JPS63248795A - Molecular beam epitaxy - Google Patents

Molecular beam epitaxy

Info

Publication number
JPS63248795A
JPS63248795A JP8235787A JP8235787A JPS63248795A JP S63248795 A JPS63248795 A JP S63248795A JP 8235787 A JP8235787 A JP 8235787A JP 8235787 A JP8235787 A JP 8235787A JP S63248795 A JPS63248795 A JP S63248795A
Authority
JP
Japan
Prior art keywords
raw material
molecular beam
aluminum
beam epitaxy
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8235787A
Other languages
Japanese (ja)
Inventor
Naoki Furuhata
直規 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8235787A priority Critical patent/JPS63248795A/en
Publication of JPS63248795A publication Critical patent/JPS63248795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a crystal with less impurities of carbon by using specified aluminum as the raw material at the time of growing a III-V compd. semiconductor thin film contg. aluminum by the title molecular beam epitaxy method. CONSTITUTION:In the molecular beam epitaxy method using an organometallic compd. as the raw material, the organometallic compd. having at least one hydrogen is used as the raw material for aluminum to grow the III-V compd. semiconductor thin film contg. aluminum. For example, Al(CH3)2H, Al(CH3)H2, etc., can be used as the raw material for aluminum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機金属化合物を原料として用いる分子線エピ
タキシャル成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molecular beam epitaxial growth method using an organometallic compound as a raw material.

〔従来の技術〕[Conventional technology]

近年、 GaAs、 A4GaAs等のm−v族化合物
半導体を用いた高速論理素子、半導体レーザ、光−電子
集積回路(ORIC)の開発が急速に発展し、それに伴
い高度な素子製作プロセスが必要になってきている。
In recent years, the development of high-speed logic devices, semiconductor lasers, and opto-electronic integrated circuits (ORICs) using m-v group compound semiconductors such as GaAs and A4GaAs has progressed rapidly, and as a result, sophisticated device manufacturing processes have become necessary. It's coming.

分子線エピタキシャル成長法(MBE法)は高い真空度
に保たれた成長室内で元素が分子線となり基板に到達す
るため、高精度に膜厚が制御でき、またシャッターの開
閉により分子線をさえぎることができるため、急峻なペ
テロ界面を得られるという特長がある。
In the molecular beam epitaxial growth method (MBE method), elements turn into molecular beams and reach the substrate in a growth chamber maintained at a high degree of vacuum, so the film thickness can be controlled with high precision, and the molecular beams can be blocked by opening and closing a shutter. Therefore, it has the advantage of being able to obtain a steep Peter interface.

しかも不純物の混入が少なく、高品質の■−■族化合物
半導体薄膜が成長できるため、分子線エピタキシャル成
長法は上記のようなデバイス作製には重要な技術である
In addition, the molecular beam epitaxial growth method is an important technique for manufacturing the above-mentioned devices because it can grow a high-quality compound semiconductor thin film of the ■-■ group with less contamination of impurities.

従来分子線源原料としては、 Ga、 AQ等の金属が
用いられ、これをるつぼに入れ、セルの温度を制御する
ことにより適当なビーム強度の分子線を得ていた。
Conventionally, metals such as Ga and AQ have been used as raw materials for molecular beam sources, and a molecular beam with an appropriate beam intensity has been obtained by placing the metals in a crucible and controlling the temperature of the cell.

この方式では、原料によってはセルを1000℃以上の
高温に熱する必要があり、不純物発生や故障の原因にな
っている。さらに原料を交換するために、真空状態を大
気開放する必要があり、これまた不純物混入の問題がお
きる。
In this method, depending on the raw material, it is necessary to heat the cell to a high temperature of 1000° C. or higher, which can cause impurity generation and failure. Furthermore, in order to exchange raw materials, it is necessary to open the vacuum state to the atmosphere, which also causes the problem of contamination with impurities.

そこで、最近11.T、Tsangらにより、金属原料
のかわりに有機金属化合物を用いた分子線エピタキシャ
ル成長方法が試みられている(Journal of 
V−accum  5cience  Technol
ogy  B、  Vol、3  Na2  P−66
6−670、1985)。
So, recently 11. A molecular beam epitaxial growth method using organometallic compounds instead of metal raw materials has been attempted by T. T. and Tsang et al. (Journal of
V-accum 5science Technology
ogy B, Vol, 3 Na2 P-66
6-670, 1985).

この方法は、上記の金属原料の問題を解決できるばかり
でなく、結晶表面の欠陥の低減、選択成長が可能になる
という利点を有している。
This method not only solves the problem of the metal raw material mentioned above, but also has the advantage of reducing defects on the crystal surface and allowing selective growth.

有機金属化合物の中で一般に用いられるものは、■族原
料ではGa1fi料としてトリメチルガリウム(Ga(
CH3)i)、トリエチルガリウム(Ga (cz H
s )) )、AQ原料としてトリメチルアルミニウム
(AM(C)li)z)。
Among organometallic compounds, those commonly used are trimethyl gallium (Ga(
CH3)i), triethylgallium (Ga (cz H
s))), trimethylaluminum (AM(C)li)z) as the AQ raw material.

トリエチルアルミニウム(Affi(C,Hs)i)、
 In原料としてトリメチルインジウム(In(CH3
)i)−トリエチルインジウム(In (C,H8))
 )、■族原料ではAs原料としてトリメチル砒素(A
I(CH3)3)、トリエチル砒素(As(czli)
、 pfi料としてトリメチル燐(P(CH))3)、
トリエチル燐(P(C2Hs)1)等である。なお■族
原料は、有機金属化合物の他に、アルシン(^sH,)
、ホスフィン(P)13 )等の水素化物が用いられる
場合もある。
triethylaluminum (Affi(C,Hs)i),
Trimethylindium (In(CH3
)i)-Triethylindium (In(C,H8))
), trimethyl arsenic (A
I(CH3)3), triethyl arsenic (As(czli)
, trimethyl phosphorus (P(CH))3) as a pfi material,
Triethyl phosphorus (P(C2Hs)1) and the like. In addition to organometallic compounds, group III raw materials include arsine (^sH,)
, phosphine (P) 13 ) and the like may also be used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した有機金属化合物を用いたMBE法において、G
aAsあるいはInGaAs等、Ga原料とIn原料に
有機金属化合物を用いた結晶は純度の良いものが得られ
ているが、AQAs、 AQGaAs等、^Q原料に有
機金属化合物を用いたものは純度がきわめて悪く、高濃
度のP型を示す。
In the MBE method using the above-mentioned organometallic compound, G
Crystals using organometallic compounds as the Ga and In raw materials, such as aAs or InGaAs, have good purity, but crystals that use organometallic compounds as the ^Q raw materials, such as AQAs and AQGaAs, have extremely high purity. It is bad and shows a high concentration of P type.

有機金属化合物は、基板上もしくは基板近傍で分解し、
有機を1つないし2つ持った中間生成物の形で基板に吸
着すると言われている。例えば、Ga(CH3)3を例
にとると、モノメチルガリウム(GaCH3)、ジメチ
ルガリウム(Ga (CH3)a )になり、基板に吸
着する。これらの有機は■族原料と反応することにより
脱離する。しかし、AQ (CL )3− AQ(C2
H9)3のようなAΩを含む有機金属化合物は、有機と
金属の結合エネルギーが大きく、V族原料と反応しても
、有機が脱離せず、結晶内に残り、これがカーボンアク
セプタの原因となり、高いP型になるという問題がおき
る。
Organometallic compounds decompose on or near the substrate,
It is said that it is adsorbed to the substrate in the form of an intermediate product containing one or two organic molecules. For example, taking Ga(CH3)3 as an example, it becomes monomethylgallium (GaCH3) and dimethylgallium (Ga(CH3)a), which are adsorbed to the substrate. These organics are eliminated by reacting with the group (Ⅰ) raw material. However, AQ(CL)3-AQ(C2
In organometallic compounds containing AΩ such as H9)3, the bonding energy between the organic and the metal is large, so even if it reacts with the V group raw material, the organic does not desorb and remains in the crystal, which causes carbon acceptors. The problem arises that it becomes a high P type.

本発明の目的は前記問題点を解消した分子線エピタキシ
ャル成長方法を提供することにある。
An object of the present invention is to provide a molecular beam epitaxial growth method that eliminates the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は有機金属化合物を原料として用いる分子線エピ
タキシャル成長法において、アルミニウムの原材料に少
なくとも1つの水素基を有する有機金属化合物を用いて
、アルミニウムを含むm−■族化合物半導体薄膜を成長
させることを特徴とする分子線エピタキシャル成長方法
である。
The present invention is characterized in that, in a molecular beam epitaxial growth method using an organometallic compound as a raw material, an organometallic compound having at least one hydrogen group is used as the aluminum raw material to grow an m-■ group compound semiconductor thin film containing aluminum. This is a molecular beam epitaxial growth method.

〔作用〕[Effect]

本発明はAQ原料としてAQ(CH−)i−AQ(Cz
Hs)iを用いず、少なくとも1つの水素基を有する有
機金属化合物、例えばジメチルアルミニウムハイドライ
ドAl2(CFI、)2H,モノメチルアルミニウムハ
イドライドAMCH,)El、等を用いることを特徴と
している。
The present invention uses AQ(CH-)i-AQ(Cz
Hs)i is not used, but an organometallic compound having at least one hydrogen group, such as dimethylaluminum hydride Al2 (CFI, )2H, monomethylaluminum hydride AMCH, )El, etc. is used.

AQ原料として、水素基を有する有機金属化合物を用い
ることにより、AQの吸着種は、有機よりも結合エネル
ギーの大きい水素化アルミニウムAQ−Hという形にな
り、結晶内に、カーボンを取り込む原因を排除できる。
By using an organometallic compound with a hydrogen group as the AQ raw material, the adsorbed species of AQ becomes aluminum hydride AQ-H, which has a higher binding energy than organic, eliminating the cause of carbon incorporation into the crystal. can.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に用いられる装置の概略図であ
る。本装置は、超高真空度に保持される成長室1と、成
長室1内を排気する排気袋W2と、加熱機構を装備した
基板ホルダー3と、ヌードイオンゲージ4と、■族原料
導入口5及びV族原料導入口6と、各導入口5,6への
原料の流量を制御するマスフローコントローラ7.8.
9により構成されている。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the invention. This device consists of a growth chamber 1 maintained at an ultra-high degree of vacuum, an exhaust bag W2 for evacuating the inside of the growth chamber 1, a substrate holder 3 equipped with a heating mechanism, a nude ion gauge 4, and a group III raw material inlet. 5 and V group raw material inlet 6, and a mass flow controller 7.8 that controls the flow rate of the raw material to each of the inlets 5 and 6.
9.

本実施例では、Ga原料としてGa(CI(、)、、A
Q原料としてAQCCHs)tH,As原料としてAs
H,を用いAQGaAsの成長を試みた。また、その流
量は、Ga(CHi)3がice/+ain、 AQ(
CHz)zHが0.5oc/wain、 AsH,が1
0 cc /+minに制御して半絶縁性GaAs基板
上に44の^Q0.3Ga、、7Asを成長させた。
In this example, Ga (CI(,), ,A
AQCCHs) tH as Q raw material, As as raw material
We attempted to grow AQGaAs using H. In addition, the flow rate is as follows: Ga(CHi)3 is ice/+ain, AQ(
CHz)zH is 0.5oc/wain, AsH, is 1
44^Q0.3Ga, 7As were grown on a semi-insulating GaAs substrate by controlling the growth rate to 0 cc/+min.

成長した結晶のホール測定をしたところ、室温でI X
IO”(01−’)のキャリア濃度のP型結晶が得られ
、従来と比較して高純度のAQGaAsであった。
Hall measurements of the grown crystal showed that I
A P-type crystal with a carrier concentration of IO''(01-') was obtained, and was AQGaAs with a higher purity than the conventional one.

第2図はこの結晶の4.2Kにおけるフォトルミネッセ
ンス評価(PL)の結果を示すものである。本実施例で
は、点線で示す従来例と比較してカーボンアクセプタに
よるピークが小さく、カーボンの混入がおさえられてい
ることがわかる。
FIG. 2 shows the results of photoluminescence evaluation (PL) of this crystal at 4.2K. In this example, compared to the conventional example shown by the dotted line, the peak due to carbon acceptors is smaller, and it can be seen that the contamination of carbon is suppressed.

本実施例は1QGaAsについて記述したが、AQを含
む他のm−v族化合物混晶、およびAQAs/GaAs
のような超格子を成長させる場合でも同様な結果が得ら
れる。
Although this example describes 1QGaAs, other m-v group compound mixed crystals including AQ, and AQAs/GaAs
Similar results can be obtained when growing superlattices such as

また、u(cut)inの代わりに水素基を持った他の
有機金属化合物を用いてもよい。
Further, other organometallic compounds having a hydrogen group may be used instead of u(cut)in.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の分子線エピタキシャル成
長方法により、AQを含む■−■族化合物半導体薄膜を
成長させる際、カーボン不純物の少ない結晶を得ること
ができる効果がある。
As explained above, the molecular beam epitaxial growth method of the present invention has the effect of making it possible to obtain crystals with less carbon impurities when growing a thin film of a compound semiconductor containing AQ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いら″れる装置の概略図、
第2図は本発明の効果を示す4.2にのPL特性図であ
る。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention;
FIG. 2 is a PL characteristic diagram of 4.2 showing the effect of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)有機金属化合物を原料として用いる分子線エピタ
キシャル成長法において、アルミニウムの原材料に少な
くとも1つの水素基を有する有機金属化合物を用いて、
アルミニウムを含むIII−V族化合物半導体薄膜を成長
させることを特徴とする分子線エピタキシャル成長方法
(1) In the molecular beam epitaxial growth method using an organometallic compound as a raw material, an organometallic compound having at least one hydrogen group is used as the aluminum raw material,
A molecular beam epitaxial growth method characterized by growing a III-V group compound semiconductor thin film containing aluminum.
JP8235787A 1987-04-02 1987-04-02 Molecular beam epitaxy Pending JPS63248795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8235787A JPS63248795A (en) 1987-04-02 1987-04-02 Molecular beam epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8235787A JPS63248795A (en) 1987-04-02 1987-04-02 Molecular beam epitaxy

Publications (1)

Publication Number Publication Date
JPS63248795A true JPS63248795A (en) 1988-10-17

Family

ID=13772329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8235787A Pending JPS63248795A (en) 1987-04-02 1987-04-02 Molecular beam epitaxy

Country Status (1)

Country Link
JP (1) JPS63248795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122278A (en) * 1989-09-09 1991-05-24 Canon Inc Formation of deposited film
JPH03122279A (en) * 1989-09-09 1991-05-24 Canon Inc Formation of deposited film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025910A (en) * 1973-03-27 1975-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025910A (en) * 1973-03-27 1975-03-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122278A (en) * 1989-09-09 1991-05-24 Canon Inc Formation of deposited film
JPH03122279A (en) * 1989-09-09 1991-05-24 Canon Inc Formation of deposited film

Similar Documents

Publication Publication Date Title
US5338389A (en) Method of epitaxially growing compound crystal and doping method therein
US4404265A (en) Epitaxial composite and method of making
US4368098A (en) Epitaxial composite and method of making
US6218280B1 (en) Method and apparatus for producing group-III nitrides
Miller et al. Metalorganic chemical vapor deposition
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JPH01232732A (en) Semiconductor crystal manufacturing process
JPS63248795A (en) Molecular beam epitaxy
EP0439064A1 (en) Method of epitaxially growing compound crystal and doping method therein
JP3242571B2 (en) Vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2821563B2 (en) Compound crystal epitaxial growth method and doping method thereof
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
EP0197452B1 (en) Method for producing high quality epitaxial layers by molecular beam epitaxy
Agrawal et al. Epitaxy and Material Parameters of InGaAsP
JPH01173708A (en) Semiconductor device
Capper et al. incepal rech. Methods and watering
JPH02288222A (en) Growth method of iii-v compound semiconductor
JPH0566356B2 (en)
JPH07122507A (en) Semiconductor manufacturing device
Mullin Single crystal growth II: epitaxial growth
Dennington et al. Use of phenylarsine in the atmospheric pressure metal organic chemical vapour deposition of GaAs on Si (100)
JPH01286991A (en) Method for molecular-beam epitaxial growth and apparatus therefor