が生じてしまうために数10回し
か使用できないという問題点のあることが判った.(課
題を解決するための手綾) 本発明はこのような不利を解決した熱分M窒化ほう素容
器に関するもので、これは高密度層と低密度層とを少な
くとも2層交互に設けてなり、かつ各層の厚みが1〜2
0μmであることを特徴とするものである. すなわち、本発明者らは熱分解窒化ほう素容器の寿命を
延長する方法について種々検討した結果、この熱分解窒
化ほう素容器については上記した特開昭81−2684
42号公報記載の方法にしたがって密度の高い層とこれ
より密度の低い層とを積層することは確かに有効である
が、このものの寿命はこの密度の高さとこの各層の厚さ
とが重要な因子となることを見出し、これについての実
験を重ねた結果、高い密度のものは2.15〜2JOg
/cm3とし、低い密度のものは1.70〜2 . 1
 0g/c1 とすると共に、これらの厚みはいずれも
1〜20μmのものとすればよいということを確認して
本発明を完成させた. 以下にこれをさらに詳述する. (作用) 本発明の熱分解窒化ほう素容器は前記したように高密度
層と低密度層とを少なくとも2層交互に設けてなり、か
つ各層の厚みが1〜20μmであるものである. ここに使用される熱分解窒化ほう素は三塩化ほう素( 
BCIL3)などのほう素化合物とアンモニアとを原料
とし、これらをt,ooo〜2,000℃の高温に保持
されている基体上で、熱化学蒸着方法で熱分解窒化ほう
素として蒸着させることによって得ることができ、この
熱分解窒化ほう素は密度の高い層とこれより密度の低い
層とを作る必要があるが、これは熱分解窒化ほう素を作
るときの反応圧力を低くすれば密度の高いものとするこ
とができ、反応圧力を高くすれば密度の低いものを得る
ことができる. しかして、本発明の熱分解窒化ほう素容器において使用
される密度の高い熱分解窒化ほう素は密度が2.308
/cm’より大きいと剥離強度が弱くなりすぎて局所剥
離が生じ易くなるし、密度の低い熱分解窒化ほう素の密
度が1.80g/cm’より小さいと引張強度が弱くな
りすぎてクランクが生じ易くなるし、また高密度層の密
度が2.15g/cm”より小さいか、低密度層の密度
が2.3087cm’より大きくなると両者の区別が不
明瞭となって応力を十分に緩和することができずクラン
クが生じ易くなるので、この密度の高い熱分解窒化ほう
素の製造時には炉内の圧力は0.1〜1 am}Igと
低くして密度が2.lO〜2.30g/c1の範囲の膜
を作るようにし、密度の低い熱分解窒化ほう素の製造時
には炉内の圧力を1〜lOIlmHgと高くしてその密
度が1.80 〜2.10g/cII13の範囲となる
ようにする必要がある。
Heat-resistant containers made in this way are used as cells for metal vapor deposition or MBE, and as crucibles and boats for producing single crystals of III-V group compounds such as gallium-arsenic, but these applications are limited to Because the operating temperature is extremely high, the shrinkage of the contents is large when cooled to room temperature, and on the other hand, the pyrolytic boron nitride is highly oriented perpendicular to the growth direction (C-plane). Since it is easy to peel off in the C-plane direction, it has the disadvantage of being easy to break in this direction. (Problem to be Solved by the Invention) Therefore, for this type of pyrolytic boron nitride container, the present inventors first provided this high-density layer and a lower-density layer alternately by at least 2F to stress the pyrolytic boron nitride container. We proposed a heat-resistant container with a multilayer structure that alleviates the
(Refer to Publication No. 42) However, when this crucible is used as a pulling crucible for III-V group compounds such as gallium-arsenic, it cracks during use, although its density is lower than that of a crucible without a multilayer structure. It was found that the problem was that it could only be used a few dozen times because it caused pinholes and local peeling. (Measures to Solve the Problems) The present invention relates to a thermal M boron nitride container that solves the above disadvantages, and is comprised of at least two alternate layers of high-density layers and low-density layers. , and the thickness of each layer is 1 to 2
It is characterized by having a thickness of 0 μm. That is, as a result of various studies on methods for extending the life of the pyrolytic boron nitride container, the present inventors found that this pyrolytic boron nitride container was disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 81-2684.
It is certainly effective to laminate a high-density layer and a lower-density layer according to the method described in Publication No. 42, but the high density and the thickness of each layer are important factors for the lifespan of this product. As a result of repeated experiments, we found that the density of high-density materials is 2.15 to 2 JOg.
/cm3, and those with low density are 1.70 to 2. 1
The present invention was completed by confirming that it is sufficient to set the thickness to 0 g/c1 and to set the thickness of each of these to 1 to 20 μm. This will be explained in more detail below. (Function) As described above, the pyrolytic boron nitride container of the present invention is composed of at least two alternating high-density layers and low-density layers, and each layer has a thickness of 1 to 20 μm. The pyrolytic boron nitride used here is boron trichloride (
By using a boron compound such as BCIL3) and ammonia as raw materials, and depositing them as pyrolytic boron nitride using a thermochemical vapor deposition method on a substrate maintained at a high temperature of t,ooo to 2,000°C. This pyrolytic boron nitride requires the creation of a layer with a high density and a layer with a lower density, but this can be done by lowering the reaction pressure when making pyrolytic boron nitride. By increasing the reaction pressure, it is possible to obtain a product with a low density. Therefore, the dense pyrolytic boron nitride used in the pyrolytic boron nitride container of the present invention has a density of 2.308
/cm', the peel strength will be too weak and local peeling will easily occur, and if the density of low-density pyrolytic boron nitride is less than 1.80 g/cm', the tensile strength will be too weak and the crank will If the density of the high-density layer is less than 2.15 g/cm' or the density of the low-density layer is more than 2.3087 cm', the distinction between the two becomes unclear and the stress cannot be sufficiently relaxed. Therefore, when manufacturing this high-density pyrolytic boron nitride, the pressure in the furnace is kept as low as 0.1 to 1 am}Ig, and the density is reduced to 2.1 to 2.30 g/g. When producing pyrolytic boron nitride, which has a low density, the pressure in the furnace is increased to 1 to lOIlmHg so that the density is in the range of 1.80 to 2.10g/cII13. It is necessary to

また、この熱分解窒化ほう素膜の厚さは密度の高いもの
、また密度の低いもののいずれについても、これらが1
μm以下と薄い場合には層の強度が弱く、1回に複数の
層が剥離することになり、20μmよりも厚い場合には
1回に1層しかI1 1111しないが、剥離量が大き
いという不利が生じるので、これらは1〜20μ■の範
囲とする必要がある。
In addition, the thickness of this pyrolytic boron nitride film is 100% for both high density and low density films.
If it is thin (less than μm), the strength of the layer is weak, and multiple layers will peel off at one time.If it is thicker than 20 μm, only one layer will peel off at a time, but the disadvantage is that the amount of peeling will be large. These must be in the range of 1 to 20 .mu.m.

本発明の熱分解窒化ほう素容器は上記した方法で製造さ
れた密度の高い熱分解窒化ほう素とこれより密度の低い
熱分解窒化ほう素を少なくとも2層積層することによっ
て作られるが、この積層1よ前記した熱分解窒化ほう素
の製造炉内の圧力を一定時間毎に調節し、これをくり返
して密度の高い、すなわち密度が2,lO〜2.30g
/cm’である厚さが1〜20μ−の熱分解窒化ほう素
とこれより密度が低い、密度が1.80〜2.10g/
cm3で厚さが1〜2Qμmの熱分解窒化ほう素を少な
くとも2層以上積層することによって作ればよく、この
層の数は少なくとも2層とすることは必要とされるもの
のこれはこのようにして製造された容器の使用目的、必
要とされる寿命と経済性を勘案して適宜に選定すればよ
い. このようにして得られた熱分解窒化ほう素容器は密度の
高いものと密度の低いものの積層物であることから、高
温で使用してもその加熱や冷却のヒートサイクルやヒー
トショックによって容器が破壊したり、クラックが発生
するということが殆んどなくなるので、このものはガリ
ウム、砒素、アルξニウムなどの金属を分子線エビタキ
シー(MBE)する際の蒸発用セルとして、またガリウ
ムー砒素、インジウムーリン、ガリウムーリンなどに代
表されるIII − V族化合物の製造用ルツボやボー
トなどの半導体関係に有利に使用できるし、これはまた
他の金属、金属化合物、ガラス、セラ亙ツクスなどの蒸
着、融解、多結晶、単結晶の製造用耐熱容器として、使
用するごとができるし、これはまた寿命が長いという有
利性が与えられる. (実施例) つぎに本発明の実施例、比較例をあげる。
The pyrolytic boron nitride container of the present invention is made by laminating at least two layers of high-density pyrolytic boron nitride produced by the method described above and pyrolytic boron nitride having a lower density. 1. The pressure in the pyrolytic boron nitride manufacturing furnace described above is adjusted at regular intervals, and this is repeated to obtain a high density product, that is, a density of 2.1 O to 2.30 g.
Pyrolytic boron nitride with a thickness of 1 to 20μ-/cm' and a lower density of 1.80 to 2.10g/cm'.
It may be made by laminating at least two or more layers of pyrolytic boron nitride with a thickness of 1 to 2 Q μm in cm3, and although the number of layers is required to be at least 2, it can be made in this way. The container should be selected appropriately, taking into consideration the intended use of the manufactured container, the required lifespan, and economic efficiency. The pyrolytic boron nitride container obtained in this way is a laminate of high-density and low-density materials, so even if it is used at high temperatures, the container will be destroyed by the heat cycle and heat shock of heating and cooling. This product can be used as an evaporation cell for molecular beam epitaxy (MBE) of metals such as gallium, arsenic, and aluminum, as well as for gallium-arsenic, indium-phosphorus, and other metals. It can be advantageously used in semiconductor-related applications such as crucibles and boats for producing III-V compounds such as gallium-phosphorus, and can also be used for vapor deposition, melting, and multi-layer production of other metals, metal compounds, glass, ceramics, etc. It can be used as a heat-resistant container for the production of crystals and single crystals, and it also has the advantage of long life. (Example) Next, examples of the present invention and comparative examples will be given.

実施例1〜2、比較例1〜6 反応炉中に直径20mmφ、長さ50開のグラファイト
板を載置し、これを2,000℃に加熱し、ここに三塩
化ほう素0.21/分とアンモニアガス0.4 fl/
分を入れてこのグラファイト板に熱化学蒸着させた。
Examples 1 to 2, Comparative Examples 1 to 6 A graphite plate with a diameter of 20 mmφ and a length of 50 mm was placed in a reactor, heated to 2,000°C, and boron trichloride 0.21/ min and ammonia gas 0.4 fl/
Thermochemical vapor deposition was carried out on this graphite plate by adding a few minutes.

この際、反応炉内の圧力は10〜30分毎に0.5mm
Hgから5 mmHgにくり返し変化させて、密度が2
.20〜2.21g/cm’で厚さが4〜10μmの密
度の高い層と、密度が2.00g/cm3で厚さが1〜
2μmである密度の低い層とを200〜500層積層し
た熱分解窒化ほう素容器を作り、ついでこの容器中で8
203の融解、冷却をくり返して、容器の寿命、破損状
況をしらべたところ、第1表に示した通りの結果が得ら
れた。
At this time, the pressure inside the reactor is increased by 0.5 mm every 10 to 30 minutes.
The density was changed repeatedly from Hg to 5 mmHg until the density was 2.
.. A dense layer with a thickness of 20-2.21 g/cm' and a thickness of 4-10 μm and a layer with a density of 2.00 g/cm3 and a thickness of 1-10 μm.
A pyrolytic boron nitride container is made by laminating 200 to 500 layers with a low density of 2 μm, and then 8
When 203 was melted and cooled repeatedly and the lifespan and damage of the container were examined, the results shown in Table 1 were obtained.

しかし、比較のために反応圧力を変えると共に、この時
間も変動させて密度の高い層の厚みを10〜27μ通と
して熱分解窒化ほう素容器を作り、B20,の融解、冷
却のくり返しで容器の寿命、破損状況をしたべたところ
、 3i1表に併記したとおり の結果が得られた. (発明の効果) 本発明は熱分解窒化ほう素容器に関するものであり、こ
れは前記したように密度が2,!5〜2.30g/cm
’で厚さが1〜20μ鳳の密度の高い熱分解窒化ほう素
と、密度が1.130〜2.103/Cm’で厚さが1
〜201.1mの密度の低い熱分解窒化ほう素とを2層
または2層以上に交互に積層してなるものであるが、こ
れによれば高密度のもの、低密度のものが特定の密度を
もつものであり、この厚みも1〜20μmとされている
ので高温で使用したときの加熱、冷却のヒートサイクル
やヒートショックによって容器が破壊したり、クランク
が発生するという不利がなくなるので、このものはII
I − V族化合物の製造用ルツボやボートまたはMB
E用セルなどの半導体関係用として、またその他金属、
金属化合物、ガラス、セラミックスなどの蒸着、融解、
結晶製造用耐熱容器として使用することができるという
工業的な有利性が与えられる.手 糸充 補 正 書(自発) 1.事件の表示 平威1年特許願′!PI190165号2. 発明の名称 熱分解窒化ほう素容器 3. 4 補正をする者 事件との関係  特許出願人
However, for comparison, we made a pyrolytic boron nitride container by varying the reaction pressure and time to make the dense layer 10 to 27 microns thick, and by repeating melting and cooling of B20, we made a container of pyrolytic boron nitride. When we examined the lifespan and damage status, we obtained the results as listed in Table 3i1. (Effects of the Invention) The present invention relates to a pyrolytic boron nitride container, which, as mentioned above, has a density of 2,! 5-2.30g/cm
Highly dense pyrolytic boron nitride with a thickness of 1 to 20μ and a density of 1.130 to 2.103/Cm and a thickness of 1
It is made by laminating two or more layers of pyrolytic boron nitride with a low density of ~201.1 m, but according to this, high density and low density pyrolytic boron nitrides have a specific density. The thickness is set at 1 to 20 μm, which eliminates the disadvantages of container destruction and cranking caused by heating and cooling heat cycles and heat shock when used at high temperatures. Things II
Crucible, boat or MB for producing I-V group compounds
For semiconductor-related applications such as E cells, and other metals,
Vapor deposition, melting, etc. of metal compounds, glass, ceramics, etc.
It has the industrial advantage of being able to be used as a heat-resistant container for crystal production. Teitomitsu correction form (voluntary) 1. Case display Pingwei 1 year patent application'! PI190165 No. 2. Name of the invention Pyrolytic boron nitride container 3. 4 Relationship with the case of the person making the amendment Patent applicant

Claims (2)

【特許請求の範囲】[Claims] 1.高密度層と低密度層とを少なくとも2層交互に設け
てなり、かつ各層の厚みが1〜20μmであることを特
徴とする熱分解窒化ほう素容器。
1. A pyrolytic boron nitride container comprising at least two alternating high-density layers and low-density layers, each layer having a thickness of 1 to 20 μm.
2.高密度層の密度が2.15〜2.30g/cm^3
であり、低密度層の密度が1.80〜2.10g/cm
^3である請求項1に記載の熱分解窒化ほう素容器。
2. The density of the high density layer is 2.15~2.30g/cm^3
and the density of the low density layer is 1.80 to 2.10 g/cm
The pyrolytic boron nitride container according to claim 1, which is ^3.
JP1190165A 1989-07-21 1989-07-21 Pyrolysis boron nitride container Expired - Lifetime JPH083144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190165A JPH083144B2 (en) 1989-07-21 1989-07-21 Pyrolysis boron nitride container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190165A JPH083144B2 (en) 1989-07-21 1989-07-21 Pyrolysis boron nitride container

Publications (2)

Publication Number Publication Date
JPH0356674A true JPH0356674A (en) 1991-03-12
JPH083144B2 JPH083144B2 (en) 1996-01-17

Family

ID=16253514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190165A Expired - Lifetime JPH083144B2 (en) 1989-07-21 1989-07-21 Pyrolysis boron nitride container

Country Status (1)

Country Link
JP (1) JPH083144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021749A1 (en) * 1994-09-28 1996-07-18 Advanced Ceramics Corporation High density flash evaporator
JP2008101947A (en) * 2006-10-17 2008-05-01 Gs Yuasa Corporation:Kk Ultraviolet irradiation device and its adjusting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038792A (en) * 1989-06-05 1991-01-16 Hitachi Cable Ltd Boron nitride crucible

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038792A (en) * 1989-06-05 1991-01-16 Hitachi Cable Ltd Boron nitride crucible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021749A1 (en) * 1994-09-28 1996-07-18 Advanced Ceramics Corporation High density flash evaporator
GB2313846A (en) * 1994-09-28 1997-12-10 Advanced Ceramics Corp High density flash evaporator
GB2313846B (en) * 1994-09-28 1999-05-26 Advanced Ceramics Corp High density flash evaporator
JP2008101947A (en) * 2006-10-17 2008-05-01 Gs Yuasa Corporation:Kk Ultraviolet irradiation device and its adjusting method

Also Published As

Publication number Publication date
JPH083144B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
RU2286616C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JPH08509575A (en) Substrate for growth of 3C-silicon carbide
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
JPH0356674A (en) Vessel consisting of thermally decomposed boron nitride
US4775565A (en) Vessel for refractory use having multi-layered wall
JPH08119613A (en) Production of highly oriented graphite body
JP7369396B2 (en) Method for manufacturing a protective layer, method for manufacturing a single-crystal free-standing substrate with a protective layer
JP4619036B2 (en) Carbon composite material
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JPH01133916A (en) Production of high-density graphite film
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH0432561A (en) Heat resistant vessel made of thermally decomposed boron nitride
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JP2582426B2 (en) Heat-resistant container made of pyrolytic boron nitride and method for producing the same
JPH02182882A (en) Heat resistant vessel made of pyrolytic boron nitride and production thereof
JP2006103997A (en) Method for manufacturing semiconductor crystal
JPS62132798A (en) Crucible for growing compound semiconductor and production thereof
JPH06135793A (en) Double-layered ceramic crucible
DeVries On the Preparation of Thin Single‐Crystal Films of BaTiO3
JPH0784357B2 (en) Boron nitride coated crucible
JP2507739B2 (en) Pyrolytic boron nitride container
JP3614282B2 (en) Pyrolytic boron nitride container and manufacturing method thereof
JP2003063813A (en) Carbon nanotube film, carbon nanotube film body and substrate with carbon nanotube film, and manufacturing method thereof
JPH03257089A (en) Silicon carbide-coated graphite product and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14