JPS58191423A - Vapor growth device for 3-5 semiconductor - Google Patents

Vapor growth device for 3-5 semiconductor

Info

Publication number
JPS58191423A
JPS58191423A JP7487482A JP7487482A JPS58191423A JP S58191423 A JPS58191423 A JP S58191423A JP 7487482 A JP7487482 A JP 7487482A JP 7487482 A JP7487482 A JP 7487482A JP S58191423 A JPS58191423 A JP S58191423A
Authority
JP
Japan
Prior art keywords
group
group metal
quartz
composition
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7487482A
Other languages
Japanese (ja)
Inventor
Masaji Yoshida
吉田 政次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7487482A priority Critical patent/JPS58191423A/en
Publication of JPS58191423A publication Critical patent/JPS58191423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To improve the controllability of a composition by mounting a cover sliding on the vessel edge of a II group metal vessel and a device operating the cover from the outside. CONSTITUTION:The cover for the II group metal vessel can be slid to the downstream side so as to cover a II group metal or open the II group metal to a gas current by pushing or pulling solid bar ends 4 of the outside of the device in solid bars 3 made of quartz. A stainless seal 5 and the solid bars 3 are fixed by O rings made of bytown. Grease is applied to the O rings, and the solid bars are pushed and pulled in the axial direction of a reaction pipe 6 made of quartz. In is entered into the II group metal vessel of a support reaction pipe 7, and Ga is entered into the II group metal vessel of a support reaction pipe 3. The controllability of the composition of a II-V mixed crystal is improved by using the device as a result of the measurement of the variation of a composition in the direction of growth of a (In, Ga)As growth layer obtained.

Description

【発明の詳細な説明】 本発明はクロライド法1−V半導体気相成長装置に係シ
、その効果はIaxGa、−xAsや■nAsy P 
h −yなど01−V混晶の気相成長における組成制御
性に顕著となるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 1-V semiconductor vapor phase growth apparatus using the chloride method, and its effects can be applied to IaxGa, -xAs and nAsy P
This is remarkable in the composition controllability in vapor phase growth of 01-V mixed crystals such as h-y.

1−V半導体のエピタキシャル層は、液相成長法、気相
成長法1分子線エピタキシャル成長法などによってつく
られている。これらの中で気相成員法は大面積均一成長
と量産性の点で優位を鏑きつつある。仁の気相成長法に
は大別して■族元素O塩化物蒸気と■族元素の蒸気とを
反応させてI−V化合物を析出させるハロゲン輸送法(
HTVPlりとl族金属の揮発性有機化合物あるいはl
族金属の有機化合物と■族元素化合物の配位化金物の熱
分解反応を基本とする有機金属熱分解法(MOVPI)
とがある。さらにハロゲン輸送法を■族元素の三堰化物
とl族金属とを反応させて■族元素塩化物とV族元嵩息
気とを生成させるクロライド法とl族金属と塩化水嵩の
反応によりて■族元素塩化物を生成しV族元素蒸気社v
族元素の水素化物O分層反応によって生成するハイドラ
イド法とに分けることができる。結局、気相成長法とし
てはクロライド法、ハイドライド法、有機金属熱分解法
の三つが主な屯のである。
The epitaxial layer of the 1-V semiconductor is formed by liquid phase growth, vapor phase growth, single molecular beam epitaxial growth, or the like. Among these, the vapor phase deposition method is gaining superiority in terms of uniform growth over a large area and mass productivity. Jin's vapor phase growth method can be roughly divided into the halogen transport method (which involves reacting group Ⅰ element O chloride vapor with group Ⅰ element vapor to precipitate IV compounds).
Volatile organic compounds of group I metals or l
Metal-organic pyrolysis method (MOVPI), which is based on the thermal decomposition reaction of organic compounds of group metals and coordination metals of compound of group II elements.
There is. Furthermore, the halogen transport method was combined with the chloride method, in which a chloride of a group Ⅰ element and a group I metal are reacted to produce a chloride of a group Ⅰ element and a bulk gas of a group V element, and a reaction between a group Ⅰ metal and aqueous chloride. ■Group element chloride is produced by V group element vapor company v
It can be divided into the hydride method, which is produced by a hydride O layer reaction of group elements. In conclusion, there are three main vapor phase growth methods: chloride method, hydride method, and organometallic thermal decomposition method.

と仁ろで、鳳−■半導体デバイスには、ガンダイオード
、アバランシエフtトダイオード2反転WMI8)ラン
ジスタのように高純度の■−■半導体を必要とするもの
かあ〕、前述の各気相成長法を高純度化の観点から比較
すると、端的に言りてりpライド法が原本有利である。
In the discussion, Otori-■ Semiconductor devices require high-purity ■-■ semiconductors such as Gunn diodes, avalanche FT diodes, 2 inverted WMI8) transistors, and the various vapor phase growth methods mentioned above. When comparing the methods from the viewpoint of high purification, simply put, the p-ride method has the original advantage.

その第一の理由は第11DC示したようにクロライド法
で社純変的に不十分な有機皇族金属や塩化水素やV族元
素の水素化物を用いず、高N度の皇族金属や■族元素の
三塩化物を用いることができるからであ〉、第二にはク
ロライド法では周知のようKll族金属容器覆うよう#
Ic1−V化合物のクラストが形成され、■族金属中O
n!不純物あるいはp型不純物を閉じ込める作用がある
丸めと考えられている。
The first reason is that, as shown in the 11th DC, the chloride method does not use organic royal metals, hydrogen chloride, or hydrides of group V elements, which are insufficient in terms of purity, and uses high N degree royal metals and group I elements. Second, as is well known in the chloride method, trichloride of #1 can be used to cover the Kll group metal container.
A crust of Ic1-V compounds is formed, and O
n! It is thought that rounding has the effect of trapping impurities or p-type impurities.

OFi使用することを示す。Indicates that OFi is used.

ところが、クロライド法によりて■〜v11晶をつくる
とその組成制御性が悪く、未だ組成制御され、丸曹−v
fa晶はクロライド法によってつくられていない。従来
その原因はあまり追及されず、気相成長法でl−■混晶
をつくる場合Kaおのずからハイドライド法や有機金属
熱分解法が用いられてきた。しかしながら、高純度のI
−Vjl晶をハイドライド法や有機金属法でエピタキシ
ャル成長した例はなく、クロライド法で高関度1−va
晶を気相成長させることが期待されている。
However, when crystals ■~v11 are produced by the chloride method, the controllability of the composition is poor, and the composition is still controlled.
FA crystals are not produced by the chloride method. Hitherto, the cause has not been investigated much, and when a l-■ mixed crystal is produced by a vapor phase growth method, a hydride method or an organometallic thermal decomposition method has been used. However, high purity I
- There are no examples of epitaxial growth of Vjl crystals using the hydride method or organometallic method, and there are no examples of epitaxial growth of Vjl crystals using the chloride method.
It is expected that crystals can be grown in a vapor phase.

本発明はこのような要請のもとに1にされたものであり
、その目的とするところは組成の制御性を大幅に改譬せ
しめることができるI−V半導体気相成長装置を提供す
るととKある0本発明は、■族元素の三基化物蒸気をキ
ャリアガスによりて高温の鳳族金属上に導き反応によっ
て生成しえガスを前記皇族金属より低温の基板上に導き
I−V結晶を前記基板上にエピタキシャル成長させるク
ロライド法気相成長装置であって、前記1族金属容器O
容器縁上をスライドする蓋と外部からこの蓋を操作する
装置を真値することを特徴とするI−■半導体気相成長
装置である。
The present invention was developed in response to these demands, and its purpose is to provide an IV semiconductor vapor phase growth apparatus that can significantly improve the controllability of composition. In the present invention, vapor of a ternary compound of a group element is introduced onto a high-temperature Oto group metal using a carrier gas, and the gas produced by the reaction is introduced onto a substrate at a lower temperature than the above-mentioned Ou group metal to form an IV crystal. A chloride vapor phase growth apparatus for epitaxial growth on the substrate, wherein the Group 1 metal container O
This is a semiconductor vapor phase growth apparatus characterized by a lid that slides over the edge of the container and a device for operating the lid from the outside.

本11@0ように、V族元嵩三塩化物をl族金属上K1
1通させない関I族金属の容器を蓋で書間できるように
し九装置を用いることによって、V族元素を吸収したI
族金属からの■族元素の蒸発による逃欽が抑えられ、ク
ロライド法によって高純度の組成制御され九I−V轟晶
をエピタキシャル成長させることができる。
As in Book 11@0, group V bulk trichloride is added to K1 on group I metal.
By using a container made of a group I metal that cannot be passed through with a lid and using a device that absorbs group V elements,
Escape due to evaporation of group (1) elements from group metals is suppressed, and a high-purity composition can be controlled by the chloride method, making it possible to epitaxially grow I-V crystals.

以下本畿嘴を実施例により詳述する。The Honki beak will be described in detail below using examples.

実施例 嬉111(a)は2本発明を適用した( Inn Ga
 ) As気相成長装置を示すものである。! I I
I (a)の上図は成長装置を上から見九図である。ま
九、第1図(a)の下図は成長装置を横から見た図であ
る。下図では一部省略しである0本発明の特徴である石
英製皇族金属容器1とそO縁上をスライドする石英製蓋
2祉第111(b)Kその詳細を示し丸、l族金属容器
の量を石英製ムり棒3を装置外のムク棒端4を押し引き
することkよって皇族金属を覆っ九シI族金属をガス流
に開放するように下流側にスライドさせることができる
。ステンレスシール5とムり棒3はパイトン1llOリ
ングで固定されているが、0りングにグリースを塗布し
ムク棒を石英製反応管6の軸方向に押し引きできるよう
にしである。支反応管7のl族金属容器にはInが入れ
られ。
In Example 111(a), the present invention was applied (Inn Ga
) This shows an As vapor phase growth apparatus. ! I I
The upper figure in I (a) is a top view of the growth apparatus. The lower figure in FIG. 1(a) is a side view of the growth apparatus. Parts of the figure are omitted in the figure below.The quartz imperial metal container 1, which is a feature of the present invention, and the quartz lid 2, which slides over the edge. By pushing and pulling the quartz bar 3 at the end 4 of the bar outside the device, the quartz bar 3 can be slid downstream so as to cover the Imperial metal and open the Group I metal to the gas flow. The stainless steel seal 5 and the bar 3 are fixed with a Piton 111 O-ring, and the O-ring is coated with grease so that the bar can be pushed and pulled in the axial direction of the quartz reaction tube 6. In is placed in the group I metal container of the branch reaction tube 7.

支反応管8の1族金属容器K FiGaが入れられ丸。Group 1 metal container K of branch reaction tube 8 contains FiGa and is round.

(I酋、 Ga ) As気相成長の実施過−を願を追
りて遮べる。
(I, Ga) The implementation process of As vapor phase growth can be blocked as desired.

(1)  石英製蓋を下流側にスライドさせI!1sp
よび缶をiスmK111*t、InおよびG1を800
°Cに徽定してから導入Xス9.lOを水素ガスからム
aC1゜を會む水素ガスに@夛換えた。このとき基板1
1は基板ホルダ12に置かれていない。
(1) Slide the quartz lid to the downstream side and I! 1sp
and the can is mK111*t, In and G1 are 800
9. Set the temperature to °C before introducing. IO was changed from hydrogen gas to hydrogen gas with a concentration of aC1°. At this time, substrate 1
1 is not placed on the substrate holder 12.

(21InおよびGaK砒素が飽和したのち2石英製置
を上流側にスライドさせてl族金属容器を書間し良。
(After the 21In and GaK arsenic are saturated, slide the quartz holder upstream and place the group I metal container between the two.)

口) 導入ガスを水素ガスに切り換え反応管内温度を室
■まで下げた。
) The introduced gas was changed to hydrogen gas and the temperature inside the reaction tube was lowered to room temperature.

(41IれP基板11を化学エツチング後基板ホルダ1
2に置龜、フォスフイン13を導入しなから璽族金属容
器内のム$飽和InとAs1llllQGaを800°
Cとし= InP基板を700’Cとした。
(After chemically etching the P substrate 11, the substrate holder 1
After introducing phosphine 13, the saturated In and As1llllQGa in the metal container were heated at 800°.
= InP substrate was set at 700'C.

(6) フォスフインの導入を停止して石英製蓋を下流
側に移動させると同時に導入ガスをに*ct、を含む水
素ガスに切シ換えた。導入ガスのムsCL、議度と流量
はIa  Ga  AsがInP基板上に成長するLl
l     @Jマ ようKそれぞれ調整し丸。
(6) At the same time as stopping the introduction of phosphine and moving the quartz lid to the downstream side, the introduced gas was switched to hydrogen gas containing *ct. The introduced gas's CL, intensity and flow rate are Ia and Ll when GaAs is grown on an InP substrate.
l @JMayoK Adjust each circle.

このようにして得られ九(Inn Ga ) As威長
層の成長方向組成変動を5°研摩した画のスキャニング
オージェ分光渋によって測定しえ結果を第2!gに示す
* (Inn Ga )ム$の親戚が成長方向に一定と
なっていることがわかる。比較のため1石英製蓋を下流
側に置いたまま(!)からβ)の過程を実施したときの
(Ine Ga )ムS成長層の成長方向組成変動を一
様K11l定した結果を第31EIK示す、従来法では
■IAs組成が小さくなるとと−に組成が一定せず成長
速度も小さくなることがわかる。これらの結果から1本
発明の装置を用いることによってI−■混晶の組成制御
性が向上することが示された。
The composition fluctuations in the growth direction of the Inn Ga As dominant layer obtained in this way were measured by scanning Auger spectroscopy of the image polished by 5°, and the results are as follows. It can be seen that the relatives of *(InnGa)mu$ shown in g are constant in the growth direction. For comparison, the 31st EIK shows the results of uniformly determining the compositional fluctuations in the growth direction of the (Ine Ga ) S growth layer when processes from (!) to β) were carried out with the quartz lid placed on the downstream side. It can be seen that in the conventional method (1), as the IAs composition decreases, the composition becomes unstable and the growth rate decreases. These results indicate that the use of the apparatus of the present invention improves the controllability of the composition of the I-■ mixed crystal.

第1図(b)K示したように本発明のI−V半導体気相
成長装置のl族金属客器21の綴22は■族金属表面2
3よシ高くなるようにしである0容器縁KFi石英11
1124が落下することのないようIイド25が設けら
れている0石英製蓋には石英製ムク棒26で押し引きす
るための突出1127がある。ムク棒の先端の 状部2
8はムク棒011fiKよりて突出部27の上流側にも
下流側に4m位置できる。第1図(b)の上図は上から
見た−であり下図は横から克た図である。
As shown in FIG. 1(b)K, the binding 22 of the I-group metal material 21 of the IV semiconductor vapor phase growth apparatus of the present invention is the group-I metal surface 2.
0 Container rim KFi quartz 11 which is higher than 3
The quartz lid, which is provided with an I-id 25 to prevent the 1124 from falling, has a protrusion 1127 for pushing and pulling with a quartz bar 26. Shape 2 at the tip of the stick
8 can be located 4 m upstream and downstream of the protrusion 27 from the solid bar 011fiK. The upper figure in FIG. 1(b) is a view from above, and the lower figure is a view from the side.

【図面の簡単な説明】[Brief explanation of the drawing]

jlに1図(a)は本発明を適用した( In、 Ga
 )ムS気相成長装置を示す。 l・・・石英111族金属容器、2・・・石英製蓋、3
・・・石英製ムク棒、4・・・ムク棒端、5・・・ステ
ンレスシール、6・・・石英製反応管、7,8・・・支
反応管、9゜lO・・・導入ガス、11・・・InP基
板、12・・・基板ホルダ、13・・・7オスフイン。 嬉1g1(b)は本発明の客器縁上をスライドする蓋と
外lIからこの量を操作する装置を具備する■族金属容
器を示す。 21・・・I族金属容器、22・・・■族金属容器の縁
。 23・・・■族金属表面、24・・・石英製蓋、25・
・・■族金属容S縁に設けられたガイド、26・・・石
英製ムク棒、27・・・石英製蓋の突出部、28・・・
ムク棒の 状部。 1112図は本発明の方法によりてっくり九(In。 Ga)ムS威長層の斜研摩画スキャニングオージェ分光
橢定の結果を示すものである。 菖311は従来法によってつくった( Inn Ga)
ムS成長層O斜研摩画スキャニングオージェ分光一定の
結果を示すものである。 7・′ 代薯人弁壇士内原  魂、 日 第乙図 スキイニング方向 第3図 ス大イニング″方間
Figure 1 (a) shows the present invention applied to jl (In, Ga
) MuS vapor phase growth apparatus is shown. l...Quartz group 111 metal container, 2...Quartz lid, 3
... Solid quartz rod, 4 ... Solid rod end, 5 ... Stainless steel seal, 6 ... Quartz reaction tube, 7, 8 ... Branch reaction tube, 9゜lO ... Introducing gas , 11... InP substrate, 12... substrate holder, 13... 7 male fins. 1g1(b) shows a group 1 metal container according to the present invention, which is equipped with a lid that slides on the container rim and a device for controlling the volume from the outside. 21... Rim of Group I metal container, 22... Rim of Group ■ metal container. 23...Group metal surface, 24...Quartz lid, 25.
...Guide provided on the edge of the group ■ metal container S, 26... Quartz bar, 27... Projection of quartz lid, 28...
The shape of the bar. FIG. 1112 shows the results of obliquely polished scanning Auger spectroscopy of the Inga Slayer by the method of the present invention. Iris 311 was made by the conventional method (Inn Ga)
The obliquely polished image of the MU S growth layer shows the results of scanning Auger spectroscopy. 7・' The Japanese orator Uchihara Tamashii.

Claims (1)

【特許請求の範囲】[Claims] V族元素の三基化物蒸気をキャリアガスによって高II
O璽族金属上に導き反応によって生成し九ガスを前記l
族金属より低IIO基板上KNIきI−■結晶を前記基
板上にエピタキシャル成員させるりシライド法気相成長
装置であって、mgei族金属容器の容器縁上をスライ
ドする置と外部からこの蓋を操作する装置を具備するこ
とを特徴とする1−V半導体気相成長装置。
The tertiary compound vapor of group V element is converted to high II by using a carrier gas.
The above-mentioned l
A silide method vapor phase growth apparatus is used to epitaxially form a KNI crystal on a substrate with a lower IIO than that of a mgei group metal. 1. A 1-V semiconductor vapor phase growth apparatus comprising an operating apparatus.
JP7487482A 1982-05-04 1982-05-04 Vapor growth device for 3-5 semiconductor Pending JPS58191423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7487482A JPS58191423A (en) 1982-05-04 1982-05-04 Vapor growth device for 3-5 semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7487482A JPS58191423A (en) 1982-05-04 1982-05-04 Vapor growth device for 3-5 semiconductor

Publications (1)

Publication Number Publication Date
JPS58191423A true JPS58191423A (en) 1983-11-08

Family

ID=13559916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7487482A Pending JPS58191423A (en) 1982-05-04 1982-05-04 Vapor growth device for 3-5 semiconductor

Country Status (1)

Country Link
JP (1) JPS58191423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152539A (en) * 1987-07-17 1992-10-06 Koyo Seiko Co., Ltd. Ferrofluid seal apparatus
US5238254A (en) * 1987-07-17 1993-08-24 Koyo Seiko Co., Ltd. Ferrofluid seal apparatus
US5271631A (en) * 1989-05-31 1993-12-21 Atsushi Yokouchi Magnetic fluid seal apparatus
US5730447A (en) * 1995-10-26 1998-03-24 Dawson; Stephen M. Self-aligning magnetic rotary seal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152539A (en) * 1987-07-17 1992-10-06 Koyo Seiko Co., Ltd. Ferrofluid seal apparatus
US5238254A (en) * 1987-07-17 1993-08-24 Koyo Seiko Co., Ltd. Ferrofluid seal apparatus
US5271631A (en) * 1989-05-31 1993-12-21 Atsushi Yokouchi Magnetic fluid seal apparatus
US5730447A (en) * 1995-10-26 1998-03-24 Dawson; Stephen M. Self-aligning magnetic rotary seal

Similar Documents

Publication Publication Date Title
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
US3635771A (en) Method of depositing semiconductor material
JPS58191423A (en) Vapor growth device for 3-5 semiconductor
Hostalek et al. Novel organometallic starting materials for group III–V semiconductor metal-organic chemical vapour deposition
JPS59188118A (en) Manufacture of vapor phase epitaxial crystal
JPH03203228A (en) Semiinsulating garium arsenic formation
JPS5645899A (en) Vapor phase growing method for gallium nitride
Lu et al. Growth of GaSb and GaAsSb in the single phase region by MOVPE
JP2687371B2 (en) Vapor growth of compound semiconductors
IE881006L (en) Allyltelluride and their use in mocvd
JPS57149721A (en) Method of vapor epitaxial growth
JPS5520282A (en) Vapor phase growing method for crystal
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPS5618000A (en) Vapor phase growing method for 3-5 group compound semiconductor
JPS63276215A (en) Vapor growth device
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
Wang et al. Reduction of carbon contamination in triethylphosphorus OMVPE GaP layers by Pt/Al2O3 catalyst
JPH04364720A (en) Method and apparatus for metal organic chemical vapor deposition
JPS6483597A (en) Method for vapor growth of compound semiconductor
JPS58184722A (en) Vapor growth of 3-5 semiconductor
JPS5950100A (en) Method for growing semiconductor of ternary compound in vapor phase
JPH04315420A (en) Organic metallic molecular beam epitaxial growth method and device
JPS6081092A (en) Vapor growth method for thin film of compound semiconductor
JPS63248795A (en) Molecular beam epitaxy
JPS5826655B2 (en) The best way to do it