JPS63276215A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS63276215A
JPS63276215A JP11080187A JP11080187A JPS63276215A JP S63276215 A JPS63276215 A JP S63276215A JP 11080187 A JP11080187 A JP 11080187A JP 11080187 A JP11080187 A JP 11080187A JP S63276215 A JPS63276215 A JP S63276215A
Authority
JP
Japan
Prior art keywords
vapor phase
gas
phase growth
arsenic
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080187A
Other languages
Japanese (ja)
Inventor
Toru Nishibe
徹 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11080187A priority Critical patent/JPS63276215A/en
Publication of JPS63276215A publication Critical patent/JPS63276215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow high purity crystal containing As by a method wherein the crystal containing arsenic is brought into contact with the raw gas containing As, and the impurities contained in the raw gas, especially sulfur is taken into the crystal. CONSTITUTION:The raw gas cotaining arsenic is introduced from introducing pipes 14, 15, 16 and 17, and it is decomposed by heat. At that time, an arsenic- cotaining III-V compound semiconductor 26 is taken into a quartz boat 25 and arranged in the path of the raw gas containing arsenic located on the part which will be dissolved by heat. Pipes 18 and 20, with which the group V gas such as arsine, phosphine and the like, and pipes 19 and 21 through which the doping gas such as H2S and the like will be made to flow are connected to the upper chamber 8 and the lower chamber 9 respectively. Consequently, high purity crystal containing As can be grown.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、砒素を元素として含む化合物半導体に於い
て、再現性よく高純度結晶を成長させる気相成長装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a vapor phase growth apparatus for growing high-purity crystals with good reproducibility in compound semiconductors containing arsenic as an element.

(従来の技術) 気相開管法により、InP基板上へInGaAs層を成
長させる例は、ハイド2イド気相成長法、クロライド気
相成長法、有機金属気相成長法などがある。これらの成
長方法のうちで最も高純度なものが安定に得られるのは
、クロライド気相成長である。GaAsを成長させる場
合を例にとると、クロライド法では、GaメタルIc 
AsCJ、を流すと、Gaメタル上ic GaAmのり
2ストが形成され飽和してからGaの塩化物、As分子
が下流に輸送され基板上にGaAsを成長する。Gエメ
タル、 kscLBともに高純度なものが得られ、しか
も、Gaメタル、 GaAlクラストによる不純物のゲ
ッタリング効果がある。このため、高純度のGaAs結
晶を成長させることができる。
(Prior Art) Examples of growing an InGaAs layer on an InP substrate by a vapor phase open tube method include a hydride vapor phase epitaxy method, a chloride vapor phase epitaxy method, and an organometallic vapor phase epitaxy method. Among these growth methods, the one that can stably obtain the highest purity is chloride vapor phase growth. Taking the case of growing GaAs as an example, in the chloride method, Ga metal Ic
When AsCJ is flowed, an ic GaAm paste is formed on the Ga metal and becomes saturated, after which Ga chloride and As molecules are transported downstream to grow GaAs on the substrate. Both G emmetal and kscLB can be obtained with high purity, and furthermore, the Ga metal and GaAl crust have an impurity gettering effect. Therefore, a high purity GaAs crystal can be grown.

これに対し、ハイドライド気相成長法では、Gaメタル
上にHCJガスを流し、 Gaの塩化物として輸送し、
又別の導入管からAsH,ガスを流し、熱分解してA3
分子として輸送する。HCJ−ガス、 AsH,ガスは
高純度のものが得られに<<、クロライド法に対して、
高純度な結晶が得られ難い。HCJガスについては、A
sCj、の熱分解により高純度なHCJが得られる可能
性がある。又、Gaメタルのソース温度を上げるなどし
て不純物のゲッタリング効果を高めることにより、HC
,!ガス中に含まれる不純物を軽減させることができる
。しかし、AsH,中の不純物を効率良く除く手段がな
いため、この不純物が結晶中に取り込まれ、パックグラ
ウンドのキャリア濃度が変動する原因となる。結晶中に
取り込まれる可能性のある不純物は、ガス中の不純物の
他に石英反応管(8i0.)から搬送ガスのH!により
還元されて、反応管から遊離したSlの化合物がある。
In contrast, in the hydride vapor phase growth method, HCJ gas is flowed over Ga metal and transported as Ga chloride.
In addition, AsH and gas are flowed through another introduction pipe, and A3 is thermally decomposed.
Transport as molecules. HCJ-gas, AsH, gas can be obtained with high purity.
It is difficult to obtain highly pure crystals. Regarding HCJ gas, A
High purity HCJ may be obtained by thermal decomposition of sCj. In addition, by increasing the gettering effect of impurities by increasing the Ga metal source temperature, HC
,! Impurities contained in the gas can be reduced. However, since there is no means to efficiently remove impurities in AsH, these impurities are incorporated into the crystal, causing fluctuations in the carrier concentration of the pack ground. In addition to impurities in the gas, impurities that may be incorporated into the crystal include H! of the carrier gas from the quartz reaction tube (8i0.). There is a compound of Sl that is reduced and liberated from the reaction tube.

このSlの取込みを抑えるために微量のO!を加え、S
tの酸化物として排出させる試みがなされている。
In order to suppress this Sl uptake, a trace amount of O! Add S
Attempts have been made to emit it as an oxide of t.

有機金属気相成長法の場合は、基板のみが加熱され、周
辺は熱放射、対流による効果しかないので、ハイド2イ
ド気相成長法、クロライド気相成長法のようにホットウ
ォールを用いていないので、石英反応管からの81の遊
離はほとんどないと考えられている。又、成長基板をの
せるサセプターにBi基板を用いることもあるが、成長
温度800℃以下なのでStの分解はおこらない。有機
金属気相成長法での不純物は有機金属(TMG or 
TEG )中の揮発成分AsH,中の不純物であると考
えられている。
In the case of organometallic vapor phase epitaxy, only the substrate is heated, and the surrounding area is only affected by thermal radiation and convection, so hot walls are not used as in the case of hydride vapor phase epitaxy and chloride vapor phase epitaxy. Therefore, it is thought that there is almost no release of 81 from the quartz reaction tube. Further, although a Bi substrate is sometimes used as a susceptor on which a growth substrate is placed, decomposition of St does not occur because the growth temperature is 800° C. or lower. Impurities in organometallic vapor phase epitaxy are organometallic (TMG or
It is thought that this is an impurity in the volatile component AsH in TEG.

(発明が解決しようとする問題点) 従来のハイド2イド気相成長法におけるV族の水素化物
ガス中の不純物、特に硫黄を含むものは、除去すること
が難しく、高純度化の支障となっている。又、ガスロッ
ト毎の不純物a度のばらつきKより、バックグラウンド
のキャリア積度レベルが変動し、濃度制御が難しくなる
要素となる。
(Problems to be Solved by the Invention) Impurities, especially those containing sulfur, in the V group hydride gas in the conventional hydride vapor phase epitaxy method are difficult to remove and become an obstacle to high purity. ing. Furthermore, the background carrier accumulation level fluctuates due to the variation K in the degree of impurity a for each gas slot, which becomes a factor that makes concentration control difficult.

結晶中の不純物濃度1011cIL  はガス中の0.
1pI)m以下に対応し、直接分析も技術的に難しい。
The impurity concentration in the crystal, 1011cIL, is 0.1cIL in the gas.
1pI)m or less, and direct analysis is technically difficult.

この発明の目的は砒素を含むガス中の不純物、特に硫黄
を含むものを除去できる気相成長装置である。
An object of the present invention is to provide a vapor phase growth apparatus capable of removing impurities in gas containing arsenic, particularly those containing sulfur.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明はAsを含む原料ガス中の不純物、特に硫黄を含
むものを除去するために高純度GaAs 。
(Means for Solving the Problems) The present invention uses high-purity GaAs to remove impurities in a source gas containing As, particularly those containing sulfur.

I nGaAs結晶などAsを含む結晶を用い吸着させ
る。
Adsorption is performed using a crystal containing As, such as an InGaAs crystal.

即ち、砒素を含む結晶を高温下でAsを含む原料ガスと
接触させ、原料ガス中に含まれる不純物、特に硫黄を結
晶中に取り込ませ、下流の基板へ不純物を輸送しないよ
うにする。
That is, a crystal containing arsenic is brought into contact with a source gas containing As at a high temperature, and impurities, particularly sulfur, contained in the source gas are incorporated into the crystal, thereby preventing the impurities from being transported to the downstream substrate.

(作用) Asを含む化合物半導体結晶中でドナーとなる可能性の
ある不純物は、8n、81.Ge、S等があるが、特に
Sは■−■族化合物半導体では■族と置換して結晶中に
取りこまれやすい。特にV族として人3を含む化合物半
導体の成長に於いてはSの取り込み方が大きく、キャリ
ア濃度が高くなりてしまう。
(Function) Impurities that may become donors in a compound semiconductor crystal containing As are 8n, 81. Although there are Ge, S, etc., S in particular is easily incorporated into the crystal by replacing the group 2 in the group 1-2 compound semiconductor. In particular, in the growth of a compound semiconductor containing human 3 as a V group, the amount of S incorporated is large, resulting in a high carrier concentration.

本発明では、ム3を含む結晶をAsを含む原料ガスの分
解領域に置くことにより不純物をAsを含む原料ガスか
ら取り除き成長結晶を高純度化し、原料ガスロットによ
る変動を抑えるという利点がある。
The present invention has the advantage that impurities are removed from the As-containing source gas by placing the crystal containing Mu3 in the decomposition region of the As-containing source gas, making the grown crystal highly purified and suppressing fluctuations due to the source gas slot.

この方法によればパックグラウンド濃度をlXl0II
Iα−3から5 x 10”c!r”まで低減すること
ができる。
According to this method, the pack ground concentration is
It can be reduced from Iα-3 to 5 x 10"c!r".

(発明の実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example of the invention) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法に使用した気相成長装置
の概略構成を示すもので、第1図体)ハ縦断面図、第x
I!!J(b)は同図(a)の矢視A−A断面拡大図で
第1図(C)は同図(a)のC付近の拡大図である。図
中1は石英ガラス等からなる反応管であり、この反応管
1内の反応室は仕切り板2により上下対称に仕切られて
いる。反応管1の右端部近傍には排気口3が設けられて
いる。また、4は気相成長に供される試料、5は試料4
を上室8及び下室9間で滑らかに移動するための操作棒
、6゜7は抵抗加熱炉である。なお、加熱炉6により加
熱される領域(原料メタル等が収容される領域)を高温
領域、加熱炉7により加熱される領域(試料が収容され
る領域)を低温領域とする。上室8゜下室9の左方(ガ
ス導入側)には■族原料であるガリウムメタル10.1
2及びインジウムメタル11.13が収容されている。
Fig. 1 shows a schematic configuration of a vapor phase growth apparatus used in an embodiment of the present invention.
I! ! J(b) is an enlarged cross-sectional view taken along the line A-A in FIG. 1(a), and FIG. 1(C) is an enlarged view of the vicinity of C in FIG. 1(a). In the figure, 1 is a reaction tube made of quartz glass or the like, and a reaction chamber within this reaction tube 1 is vertically symmetrically partitioned by a partition plate 2. An exhaust port 3 is provided near the right end of the reaction tube 1 . In addition, 4 is a sample subjected to vapor phase growth, and 5 is sample 4.
An operating rod 6° 7 is a resistance heating furnace for smoothly moving the material between the upper chamber 8 and the lower chamber 9. Note that the area heated by the heating furnace 6 (the area where the raw metal etc. are accommodated) is defined as a high temperature area, and the area heated by the heating furnace 7 (the area where the sample is accommodated) is defined as a low temperature area. The upper chamber 8 degrees and the left side (gas introduction side) of the lower chamber 9 contain gallium metal 10.1, which is a group ■ raw material.
2 and indium metal 11.13 are accommodated.

反応管1の左端部には上記メタルに塩化水素ガスを流す
ためのキャリアガス導入パイプ14〜17がそれぞれ接
続されている。又、上室8.下室9のそれぞれにアルシ
ン、ホフフィンなどのV原ガスを流すパイプ18.20
、H,Sなどのドーピングガスを流すパイプ19.21
が接続されている。V族パイプ18.20の高温分解領
域であるC付近にはGaAsポリ結晶%を石英ボート5
に入れて配置し導入管の左側からボートごと出入できる
構造になっており、ボート内のGaAsポリ結晶を、逐
次、交換可能にしである。供給するHCJ−ガスは、A
sCj、のパブ’y−22,Z3を用い、分解デスでA
sCj3を分解し、生成したものを用いた。バブラーの
温度は恒温槽により20℃に設定し、分解炉の温度は8
50℃に設定した。この方法を用いて生成したHC2ガ
スは市販のボンベに充填されたHCJ−ガスより高純度
のものが得られる。(Zoo)面から2°オフしたIn
P基板上にInGaAsを成長した場合について以下説
明する。メタルソース温度は、750℃〜900°C成
長温度を700℃に設定した。Inメタルに流すHCj
10CC/+、Gaメタルニ流すHCJO09°c15
)、アルシン5CCZ分とし、水素キャリアガスを用い
、総流量1.51/分とした。又、管壁への析出を抑え
るため、V族パイプから0.5cc/f+のHCJガス
を加えた。熱分解領に、上記GaAsポリ結晶を100
り置き、メタルソース温度即ち、GaAs結晶が配置さ
れている分解領域の温度を750℃から900℃まで変
えた。本発明を用いない場合キャリア濃度が9 X 1
0”〜3X10”までボンベのロット差等でばらつくが
、本発明を用いると、キャリア濃度が安定し、分解領域
の温度を上げるとキャリア濃度が低くなり、900°C
では、〜5×10m4cr!L  となる。得られた室
温、液体窒素温度での易動度も、それぞれ、12000
””/y−see +96000cmR/v、。であり
、結晶性も良好であることを示している。この方法を用
いて、PINダイオードを試作したところ、応答速度1
2GHzを達成することができた。
Carrier gas introduction pipes 14 to 17 for flowing hydrogen chloride gas into the metal are connected to the left end of the reaction tube 1, respectively. Also, upper chamber 8. Pipes 18 and 20 that flow V raw gas such as arsine and hoffin into each of the lower chambers 9
, H, S, etc. pipe 19.21
is connected. Near C, which is the high temperature decomposition region of the V group pipe 18.20, 5% GaAs polycrystalline is placed in a quartz boat.
The structure is such that the boat can be taken in and out from the left side of the introduction tube, and the GaAs polycrystals in the boat can be replaced one after another. The HCJ-gas to be supplied is A
Using pub'y-22, Z3 of sCj, A by decomposition death
The product produced by decomposing sCj3 was used. The temperature of the bubbler was set at 20℃ using a constant temperature bath, and the temperature of the decomposition furnace was set at 8℃.
The temperature was set at 50°C. The HC2 gas produced using this method has a higher purity than the HCJ-gas filled in commercially available cylinders. In which is 2° off from the (Zoo) plane
A case in which InGaAs is grown on a P substrate will be described below. The metal source temperature was set at 750°C to 900°C, and the growth temperature was set at 700°C. HCj flowing to In metal
10CC/+, Ga metal flowing HCJO09°c15
), 5 CCZ minutes of arsine, hydrogen carrier gas was used, and the total flow rate was 1.51/min. In addition, 0.5 cc/f+ of HCJ gas was added from the V group pipe to suppress precipitation on the pipe wall. 100% of the GaAs polycrystal is placed in the thermal decomposition region.
Then, the metal source temperature, that is, the temperature of the decomposition region where the GaAs crystal is placed, was varied from 750°C to 900°C. When the present invention is not used, the carrier concentration is 9×1
Although it varies from 0" to 3X10" due to differences in cylinder lots, when using the present invention, the carrier concentration becomes stable, and as the temperature of the decomposition region is raised, the carrier concentration decreases.
So, ~5×10m4cr! It becomes L. The obtained mobilities at room temperature and liquid nitrogen temperature were also 12,000, respectively.
""/y-see +96000cmR/v,. This shows that the crystallinity is also good. When we prototyped a PIN diode using this method, we found that the response speed was 1.
We were able to achieve 2GHz.

次に、第2の実施例について説明する。クラツキング炉
を用いた減圧MOCVD装置に於いて、クラッキング部
分にGaAsポリ結晶を1509配置した。
Next, a second example will be described. In a low-pressure MOCVD apparatus using a cracking furnace, 1509 GaAs polycrystals were placed in the cracking part.

クラツキング炉の温度は850″OK設定する。TMI
のハフ’ リy りH270CC4(17°O)、 T
MGO/< 7’ 9 ン/ H。
The temperature of the cracking furnace is set to 850″ OK.TMI
Huff' Re-H270CC4 (17°O), T
MGO/<7'9/H.

1.35 ”4 (−10℃) AsH31G勿5.H
t 10’4 、 成長温度620℃、圧力200To
rrで(100) InP基板上にInGaAsを成長
した。本発明を用いない場合はInGaAsのキャリア
濃度は5x10の かり3X10”α 程度までばらつ
くのに対し、本発明を用いると2 X 10”付近のキ
ャリア濃度に安定した。室温77にでの易動K ハ’c
 tL ソtL 10200crn”A1.、ac、 
42000””/y−see テ?!6 ’Q、カーボ
ンなどによる多少の補償効果は見られるものの、結晶性
は良好であると言える。
1.35 ”4 (-10℃) AsH31G 5.H
t 10'4, growth temperature 620°C, pressure 200To
InGaAs was grown on a (100) InP substrate at rr. In the case where the present invention is not used, the carrier concentration of InGaAs fluctuates to about 5×10×3×10”α, whereas when the present invention is used, the carrier concentration is stabilized at around 2×10”. Easy movement at room temperature 77
tL sotL 10200crn”A1., ac,
42000””/y-see Te? ! 6'Q, although some compensation effect due to carbon etc. is observed, the crystallinity can be said to be good.

なお、本発明は上述した実力例に限定されるものではな
い。前記実施例では、V族成長ガスとしてAsH@を用
い、不純物の除去のためにGaAsポリ結晶を用いたが
、AsH,のかわりにAscus、GaAsのかわりに
InGaAs、 InAs、 GaAsPなどを用いる
場合にも有効である。又、成長材料もA3を含んでいれ
ばよく、InGaAsのかわりに1.55 p m組成
のInGaAsP、 GaAsP 。
Note that the present invention is not limited to the above-mentioned practical example. In the above example, AsH@ was used as the group V growth gas and GaAs polycrystal was used to remove impurities, but when Ascus is used instead of AsH, and InGaAs, InAs, GaAsP, etc. is also valid. Furthermore, the growth material only needs to contain A3, such as InGaAsP or GaAsP with a composition of 1.55 pm instead of InGaAs.

InAsPなどにも適用できる。It can also be applied to InAsP and the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Asを含む材料ガスの不純物レベルに
ばらつきがありても、分解領域でAsの化合物結晶に不
純物を取り込ませることにより純化することにより、A
sを含む高純度結晶を成長させることができる。
According to the present invention, even if there are variations in the impurity level of the material gas containing As, the impurities are incorporated into As compound crystals in the decomposition region to purify the material gas.
High purity crystals containing s can be grown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明する為の図、第2図は本
発明を用いた時のInGaAsのバックグラウンドとG
aA1結晶を置く温度との関係を示す図である。 1:反応管、     2:しきり板。 3:排出口、   、4:試 料。 5:操作棒*     617:抵抗加熱炉。 8:上 室、      9:下 室。 1o 、 12 :ガリウムメタル、  11.13 
:インジウムメタル。 14〜21:導入パイプ+   22e 2−3 : 
ASCJ−s ノウ2−1冴:分解炉、     δ:
石英ボート。 %: GaAsポリ結晶。 代理人 弁理士  則 近 憲 佑 同   松山光速 (C) 第1図
Fig. 1 is a diagram for explaining an embodiment of the present invention, and Fig. 2 is a diagram showing the background of InGaAs and G when using the present invention.
FIG. 3 is a diagram showing the relationship with the temperature at which the aA1 crystal is placed. 1: reaction tube, 2: partition plate. 3: Outlet, 4: Sample. 5: Operation rod * 617: Resistance heating furnace. 8: Upper chamber, 9: Lower chamber. 1o, 12: gallium metal, 11.13
: Indium metal. 14-21: Introduction pipe + 22e 2-3:
ASCJ-s Know 2-1 Sae: Decomposition furnace, δ:
quartz boat. %: GaAs polycrystal. Agent Patent Attorney Noriyuki Chika Yudo Matsuyama Kosoku (C) Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)砒素を含む原料ガスを導入し、熱分解をさせる工
程を含む気相成長方法に於いて、熱分解をさせる部分の
砒素を含む原料ガスの通路にV族元素として砒素を含む
III−V族化合物半導体を設置することを特徴とする気
相成長装置。
(1) In a vapor phase growth method that includes a step of introducing a raw material gas containing arsenic and causing thermal decomposition, arsenic is contained as a Group V element in the passage of the raw material gas containing arsenic in the portion to be thermally decomposed.
A vapor phase growth apparatus characterized in that a III-V group compound semiconductor is installed.
(2)上記成長結晶がGaAs又はInGaAsである
ことを特徴とする特許請求の範囲第1項記載の気相成長
装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the grown crystal is GaAs or InGaAs.
(3)上記砒素を含む原料ガスがAsH_2であること
を特徴とする特許請求の範囲第1項記載の気相成長装置
(3) The vapor phase growth apparatus according to claim 1, wherein the source gas containing arsenic is AsH_2.
(4)上記砒素を含むIII−V族化合物半導体がGaA
sであることを特徴とする特許請求の範囲第1項記載の
気相成長装置。
(4) The III-V compound semiconductor containing arsenic is GaA
2. The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is s.
(5)上記成長方法がハイドライド気相成長法であるこ
とを特徴とする特許請求の範囲第1項記載の気相成長装
置。
(5) The vapor phase growth apparatus according to claim 1, wherein the growth method is a hydride vapor phase growth method.
(6)上記成長方法が熱分解を起こさせる予備加熱炉を
有するか又は熱分解を起させるパイプを反応管内に備え
たMOCVD法であることを特徴とする特許請求の範囲
第1項記載の気相成長装置。
(6) The above-mentioned growth method is an MOCVD method having a preheating furnace for causing thermal decomposition or a pipe for causing thermal decomposition in a reaction tube. Phase growth device.
JP11080187A 1987-05-08 1987-05-08 Vapor growth device Pending JPS63276215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080187A JPS63276215A (en) 1987-05-08 1987-05-08 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080187A JPS63276215A (en) 1987-05-08 1987-05-08 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS63276215A true JPS63276215A (en) 1988-11-14

Family

ID=14544997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080187A Pending JPS63276215A (en) 1987-05-08 1987-05-08 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS63276215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511975A (en) * 2014-02-25 2017-04-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light-emitting semiconductor device having a getter layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511975A (en) * 2014-02-25 2017-04-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light-emitting semiconductor device having a getter layer
US10361531B2 (en) 2014-02-25 2019-07-23 Philips Photonics Gmbh Light emitting semiconductor devices with getter layer
JP2020150275A (en) * 2014-02-25 2020-09-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light emitting semiconductor device with getter layer

Similar Documents

Publication Publication Date Title
KR100497262B1 (en) Epitaxy Method on Vapor Phase of Compound Semiconductor
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPS63276215A (en) Vapor growth device
JPS59188118A (en) Manufacture of vapor phase epitaxial crystal
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JPH0225018A (en) Manufacture of semiconductor device
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0431396A (en) Growth of semiconductor crystal
JPS58191423A (en) Vapor growth device for 3-5 semiconductor
JPS58184721A (en) Vapor phase epitaxial growth of p type 3-5 family compound semiconductor
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPH01290222A (en) Semiconductor vapor growth method
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPS61151093A (en) Vapor-phase epitaxial growth of semiconductor of group iii-v compound
JPS61134014A (en) Vapor growth method for plural mixed crystal iii-v group compound semiconductor
JPS62155511A (en) Vapor growth device
JPH0334314A (en) Manufacture of semiconductor crystal
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPH06140331A (en) Organic metallic molecular beam epitaxial growth method
JPS62137821A (en) Vapor growth method for semiconductor
JPH06172084A (en) Method for epitaxial growth of compound semiconductor and apparatus therefor
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPH0536397B2 (en)