JPS63275827A - Vibrationproofing method using liquid sealing mounting device - Google Patents
Vibrationproofing method using liquid sealing mounting deviceInfo
- Publication number
- JPS63275827A JPS63275827A JP10655787A JP10655787A JPS63275827A JP S63275827 A JPS63275827 A JP S63275827A JP 10655787 A JP10655787 A JP 10655787A JP 10655787 A JP10655787 A JP 10655787A JP S63275827 A JPS63275827 A JP S63275827A
- Authority
- JP
- Japan
- Prior art keywords
- frequency range
- vibration
- fluid
- chamber
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title abstract description 6
- 238000000034 method Methods 0.000 title description 7
- 238000007789 sealing Methods 0.000 title 1
- 239000012530 fluid Substances 0.000 claims abstract description 49
- 238000005192 partition Methods 0.000 claims abstract description 29
- 230000009471 action Effects 0.000 claims abstract description 11
- 229920001971 elastomer Polymers 0.000 claims description 19
- 238000002955 isolation Methods 0.000 claims description 13
- 238000013016 damping Methods 0.000 claims description 10
- 230000004308 accommodation Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 24
- 230000033001 locomotion Effects 0.000 abstract description 6
- 239000002184 metal Substances 0.000 description 31
- 230000008901 benefit Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/22—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper characterised by comprising also a dynamic damper
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Combined Devices Of Dampers And Springs (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、自動車用エンジンマウント等の流体封入式マ
ウント装置を用いた防振方法に係り、特に従来よりも広
い周波数域の入力振動に対して良好な防振効果を発揮さ
せるための防振方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a vibration isolation method using a fluid-filled mount device such as an automobile engine mount, and particularly relates to a vibration isolation method using a fluid-filled mount device such as an automobile engine mount. This invention relates to an anti-vibration method for achieving an anti-vibration effect.
(従来技術)
自動車用エンジンマウント等のマウント装置を用いて振
動伝達の抑制が図られる振動系では、一般に、マウント
装置を介して連結される二つの部材間に入力される振動
に対して、広い周波数域で良好な防振効果を発揮するこ
とが要求される。また、特に、低周波数域の大振幅振動
に対して充分な減衰効果を発揮することが要求される。(Prior art) In vibration systems in which vibration transmission is suppressed using a mounting device such as an automobile engine mount, there is generally a wide range of resistance to vibration input between two members connected via the mounting device. It is required to exhibit good vibration isolation effects in the frequency range. In addition, it is particularly required to exhibit a sufficient damping effect against large-amplitude vibrations in a low frequency range.
そのため、近年において、(a)振動入力方向において
対向するように配置された第一および第二の支持体と、
(b)該第一および第二の支持体間に介装されて、それ
らを弾性的に連結するゴム弾性体と、(C)前記第二の
支持体に配設されて、前記第一の支持体との間に流体収
容空間を形成する、少なくとも一部が弾性膜で構成され
た隔壁部材と、(d)該流体収容空間内に封入された所
定の非圧縮性流体と、(e)前記流体収容空間を前記第
一の支持体側の受圧室と前記隔壁部材側の平衡室とに仕
切る仕切部材と、(f)該受圧室と該平衡室とを相互に
連通せしめる絞り通路と、(g)前記受圧室および平衡
室内の流体圧差に応じてそれらの対向方向に所定量変形
乃至は変位し得るように配設された可動部材と、(h)
前記受圧室を前記第一の支持体側の室部分と前記仕切部
材側の室部分とに略2介する状態で、前記第一の支持体
から該受圧室内に突出せしめられた作動部材とを備えた
、所謂流体封入式のマウント装置を用いて、かかる流体
封入式マウント装置の第一および第二の支持体をそれぞ
れ振動の伝達される二つの部材に取り付けることにより
、非圧縮性流体が前記絞り通路を通じて流動することに
基づいて、それら二つの部材間に人力される振、動のう
ちの第一の周波数域の振動を、また前記可動部材が変形
乃至は変位することに基づいて、該第一の周波数域より
も高い第二の周波数域の振動を、さらに非圧縮性流体が
前記作動部材と前記受圧室の内壁との間に形成される間
隙部を流動することに基づいて、該第二の周波数域より
も更に高い第三の周波数域の振動を、それぞれ遮断乃至
は減衰させることが提案されている。Therefore, in recent years, (a) first and second supports arranged to face each other in the vibration input direction;
(b) a rubber elastic body interposed between the first and second supports to elastically connect them; and (C) a rubber elastic body disposed on the second support and connected to the first support. (d) a predetermined incompressible fluid sealed in the fluid accommodation space; (e) a partition member that partitions the fluid accommodation space into a pressure receiving chamber on the first support side and an equilibrium chamber on the partition wall member side; (f) a throttle passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other; g) a movable member disposed so as to be deformed or displaced by a predetermined amount in opposing directions in accordance with the fluid pressure difference within the pressure receiving chamber and the equilibrium chamber, and (h)
an actuating member protruding into the pressure receiving chamber from the first support in a state in which the pressure receiving chamber is interposed approximately two times between the chamber portion on the first support side and the chamber portion on the partition member side. By using a so-called fluid-filled mounting device and attaching the first and second supports of the fluid-filled mounting device to two members to which vibrations are transmitted, the incompressible fluid flows into the throttle passage. Based on the fact that the movable member is deformed or displaced, the vibration in the first frequency range of the vibration or motion that is manually applied between the two members is vibration in a second frequency range higher than the frequency range of the second frequency range based on the fact that an incompressible fluid flows through a gap formed between the actuating member and the inner wall of the pressure receiving chamber. It has been proposed to block or attenuate vibrations in a third frequency range higher than the above frequency range.
このようにすれば、マウント装置を介して連結される二
つの部材間に入力される振動のうち、上記第一、第二お
よび第三の周波数域に対応した、互いに異なる三つの周
波数域の人力振動に対して良好な防振効果を発揮させる
ことができるのであり、また第一の周波数域を低い周波
数に設定するごとにより、低周波大振幅の人力振動に対
して充分良好な減衰効果を発揮させることができるので
ある。In this way, among the vibrations input between the two members connected via the mount device, human power in three different frequency ranges corresponding to the first, second and third frequency ranges can be applied. It can exhibit a good vibration damping effect against vibrations, and by setting the first frequency range to a low frequency, it can exhibit a sufficiently good damping effect against low frequency and large amplitude human vibrations. It is possible to do so.
(問題点)
しかしながら、かかる流体封入式マウント装置を用いた
従来の防振手法では、前記第三の周波数域の入力振動に
対する防振効果が、良く知られているように、前記マウ
ント装置の作動部材と受圧室内壁との間の間隙部を流動
する非圧縮性流体の液柱共振作用に基づいて得られるも
のであるところから、その第三の周波数域よりも高い周
波数域の振動入力時において、非圧縮性流体がその間隙
部を流動し難くなり、そのことに起因して、マウント装
置の動バネ定数、ひいては振動伝達率が著しく高くなっ
て、防振機能が大幅に低下するといった問題があった。(Problem) However, in the conventional vibration isolation method using such a fluid-filled mounting device, the vibration isolation effect against the input vibration in the third frequency range is limited to the operation of the mounting device, as is well known. This is obtained based on the liquid column resonance effect of the incompressible fluid flowing in the gap between the member and the wall of the pressure-receiving chamber, so when vibration is input in a frequency range higher than the third frequency range, , it becomes difficult for the incompressible fluid to flow through the gap, and as a result, the dynamic spring constant of the mounting device and, by extension, the vibration transmissibility increase significantly, resulting in a significant reduction in the vibration isolation function. there were.
例えば、自動車用エンジンマウントでは、一般に、非圧
縮性流体が絞り通路を通じて流動すること、および可動
部材が変形乃至は変位することに基づいて、200 H
z程度以下の入力振動の減衰乃至は遮断が図られる一方
、非圧縮性流体が作動部材と受圧室内壁との間の間隙部
を流動することに基づいて、200〜4001−1 z
程度の周波数域(第三の周波数域)の入力振動の減衰が
図られることとなるが、この場合には、400Hz程度
以上の周波数域において振動伝達率が著しく大きくなる
ことが避は得なかったのである。For example, in automobile engine mounts, the 200 H
200 to 4001-1 z based on the fact that the incompressible fluid flows through the gap between the actuating member and the wall of the pressure-receiving chamber while attenuating or blocking input vibrations of about z or less.
Attenuation of input vibration in a frequency range of about 400 Hz (third frequency range) will be attempted, but in this case, it is inevitable that the vibration transmissibility will become significantly large in a frequency range of about 400 Hz or higher. It is.
なお、自動車用エンジンマウントでは、通常、500H
z程度以下の入力振動に対して良好な防振効果を発揮す
るようになっていればよいため、第三の周波数域を高周
波側にシフトして300〜500 )(z程度の人力振
動に対して良好な防振効果を発揮させるようにすれば、
第三の周波数域よりも高い周波数域において振動伝達率
がたとえ大幅に上昇しても、そのことがそれほど問題と
なることはないのであるが、この場合には、200〜3
00Hz程度の周波数域において、振動伝達率が大幅に
上昇してしまうといった不具合があるのである。Note that automotive engine mounts are usually 500H.
It is sufficient that the third frequency range is shifted to the high frequency side, as long as it exhibits a good vibration isolation effect against input vibrations of about z or below. If you use it to achieve a good vibration-proofing effect,
Even if the vibration transmissibility increases significantly in a frequency range higher than the third frequency range, this does not pose much of a problem;
There is a problem in that the vibration transmissibility increases significantly in the frequency range of about 00 Hz.
(解決手段)
本発明は、このような事情を背景として為されたもので
あり、その要旨とするところは、前述の如き、(a)第
一および第二の支持体と、(b)ゴム弾性体と、(c)
隔壁部材と、(d)非圧縮性流体と、(e)仕切部材と
、(f)絞り通路と、(g)可動部材と、(h)作動部
材とを備えた流体封入式マウント装置を用いて、その第
一および第二の支持体をそれぞれ振動の伝達される二つ
の部材に取り付け、それら二つの部材間の振動伝達を抑
制するに際して、流体封入式マウント装置の作動部材を
、第一の支持体に対して、所定の弾性部材を介して弾性
的に支持せしめると共に、該作動部材を所定の質量を有
するマス部材となして、該作動部材にダンパ作用を発揮
させることにより、非圧縮性流体が絞り通路を通じて流
動することに基づいて、第一の周波数域の入力振動を、
また可動部材が変形乃至は変位することに基づいて、該
第一の周波数域よりも高い第二の周波数域の人力振動を
、それぞれ減衰乃至は遮断せしめるようにする一方、非
圧縮性流体が作動部材と受圧室の内壁との間に形成され
る間隙部を流動することに基づいて、上記第二め周波数
域よりも高い第三の周波数域の入力振動を、また作動部
材のダンパ作用に基づいて、該第三の周波数域よりも更
に高い第四の周波数域の入力振動を、それぞれ減衰乃至
は遮断せしめるようにしたことにある。(Solution Means) The present invention has been made against the background of the above-mentioned circumstances, and its gist is to provide (a) first and second supports, and (b) rubber as described above. (c) an elastic body;
Using a fluid-filled mounting device comprising a partition wall member, (d) an incompressible fluid, (e) a partition member, (f) a throttle passage, (g) a movable member, and (h) an actuating member. When the first and second supports are respectively attached to two members to which vibrations are transmitted and the vibration transmission between the two members is suppressed, the actuating member of the fluid-filled mounting device is attached to the first member. By elastically supporting the support body through a predetermined elastic member, and by making the actuating member a mass member having a predetermined mass and causing the actuating member to exert a damper action, the non-compressible Based on the fluid flowing through the constriction passage, the input vibration in the first frequency range is
Furthermore, based on the deformation or displacement of the movable member, human vibration in a second frequency range higher than the first frequency range is damped or blocked, respectively, while the incompressible fluid is activated. Based on the flow through the gap formed between the member and the inner wall of the pressure-receiving chamber, input vibration in a third frequency range higher than the second frequency range is generated, and based on the damper action of the actuating member. Therefore, input vibrations in a fourth frequency range higher than the third frequency range are respectively attenuated or blocked.
(作用・効果)
かかる本発明手法に従えば、従来手法と同様、第一、第
二および第三の互いに異なる三つの周波数域の人力振動
に対して良好な防振効果を発揮できることは勿論、作動
部材のダンパ作用に基づいて、それらよりも更に高い第
四の周波数域の人力振動に対しても良好な防振効果を発
揮させることができるのであり、従って従来よりも広い
周波数域の入力振動に対して良好な防振効果を発揮させ
ることが可能となるのでる。(Operation/Effect) According to the method of the present invention, it is possible to exhibit good vibration isolation effects against human vibrations in the first, second, and third frequency ranges, which are different from each other, as with the conventional method. Based on the damper action of the actuating member, it is possible to exhibit a good vibration isolation effect even against human vibrations in the fourth frequency range, which is even higher than those, and therefore, it is possible to exhibit input vibrations in a wider frequency range than before. This makes it possible to exhibit good vibration damping effects.
しかも、本発明手法に従えば、入力振動の周波数が第四
の周波数域よりも高くなると、第一の支持体の第二の支
持体に対する相対移動に拘わらず、作動部材が第二の支
持体に対して略一定の位置に保持されるようになり、作
動部材と仕切部材との間に位置する受圧室の掌部分にお
ける流体圧の上昇が良好に抑制されるようになるため、
作動部材が第一の支持体に対して位置固定に支持される
場合に比べて、動バネ定数、ひいては振動伝達率の上昇
が著しく抑制されるいった利点があるのであり、従って
第三の周波数域よりも高い周波数域における防振特性を
、前記従来手法に比べて、大幅に向上させることができ
るといった利点もあるのである。Moreover, according to the method of the present invention, when the frequency of the input vibration becomes higher than the fourth frequency range, the actuating member moves to the second support regardless of the relative movement of the first support with respect to the second support. , and the increase in fluid pressure in the palm portion of the pressure receiving chamber located between the actuating member and the partition member is effectively suppressed.
Compared to the case where the actuating member is supported in a fixed position with respect to the first support body, there is an advantage that an increase in the dynamic spring constant and eventually the vibration transmissibility is significantly suppressed, and therefore the third frequency It also has the advantage that the vibration damping characteristics in a frequency range higher than the above-mentioned frequency range can be significantly improved compared to the conventional method.
なお、実開昭6O−6153J号公報には、所定の質量
を有するマス部材が第一の支持体に対してゴム弾性部材
によって弾性的に支持されて、ダンパ作用を発揮するよ
うにされた、本発明手法の実施に際して用いられる流体
封入式マウント装置と略同様の構造の流体封入式マウン
ト装置(エンジンマウント)が開示されているが、かか
る公(長に開示されている流体封入式マウント装置にあ
っては、低乃至は中周波数域の入力振動に対する防振効
果の向上を図ることを目的として、マス部材の固有振動
数が200 t(z以下(一般には、100Hz以下)
の周波数に設定されるようになっていることから、前記
従来のマウント装置と同様の問題、すなわらマス部材と
受圧室内壁との間の間隙部についての設定周波数域(第
三の周波数域)よりも高い周波数域において、振動伝達
率が著しく大きくなるといった問題を内在しているので
あり、それ故、本発明と同様の効果を達成することは、
到底できなかったのである。In addition, in Japanese Utility Model Application Publication No. 6O-6153J, a mass member having a predetermined mass is elastically supported by a rubber elastic member with respect to a first support body, so as to exert a damper action. A fluid-filled mount device (engine mount) having a structure substantially similar to that of the fluid-filled mount device used in carrying out the method of the present invention has been disclosed; In some cases, the natural frequency of the mass member is 200 t (z or less (generally 100 Hz or less)) in order to improve the vibration isolation effect against input vibration in the low to medium frequency range.
Since the frequency is set to the frequency of ), there is an inherent problem that the vibration transmissibility becomes significantly large in a frequency range higher than that of
I just couldn't do it.
(実施例)
以下、本発明をより一層具体的に明らかにするために、
その幾つかの実施例を図面に基づいて詳細に説明する。(Example) Hereinafter, in order to clarify the present invention more specifically,
Some embodiments thereof will be described in detail based on the drawings.
先ず、第1図には、本発明の実施に用いて好適な流体封
入式マウント装置であるエンジンマウントの一例が示さ
れている。その図において、10゜12は、それぞれ、
第一および第二の支持体としての第一および第二の支持
金具であって、振動入力方向(図中上下方向)で所定の
距離を隔てて対向する状態で配置されている。First, FIG. 1 shows an example of an engine mount which is a fluid-filled mount device suitable for use in implementing the present invention. In the figure, 10°12 are respectively
First and second supporting metal fittings serving as first and second supporting bodies are arranged to face each other with a predetermined distance apart in the vibration input direction (vertical direction in the figure).
第一の支持金具10は、比較的小径の円錐台形状を成し
ており、その円錐台の頂部側が第二の支持金具12と対
面するように配置されている。一方、第二の支持金具1
2は、開口部に外向きのフランジ部14を備えた容器状
の底部金具16と、軸心方向の一端部にカシメ部18を
備えた略円筒状のカシメ金具20とから成っており、カ
シメ金具20がカシメ部18において底部金具I6のフ
ランジ部14にカシメ固定された袋状の構造を有してい
る。そして、この第二の支持金具12ば、図示のように
、その内部空間が第一の支持金具10側に開口する状態
で、該第一の支持金具IOと同心的に配置されている。The first support fitting 10 has a truncated cone shape with a relatively small diameter, and is arranged so that the top side of the truncated cone faces the second support fitting 12. On the other hand, the second support fitting 1
2 consists of a container-shaped bottom metal fitting 16 with an outward flange 14 at its opening, and a substantially cylindrical caulking metal fitting 20 with a caulking part 18 at one end in the axial direction. The metal fitting 20 has a bag-like structure in which the metal fitting 20 is caulked and fixed to the flange portion 14 of the bottom metal fitting I6 at a caulking portion 18. As shown in the figure, the second support metal fitting 12 is arranged concentrically with the first support metal fitting IO, with its internal space opening toward the first support metal fitting 10 side.
そして、ここでは、略テーパ筒状を呈するゴム弾性体2
2が、その小径側の端部において第一の支持金具lOの
側面部に一体加硫接着されると共に、その大径側の端部
において、第二の支持金具12の開口部内面に一体に加
硫接着されて配設されており、第一の支持金具IOと第
二の支持金具12とがこのゴム弾性体22によって弾性
的に連結せしめられている。Here, the rubber elastic body 2 has a substantially tapered cylindrical shape.
2 is integrally vulcanized and bonded to the side surface of the first support fitting 10 at the end on the small diameter side, and integrally attached to the inner surface of the opening of the second support fitting 12 at the end on the large diameter side. The first support metal fitting IO and the second support metal fitting 12 are vulcanized and bonded, and the first support metal fitting IO and the second support metal fitting 12 are elastically connected by this rubber elastic body 22.
なお、第一の支持金具10と第二の支持金具12の底部
金具16とには、それぞれ外方(上方および下方)に突
出する状態で取付ポル1−24.26が立設されている
。そして、本実施例におけるエンジンマウントは、第一
の支持金具10の取付ボルト24においてエンジン側に
取り付けられると共に、第二の支持金具12の取付ボル
ト26において車体側に取り付けられることにより、エ
ンジン乃至はエンジンを含むパワーユニット(以下、単
にパワーユニットという)を車体に対して防振支持せし
めるようになっている。Incidentally, mounting poles 1-24 and 26 are erected on the bottom metal fittings 16 of the first support metal fitting 10 and the second support metal fitting 12, respectively, in a state of protruding outward (upward and downward). The engine mount in this embodiment is attached to the engine side using the mounting bolts 24 of the first support fitting 10, and is attached to the vehicle body side using the mounting bolts 26 of the second support fitting 12. A power unit (hereinafter simply referred to as a power unit) including an engine is supported against vibration against the vehicle body.
また、図示されているように、ここでは、ゴム弾性体2
2内に一体にテーパ金具28が埋設されており、このテ
ーパ金具28によって、ゴム弾性体22、ひいてはエン
ジンマウントの軸直角方向の剛性が高められるようにな
っている。Moreover, as shown in the figure, here, the rubber elastic body 2
A tapered metal fitting 28 is integrally embedded within the rubber elastic body 22, and the rigidity of the engine mount in the direction perpendicular to the axis is increased by this tapered metal fitting 28.
ここにおいて、前記第二の支持金具12には、図示のよ
うに、底部金具16とカシメ金具20との間で周縁部を
流体密に保持された状態で、ゴム弾性膜から成る隔壁部
材としてのダイヤフラム30が配設されており、これに
より、該ダイヤフラム30と第一の支持金具lOとの間
に位置して、流体収容空間としての密閉空間が形成され
ている。Here, as shown in the figure, the second support fitting 12 has a peripheral portion held fluid-tight between the bottom metal fitting 16 and the caulking metal fitting 20, and serves as a partition member made of a rubber elastic membrane. A diaphragm 30 is disposed, and a sealed space serving as a fluid storage space is formed between the diaphragm 30 and the first support fitting IO.
そして、かかる密閉空間内に、水、ポリアルキレングリ
コール、シリコーン油等の所定の非圧縮性流体が封入さ
れている。A predetermined incompressible fluid such as water, polyalkylene glycol, silicone oil, etc. is sealed within this sealed space.
また、第二の支持金具12には、底部金具16とカシメ
金具20との間で周縁部を流体密に保持されて、仕切部
材32が配設されており、この仕切部材32によって、
上記流体収容空間が第一の支持金具10側の受圧室34
とダイヤフラム30側の平衡室36とに仕切られている
。そして、この仕切部材32の外周部に、それら受圧室
34と平衡室36とを相互に連通せしめる状態で、周方
向の絞り通路38が形成されており、それら受圧室34
および平衡室36内の非圧縮性流体がかかる絞り通路3
8を通じて相互に流動し得るようにされている。また、
かかる仕切部材32の中央部には、所定面積および厚さ
の円盤状の空間が形成されており、この空間内に収容さ
れて、ゴム材料等からなる可動部材としての可動板40
が配設されている。そして、受圧室34と平衡室36と
の間に流体圧差が生じたとき、ごの可動(反40がそれ
ら受圧室34と平衡室36との対向方向に所定量移動(
変位)し得るようにされている。Further, a partition member 32 is disposed on the second support fitting 12, the peripheral edge of which is held fluid-tight between the bottom metal fitting 16 and the caulking metal fitting 20.
The fluid accommodation space is the pressure receiving chamber 34 on the first support fitting 10 side.
and an equilibrium chamber 36 on the diaphragm 30 side. A circumferential throttle passage 38 is formed on the outer periphery of the partition member 32 to allow the pressure receiving chamber 34 and the equilibrium chamber 36 to communicate with each other.
and the throttle passage 3 through which the incompressible fluid in the equilibrium chamber 36 flows.
8 so that they can flow into each other. Also,
A disk-shaped space with a predetermined area and thickness is formed in the center of the partition member 32, and a movable plate 40 as a movable member made of a rubber material or the like is accommodated in this space.
is installed. When a fluid pressure difference occurs between the pressure receiving chamber 34 and the equilibrium chamber 36, the cylinder 40 moves by a predetermined amount in the direction facing the pressure receiving chamber 34 and the equilibrium chamber 36.
displacement).
そして、ここでは、絞り通路38についての設定周波数
域が低周波数の第一の周波数域に設定され、非圧縮性流
体が絞り通路38を流動することに基づいて、エンジン
シェイク等の低周波数域の大振幅振動が良好に減衰せし
められるようになっていると共に、可動板40について
の設定周波数域が中周波数域の第二の周波数域に設定さ
れて、可動板40が受圧室34と平衡室36との対向方
向に移動するごとに基づいて、こもり音等の中周波数域
の比較的振幅の小さい振動が良好に遮断せしめられるよ
うになっており、これにより、従来と同様に、200
Hz程度以下の周波数域の振動が良好に減衰乃至は遮断
せしめられるようになっている。Here, the set frequency range for the throttle passage 38 is set to a first frequency range of low frequency, and based on the fact that the incompressible fluid flows through the throttle passage 38, the frequency range of the throttle passage 38 is set to a first frequency range of low frequency, and based on the fact that the incompressible fluid flows through the throttle passage 38, Large-amplitude vibrations can be well damped, and the set frequency range for the movable plate 40 is set to a second frequency range in the medium frequency range, so that the movable plate 40 is connected to the pressure receiving chamber 34 and the equilibrium chamber 36. Based on the movement in the direction opposite to the
Vibration in a frequency range of about Hz or less can be effectively damped or blocked.
なお、仕切部材32は、ここでは、第一および第二の仕
切′金具42.44が重ね合わされた構造を有しており
、それら仕切金具42.44の重ね合わせによって前記
絞り通路38が形成されていると共に、前記可動板40
を収容する空間が形成されている。また、それら仕切金
具42.44には、それぞれ、可動板40の収容空間を
受圧室34および平衡室36に連通せしめる通孔46が
形成されており、受圧室34および平衡室36の流体圧
がそれら通孔46を通じて可動板40に作用せしめられ
るようになっている。Note that the partition member 32 here has a structure in which first and second partition fittings 42 and 44 are overlapped, and the throttle passage 38 is formed by the overlap of these partition fittings 42 and 44. and the movable plate 40
A space is created to accommodate the. In addition, a through hole 46 is formed in each of the partition fittings 42 and 44 to communicate the accommodation space of the movable plate 40 with the pressure receiving chamber 34 and the equilibrium chamber 36, so that the fluid pressure in the pressure receiving chamber 34 and the equilibrium chamber 36 is controlled. It is made to act on the movable plate 40 through these through holes 46.
一方、前記第一の支持金具10の下面には、受圧室34
内に突出する状態で、先端側はど径の大きいテーバ筒状
に巻かれた所定長さのコイルノ\ネ48が同心的に固設
されている。また、そのコイルバネ48の先端部には、
受圧室34を第一の支持金具10例の室部分と仕切部材
32例の室部分とに略2分する状態で、且つ受圧室34
の内壁との間で所定断面積の環状の間隙部52を形成す
る状態で、ゴム材料からなる所定質量および厚さの円盤
状のマス部材50がコイルバネ48と同心的に固設され
ている。On the other hand, a pressure receiving chamber 34 is provided on the lower surface of the first support fitting 10.
A coil nose 48 of a predetermined length, which is wound into a tapered cylindrical shape with a large diameter, is concentrically fixed on the tip side while protruding inward. Moreover, at the tip of the coil spring 48,
The pressure receiving chamber 34 is approximately divided into two parts: a chamber portion for 10 examples of the first support fittings and a chamber portion for 32 examples of partition members, and the pressure receiving chamber 34
A disk-shaped mass member 50 made of a rubber material and having a predetermined mass and thickness is fixed concentrically with the coil spring 48, with an annular gap 52 having a predetermined cross-sectional area formed between the coil spring 48 and the inner wall of the coil spring 48.
そして、ここでは、かかる間隙部52についての設定周
波数域が200〜400Hz程度の第三の周波数域に設
定されており、かかる間隙部52を流動する非圧縮性流
体の液柱共振作用に基づいて、その第三の周波数域のエ
ンジン透過音等に対して良好な防振効果が発揮され得る
ようになっている。Here, the set frequency range for the gap 52 is set to a third frequency range of about 200 to 400 Hz, based on the liquid column resonance effect of the incompressible fluid flowing through the gap 52. , a good vibration damping effect can be exhibited against engine transmitted sound in the third frequency range.
また、ここでは、コイルバネ48のバネ定数やマス部材
50および前記間隙部52における流体の質量等によっ
て定まるマス部材50の固有振動数が、上記間隙部52
について設定された周波数(液柱共振周波数)よりも高
い周波数に設定されており、かかるマス部材50の共振
によるダンパ作用に基づいて、そのマス部材50の固有
振動数に対応した第四の周波数域の入力振動、例えば4
50 Hz前後のエンジン透過音等が良好に減衰乃至は
遮断せしめられるようになっている。Further, here, the natural frequency of the mass member 50 determined by the spring constant of the coil spring 48, the mass of the fluid in the mass member 50 and the gap 52, etc.
The fourth frequency range is set to a higher frequency than the frequency (liquid column resonance frequency) set for input vibration, e.g. 4
Engine transmitted sound of around 50 Hz is effectively attenuated or blocked.
なお、以−ヒの説明から明らかなように、本実施例では
、マス部材50が作動部材を、またコイルバネ48が弾
性部材を構成している。As is clear from the following explanation, in this embodiment, the mass member 50 constitutes an actuating member, and the coil spring 48 constitutes an elastic member.
このような構造のエンジンマウントでは、第一の支持金
具10と第二の支持金具12との間に入力される振動が
200Hz程度以下(第一および第二の周波数域)のも
のであれば、前述のように、非圧縮性流体が絞り通路3
8を流動すること、若しくは可動板40が受圧室34と
平衡室36との対向方向に移動することに基づいて、そ
の200II z以下の入力振動を良好に減衰乃至は遮
断することができる。また、入力振動が200〜400
Hz程度(第三の周波数域)のものであれば、非圧縮性
流体が前記間隙部52を流動することに基づいて、すな
わちその間隙部52において生じる液柱共振作用に基づ
いて、その200〜400H2程度の振動周波数を良好
に減衰することができる。In the engine mount having such a structure, if the vibration input between the first support metal fitting 10 and the second support metal fitting 12 is about 200 Hz or less (first and second frequency range), As mentioned above, the incompressible fluid flows through the throttle passage 3.
8 or because the movable plate 40 moves in the opposite direction between the pressure receiving chamber 34 and the equilibrium chamber 36, the input vibration of 200 II z or less can be favorably damped or blocked. In addition, the input vibration is 200 to 400
If it is about Hz (third frequency range), the incompressible fluid flows through the gap 52, that is, based on the liquid column resonance effect that occurs in the gap 52, Vibration frequencies of about 400H2 can be well damped.
一方、このようなエンジンマウントでは、入力振動の周
波数がマス部材50の固有振動数よりも高くなると、そ
れまで第一の支持金具10と略同方向に移動させられて
いたマス部材50が、そのダンパ作用によって第一の支
持金具10とは逆方向に移動させられるようになるため
、そのマス部材50の逆方向への移動によってマス部材
50と仕切部材32との間の室部分の流体圧の上昇が極
めて良好に抑制されることとなり、従って動バネ定数、
ひいては振動伝達率の上昇が良好に抑制されることとな
る。つまり、マス部材50の共振によるダンパ作用によ
って、その固有振動数に応じた第四の周波数域(ここで
は、450 Il z前後)の入力振動を良好に減衰乃
至は遮断することができるのである。On the other hand, in such an engine mount, when the frequency of input vibration becomes higher than the natural frequency of the mass member 50, the mass member 50, which had been moved in substantially the same direction as the first support fitting 10, Since the damper action causes the mass member 50 to move in the opposite direction, the movement of the mass member 50 in the opposite direction reduces the fluid pressure in the chamber between the mass member 50 and the partition member 32. The rise is suppressed very well, and therefore the dynamic spring constant,
As a result, an increase in vibration transmissibility is effectively suppressed. In other words, the damper action caused by resonance of the mass member 50 can satisfactorily attenuate or block the input vibration in the fourth frequency range (here, around 450 Il z) corresponding to its natural frequency.
また、入力振動の周波数が更に高くなると、すなわち第
四の周波数域よりも高くなると、第一の支持金具10の
第二の支持金具12に対する相対移動に拘わらず、マス
部材が第二の支持金具12に対して略一定の位置に保持
されるようになるため、マス部材50と仕切部材32と
の間に位置する受圧室34の室部分における流体圧の上
昇が良好に抑制されることとなり、動バネ定数の上昇が
良好に抑制されることとなる。つまり、第四の周波数域
よりも高い周波数域においても、振動伝達率の上昇が良
好に抑制されるのであり、第四の周波数域よりも高い周
波数域における防振特性を大幅に向上させることができ
るのである。Furthermore, when the frequency of the input vibration becomes higher, that is, higher than the fourth frequency range, the mass member moves to the second support metal fitting 12 regardless of the relative movement of the first support metal fitting 10 to the second support metal fitting 12. 12, the increase in fluid pressure in the chamber portion of the pressure receiving chamber 34 located between the mass member 50 and the partition member 32 is effectively suppressed. An increase in the dynamic spring constant is effectively suppressed. In other words, even in the frequency range higher than the fourth frequency range, the increase in vibration transmissibility is suppressed well, and it is possible to significantly improve the vibration isolation characteristics in the frequency range higher than the fourth frequency range. It can be done.
従って、このような構造のエンジンマウントをパワーユ
ニットと車体との間に介装させて、それらの間の振動伝
達を抑制するようにすれば、従来手法と同様、第一、第
二および第三の互いに異なる三つの周波数域の人力振動
に対して良好な防振効果を発揮できる上、マス部材50
のダンパ作用に基づいて、それらよりも高い第四の周波
数域の入力振動に対しても良好な防振効果を発揮させる
ことができるのであり、従来よりも広い周波数域の入力
振動に対して良好な防振効果を発揮さセることができる
のである。Therefore, if an engine mount with this structure is interposed between the power unit and the vehicle body to suppress vibration transmission between them, the first, second, and third In addition to exhibiting a good vibration isolation effect against human vibration in three different frequency ranges, the mass member 50
Based on the damper effect of Therefore, it is possible to exhibit a strong anti-vibration effect.
また、かかる本実施例手法に従えば、第四の周波数域よ
りも高い周波数域においても、振動伝達率の上昇を良好
に抑制することができるのであり、従って第三の周波数
域よりも高い周波数域の略全域において、従来手法より
も優れた防振特性を得ることができるのである。Furthermore, according to the method of this embodiment, it is possible to suppress an increase in the vibration transmissibility well even in a frequency range higher than the fourth frequency range, and therefore, it is possible to suppress an increase in the vibration transmissibility even in a frequency range higher than the fourth frequency range. It is possible to obtain better vibration damping characteristics than conventional methods over almost the entire region.
なお、本実施例では、前述のように、非圧縮性流体が絞
り通路38を通じて流動すること、および可動板40が
受圧室34と平衡室36との対向方向に移動することに
基づいて、20 (jHz程度以下の入力振動が、また
非圧縮性流体がマス部材50と受圧室34の内壁との間
の間隙部52を流動することに基づいて、200〜40
0Hz程度の入力振動が、さらにマス部材50のダンパ
作用に基づいて450H2前後の入力振動が、それぞれ
良好に減衰乃至は遮断せしめられるようになっていると
共に、450 Hz程度以下の周波数域において、振動
伝達率の上昇が良好に抑制されるようになっていること
から、エンジンマウントについて要求される5 00
Hz程度以下のほぼ全域において、良好な防振特性が得
られるといった利点がある。In addition, in this embodiment, as described above, based on the fact that the incompressible fluid flows through the throttle passage 38 and the movable plate 40 moves in the direction opposite to the pressure receiving chamber 34 and the equilibrium chamber 36, (200 to 40
The input vibration of about 0 Hz and the input vibration of about 450 H2 are well damped or blocked based on the damper action of the mass member 50, and the vibration is reduced in the frequency range of about 450 Hz or less. 500 is required for engine mounts because the increase in transmission rate is well suppressed.
It has the advantage that good vibration damping characteristics can be obtained in almost the entire range below about Hz.
また、本実施例では、前述のように、マス部材50を支
持する弾性部材が非線形のバネ特性を有するテーパ状の
コイルバネ48で構成され、マス部材50が仕切部材3
2に当接して圧縮されると、そのハネ定数が急激に大き
くなるようにされていることから、マス部材50の固有
振動数を決定するだめに、たとえ非拘束状態でのコイル
バネ48のバネ定数をある程度小さく設定しても、マス
部材50の仕切部材32に対する当接に基づいて、極め
て良好なストッパ機能を発揮することができるといった
利点がある。Further, in this embodiment, as described above, the elastic member supporting the mass member 50 is composed of the tapered coil spring 48 having non-linear spring characteristics, and the mass member 50 is connected to the partition member 3.
2 and is compressed, its spring constant increases rapidly. Therefore, in order to determine the natural frequency of the mass member 50, the spring constant of the coil spring 48 even in an unrestrained state Even if it is set to a certain small value, there is an advantage that an extremely good stopper function can be achieved based on the contact of the mass member 50 with the partition member 32.
さらに、本実施例では、マス部材50自体がゴム材料で
構成されているため、マス部材50と仕切部材32との
当接の際の衝撃を緩和するための緩衝ゴム層を別途設け
る必要がないといった利点もある。Furthermore, in this embodiment, since the mass member 50 itself is made of a rubber material, there is no need to separately provide a buffer rubber layer for mitigating the impact when the mass member 50 and the partition member 32 come into contact. There are also advantages.
次に、本発明手法に用いて好適なエンジンマウントの別
の例を、それぞれ、第2図乃至第4図に基づいて説明す
る。なお、第2図乃至第4図に示すエンジンマウントは
、前記実施例におけるエンジンマウントとは、何れも、
作動部材および弾性部材の構成が異なるだけであるため
、以下では、それら作動部材と弾性部材との構成につい
てのみ詳述する。Next, other examples of engine mounts suitable for use in the method of the present invention will be explained based on FIGS. 2 to 4, respectively. Note that the engine mounts shown in FIGS. 2 to 4 are different from the engine mounts in the above embodiments.
Since the only difference is the configuration of the actuating member and the elastic member, only the configuration of the actuating member and the elastic member will be described in detail below.
すなわち、第2図に示されているエンジンマウントでは
、同図に示されているように、作動部材としての所定の
質量を有する円盤状のマス部材54が金属材料にて構成
されている一方、該マス部材54が弾性部材としての円
筒状のコイルバネ56を介して第一の支持金具10に取
り付けられており、またマス部材54の下面外周部を所
定厚さをもって覆う状態で、環状の緩衝ゴム層58がマ
ス部材54に一体に加硫成形せしめられている。That is, in the engine mount shown in FIG. 2, as shown in the same figure, the disk-shaped mass member 54 having a predetermined mass as an operating member is made of a metal material, The mass member 54 is attached to the first support fitting 10 via a cylindrical coil spring 56 as an elastic member, and a ring-shaped buffer rubber A layer 58 is vulcanized integrally with the mass member 54.
そして、かかるマス部材54の固有振動数が、前記実施
例と同様の周波数に設定され、その共振によるダンパ作
用に基づいて、450 Hz前後の第四の周波数域の入
力振動が良好に減衰乃至は遮断せしめられるようになっ
ている。The natural frequency of the mass member 54 is set to the same frequency as in the above embodiment, and based on the damper effect due to the resonance, the input vibration in the fourth frequency range of around 450 Hz is well damped or It is designed to be blocked.
このような構造のエンジンマウントを用いても、前記実
施例と同様の防振特性を得ることができるのであり、エ
ンジンマウントについて要求される略全部の周波数域に
おいて、良好な防振効果を発揮させることができるので
ある。Even if an engine mount with such a structure is used, it is possible to obtain the same vibration-proofing characteristics as in the above embodiment, and it is possible to exhibit a good vibration-proofing effect in almost all the frequency ranges required for the engine mount. It is possible.
なお、以上の実施例のように、弾性部材としてコイルバ
ネを採用する場合には、コイルバふ間の打音の発生を防
止するために、コイルバネに対して、耐摩耗性に優れ、
耐加水分解性を有したポリエーテル・ウレタン系の熱可
塑性エラストマや、硬質ゴム等からなる弾性チューブを
被覆することが望ましい。また、このような弾性チュー
ブをコイルバネのマスダンパとして利用することも可能
である。In addition, when a coil spring is used as the elastic member as in the above embodiment, in order to prevent the occurrence of hammering noise between the coil springs, a coil spring with excellent wear resistance is used.
It is desirable to coat an elastic tube made of polyether/urethane thermoplastic elastomer having hydrolysis resistance, hard rubber, or the like. It is also possible to use such an elastic tube as a mass damper for a coil spring.
また、第3図に示すエンジンマウントでは、所定厚さの
ゴム部材60が金属製のマス部材62を支持する弾性部
材として用いられている。そして、そのマス部材62の
固有振動数が、前記実施例と同様の周波数に設定されて
いる。Further, in the engine mount shown in FIG. 3, a rubber member 60 having a predetermined thickness is used as an elastic member that supports a metal mass member 62. The natural frequency of the mass member 62 is set to the same frequency as in the previous embodiment.
なお、本実施例におけるマス部材62は、所定厚さの円
盤状のプレート部64と、そのプレート部64の上面中
央部に立設された突起部66とからなっており、ゴム部
材60に一体に固着されたネジ部材68に対し、その突
起部66において同心的に螺着されている。また、ゴム
部材60は、一体加硫接着せしめられたネジ部材70を
介して、第一の支持金具10に螺着されて取り付けられ
ている。さらに、マス部材62のプレート部64には、
その下面外周部を所定厚さで覆う状態で、環状の緩衝ゴ
ム層72が一体に設けられている。The mass member 62 in this embodiment includes a disc-shaped plate portion 64 with a predetermined thickness and a protrusion 66 erected at the center of the upper surface of the plate portion 64, and is integrally attached to the rubber member 60. The protrusion 66 is concentrically screwed onto a screw member 68 fixed to the screw member 68 . Further, the rubber member 60 is screwed and attached to the first support fitting 10 via a screw member 70 that is integrally vulcanized and bonded. Furthermore, in the plate portion 64 of the mass member 62,
An annular buffer rubber layer 72 is integrally provided so as to cover the outer periphery of the lower surface with a predetermined thickness.
さらに、第4図に示すエンジンマウントでは、上記実施
例におけるマス部材62と同様の構造の金属製のマス部
材74に対して、そのマス部材74のプレート部76の
下面外周部および上面、並びに突起部78を覆う状態で
、熱可塑性エラストマ80が一体に成形されており、熱
可塑性エラストマi30がマス部材74の突起部78の
上方に延び出させられた所定断面積の支柱部82におい
て第一の支持金具10に固設されることにより、マス部
材74が第一の支持金具10に対して弾性的に取り付け
られている。そして、このマス部材74の固有振動数が
前記実施例と同様の周波数に設定されている。Furthermore, in the engine mount shown in FIG. 4, a metal mass member 74 having a structure similar to that of the mass member 62 in the above embodiment is provided with A thermoplastic elastomer 80 is integrally molded so as to cover the section 78 , and the thermoplastic elastomer i30 extends above the protrusion 78 of the mass member 74 and has a predetermined cross-sectional area. By being fixed to the support fitting 10, the mass member 74 is elastically attached to the first support fitting 10. The natural frequency of this mass member 74 is set to the same frequency as in the previous embodiment.
それら第3図および第4図に示す如き構造のエンジンマ
ウントを用いても、前記実施例と同様の効果を得ること
ができるのである。Even if engine mounts having the structures shown in FIGS. 3 and 4 are used, the same effects as in the above embodiment can be obtained.
なお、上記第4図に示すエンジンマウントのように、弾
性部材として熱可塑性エラストマを採用する場合には、
耐摩耗性に優れると共に、耐加水分解性を有するもの、
例えばサントプレやハイトレル等(何れも商品名)を採
用することが望ましい。Note that when thermoplastic elastomer is used as the elastic member, as in the engine mount shown in Fig. 4 above,
Those with excellent abrasion resistance and hydrolysis resistance,
For example, it is desirable to use Santopre, Hytrel, etc. (both are trade names).
以上、本発明の幾つかの実施例を詳細に説明したが、こ
れらはあくまでも例示であり、本発明がそれら具体例に
限定されるものではなく、その趣旨を逸脱しない範囲内
において、種々なる変更。Although several embodiments of the present invention have been described in detail above, these are merely illustrative, and the present invention is not limited to these specific examples, and various modifications may be made without departing from the spirit thereof. .
修正、改良等を施した態様で実施できることは、言うま
でもないところである。It goes without saying that the present invention can be implemented with modifications, improvements, etc.
第1図は、本発明の実施に用いて好適な流体マウント装
置の一つであるエンジンマウントの一例を示す縦断面図
であり、第2図、第3図および第4図は、それぞれ、本
発明の実施に用いて好適なエンジンマウントの別の一例
を示す縦断面図である。
10:第一の支持金具(第一の支持体)12:第二の支
持金具(第二の支持体)22:ゴ1、づりj性体
30:ダイヤプラム(隔壁部材)
32:仕切部材 34:受圧室
36:平衡室 38:絞り通路40:可動板(
可動部材)FIG. 1 is a longitudinal sectional view showing an example of an engine mount which is one of the fluid mount devices suitable for use in carrying out the present invention, and FIGS. 2, 3 and 4 are respectively FIG. 3 is a longitudinal sectional view showing another example of an engine mount suitable for use in carrying out the invention. 10: First support metal fitting (first support body) 12: Second support metal fitting (second support body) 22: Go 1, hanging body 30: Diaphragm (partition member) 32: Partition member 34 : Pressure receiving chamber 36: Equilibrium chamber 38: Restriction passage 40: Movable plate (
movable parts)
Claims (1)
よび第二の支持体と;該第一および第二の支持体間に介
装されて、それらを弾性的に連結するゴム弾性体と;前
記第二の支持体に配設されて、前記第一の支持体との間
に流体収容空間を形成する、少なくとも一部が弾性膜で
構成された隔壁部材と;該流体収容空間内に封入された
所定の非圧縮性流体と;前記流体収容空間を前記第一の
支持体側の受圧室と前記隔壁部材側の平衡室とに仕切る
仕切部材と;該受圧室と該平衡室とを相互に連通せしめ
る絞り通路と;前記受圧室および平衡室内の流体圧差に
応じてそれらの対向方向に所定量変形乃至は変位し得る
ように配設された可動部材と;前記受圧室を前記第一の
支持体側の室部分と前記仕切部材側の室部分とに略2分
する状態で、前記第一の支持体から該受圧室内に突出せ
しめられた作動部材とを備えた流体封入式マウント装置
を用いて、その第一および第二の支持体をそれぞれ振動
の伝達される二つの部材に取り付け、それら二つの部材
間の振動伝達を抑制するに際して、 前記流体封入式マウント装置の作動部材を、前記第一の
支持体に対して、所定の弾性部材を介して弾性的に支持
せしめると共に、該作動部材を所定の質量を有するマス
部材となして、該作動部材にダンパ作用を発揮させるこ
とにより、非圧縮性流体が前記絞り通路を通じて流動す
ることに基づいて、第一の周波数域の入力振動を、また
前記可動部材が変形乃至は変位することに基づいて、該
第一の周波数域よりも高い第二の周波数域の入力振動を
、それぞれ減衰乃至は遮断せしめるようにする一方、非
圧縮性流体が前記作動部材と前記受圧室の内壁との間に
形成される間隙部を流動することに基づいて、前記第二
の周波数域よりも高い第三の周波数域の入力振動を、ま
た前記作動部材のダンパ作用に基づいて、該第三の周波
数域よりも更に高い第四の周波数域の入力振動を、それ
ぞれ減衰乃至は遮断せしめるようにしたことを特徴とす
る流体封入式マウント装置を用いた防振方法。[Claims] First and second supports arranged to face each other in the vibration input direction; interposed between the first and second supports to elastically connect them. a rubber elastic body; a partition member, at least a part of which is constituted by an elastic membrane, and which is disposed on the second support and forms a fluid accommodation space between it and the first support; a predetermined incompressible fluid sealed in the accommodation space; a partition member that partitions the fluid accommodation space into a pressure receiving chamber on the first support side and an equilibrium chamber on the partition member side; the pressure receiving chamber and the equilibrium a throttle passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other; a movable member disposed so as to be deformed or displaced by a predetermined amount in opposing directions in response to a fluid pressure difference within the pressure receiving chamber and the equilibrium chamber; A fluid-filled type comprising an actuating member protruding from the first support into the pressure receiving chamber in a state where the chamber is approximately divided into two parts: a chamber on the first support side and a chamber on the partition member side. When a mounting device is used to attach the first and second supports to two members to which vibrations are transmitted, respectively, and to suppress vibration transmission between the two members, the operating member of the fluid-filled mounting device; is elastically supported by the first support via a predetermined elastic member, and the actuating member is a mass member having a predetermined mass, so that the actuating member exhibits a damping action. By this, the input vibration in the first frequency range is generated based on the incompressible fluid flowing through the restriction passage, and the input vibration is generated in the first frequency range based on the deformation or displacement of the movable member. while attenuating or blocking input vibrations in a second frequency range higher than the above, the incompressible fluid flows through a gap formed between the actuating member and the inner wall of the pressure receiving chamber. Based on this, the input vibration is in a third frequency range higher than the second frequency range, and based on the damping action of the actuating member, the input vibration is in a fourth frequency range higher than the third frequency range. 1. A vibration isolation method using a fluid-filled mounting device, characterized in that input vibrations are attenuated or blocked.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10655787A JPS63275827A (en) | 1987-04-30 | 1987-04-30 | Vibrationproofing method using liquid sealing mounting device |
CA000617014A CA1340949C (en) | 1987-03-13 | 1988-03-03 | Imidazole compounds and biocidal composition comprising the same for controlling harmful organisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10655787A JPS63275827A (en) | 1987-04-30 | 1987-04-30 | Vibrationproofing method using liquid sealing mounting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63275827A true JPS63275827A (en) | 1988-11-14 |
Family
ID=14436626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10655787A Pending JPS63275827A (en) | 1987-03-13 | 1987-04-30 | Vibrationproofing method using liquid sealing mounting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63275827A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989012184A1 (en) * | 1988-06-06 | 1989-12-14 | Tokai Rubber Industries, Ltd. | Fluid seal type mounting apparatus |
WO1995007419A1 (en) * | 1993-09-08 | 1995-03-16 | Kabushiki Kaisha Komatsu Seisakusho | Liquid sealed rubber mount |
DE4337383C1 (en) * | 1993-11-02 | 1995-04-06 | Metzeler Gimetall Ag | Hydraulically damping bearing |
WO2005103524A1 (en) * | 2004-04-21 | 2005-11-03 | Kabushiki Kaisha Kobe Seiko Sho | Vibration reducing and connecting structure |
JP2007247660A (en) * | 2006-03-13 | 2007-09-27 | Bridgestone Corp | Vibration isolating apparatus |
WO2014038215A1 (en) * | 2012-09-10 | 2014-03-13 | 株式会社フコク | Liquid filled mount |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60249749A (en) * | 1984-05-24 | 1985-12-10 | Bridgestone Corp | Vibro-isolator |
-
1987
- 1987-04-30 JP JP10655787A patent/JPS63275827A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60249749A (en) * | 1984-05-24 | 1985-12-10 | Bridgestone Corp | Vibro-isolator |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989012184A1 (en) * | 1988-06-06 | 1989-12-14 | Tokai Rubber Industries, Ltd. | Fluid seal type mounting apparatus |
US5143358A (en) * | 1988-06-06 | 1992-09-01 | Tokai Rubber Industries, Ltd. | Fluid-filled mounting device |
WO1995007419A1 (en) * | 1993-09-08 | 1995-03-16 | Kabushiki Kaisha Komatsu Seisakusho | Liquid sealed rubber mount |
US5845895A (en) * | 1993-09-08 | 1998-12-08 | Kabushiki Kaisha Komatsu Seisakusho | Liquid sealed rubber mount |
DE4337383C1 (en) * | 1993-11-02 | 1995-04-06 | Metzeler Gimetall Ag | Hydraulically damping bearing |
EP0651176A1 (en) * | 1993-11-02 | 1995-05-03 | Metzeler Gimetall Ag | Hydraulically-damped support |
WO2005103524A1 (en) * | 2004-04-21 | 2005-11-03 | Kabushiki Kaisha Kobe Seiko Sho | Vibration reducing and connecting structure |
EP1752683A1 (en) * | 2004-04-21 | 2007-02-14 | Kabushiki Kaisha Kobe Seiko sho | Vibration reducing and connecting structure |
EP1752683A4 (en) * | 2004-04-21 | 2009-05-20 | Kobe Steel Ltd | Vibration reducing and connecting structure |
JP2007247660A (en) * | 2006-03-13 | 2007-09-27 | Bridgestone Corp | Vibration isolating apparatus |
WO2014038215A1 (en) * | 2012-09-10 | 2014-03-13 | 株式会社フコク | Liquid filled mount |
JPWO2014038215A1 (en) * | 2012-09-10 | 2016-08-08 | 株式会社フコク | Liquid filled mount |
US9791016B2 (en) | 2012-09-10 | 2017-10-17 | Fukoku Co., Ltd. | Liquid sealed mount |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4997168A (en) | Fluid-filled elastic mount | |
JP2657952B2 (en) | Hydraulic damping two-chamber engine mount | |
JP4359889B2 (en) | Fluid filled vibration isolator | |
US5217211A (en) | Fluid-filled elastic mount having vacuum-receiving chamber partially defined by flexible diaphragm with rigid restriction member | |
US4826126A (en) | Fluid-filled elastic mounting structure | |
JP2000186739A (en) | Fluid seal type vibration control device | |
JP2505503Y2 (en) | Fluid-filled mounting device | |
JPS6215780B2 (en) | ||
US4850578A (en) | Fluid-filled elastic mount for damping a wide frequency range of vibrations | |
JPH0517415B2 (en) | ||
US4946147A (en) | Fluid-filled elastic mounting structure having orifices | |
US5114124A (en) | Fluid-filled elastic mount having means for controlling pressure in air chamber in resonance member in pressure-receiving chamber | |
US4880215A (en) | Fluid-filled elastic mounting structure | |
JPH01193426A (en) | Liquid-in type mounting device | |
JPS63275827A (en) | Vibrationproofing method using liquid sealing mounting device | |
JPH01193425A (en) | Liquid-in type mounting device | |
JPH08303522A (en) | Hydraulic damping type rubber supporter | |
JPH01229132A (en) | Fluid sealed type mount device | |
JPS63266242A (en) | Fluid-sealed type mount device | |
JPH0247615B2 (en) | ||
JPH02129426A (en) | Fluid enclosed type mount device | |
JPH05272575A (en) | Fluid-sealed mounting device | |
JP4075066B2 (en) | Fluid filled engine mount | |
JP4270049B2 (en) | Fluid filled vibration isolator | |
JP3728984B2 (en) | Fluid filled vibration isolator |