JPS63275710A - Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer - Google Patents

Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer

Info

Publication number
JPS63275710A
JPS63275710A JP62109724A JP10972487A JPS63275710A JP S63275710 A JPS63275710 A JP S63275710A JP 62109724 A JP62109724 A JP 62109724A JP 10972487 A JP10972487 A JP 10972487A JP S63275710 A JPS63275710 A JP S63275710A
Authority
JP
Japan
Prior art keywords
molecular weight
ultra
temperature
high molecular
crystal melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62109724A
Other languages
Japanese (ja)
Other versions
JPH089802B2 (en
Inventor
Kazuo Yagi
和雄 八木
Akinori Toyoda
昭徳 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP62109724A priority Critical patent/JPH089802B2/en
Priority to DE3850905T priority patent/DE3850905T2/en
Priority to AT88303170T priority patent/ATE109522T1/en
Priority to EP88303170A priority patent/EP0290141B1/en
Priority to NZ224210A priority patent/NZ224210A/en
Priority to AU14722/88A priority patent/AU618257B2/en
Priority to KR1019880004459A priority patent/KR930007820B1/en
Priority to CN88102519A priority patent/CN1031076C/en
Priority to CA000565732A priority patent/CA1303290C/en
Publication of JPS63275710A publication Critical patent/JPS63275710A/en
Priority to US07/504,105 priority patent/US5115067A/en
Publication of JPH089802B2 publication Critical patent/JPH089802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molecularly oriented molded product of the titled copolymer having a specific intrinsic viscosity and alpha-olefin content, plural and high endothermic peaks of crystal melting within a higher temperature region, excellent heat and creep resistance and useful as industrial textile materials, etc. CONSTITUTION:Ethylene and an alpha-olefin (e.g. 4-methylpentene-1) are polymerized as a slurry in n-decane as a polymerization solvent using a Ziegler based catalyst to provide a copolymer, which is then melt spun and drawn to afford the aimed molecularly oriented molded product having >=5dl/g intrinsic viscosity [eta], average 0.1-15 alpha-olefin content based on 1,000 carbon atoms, >=2 endothermic peaks of crystal melting when measured in a restricted state thereof using a differential scanning calorimeter, >=1 main endothermic peaks (Tp) of crystal melting at a temperature 20 deg.C higher than the original crystal melting temperature (Tm) obtained as the main endothermic peak of melting in the second heating and >=15% quantity of heat based on the Tp for the total heat quantity of melting.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高分子量エチレン−α−オレフィン共重合
体の分子配向成形体に関するもので、より詳細には新規
な結晶融解特性を有し、耐熱性及び耐クリープ性に優れ
た超高分子量エチレン−α−オレフィン共重合体の分子
配向成形体、特に繊維に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a molecularly oriented molded product of an ultra-high molecular weight ethylene-α-olefin copolymer, and more specifically to a molded product having novel crystal melting properties. , relates to a molecularly oriented molded article of an ultra-high molecular weight ethylene-α-olefin copolymer having excellent heat resistance and creep resistance, particularly to fibers.

(従来の技術) 超高分子量ポリエチレンを繊維、テープ等に成形し、こ
れを延伸することにより、高弾性率、高引張強度を有す
る分子配向成形体とする仁とは既に公知であり、例えは
、特開昭56−15408号公報には、超高分子量ポリ
エチレンの希薄溶液を紡糸し、得られるフィラメントを
延伸することが記載されている。また、特開昭59−1
30313号公報には、超高分子量ポリエチレンとワッ
クスとを溶融混練し、この混線物を押出し、冷却固化後
延伸することが記載され、更に特開昭59−18761
4号公報には、上記溶融混練物を押出し、ドラフトをか
けた後冷却固化し、次いで延伸することが記載されてい
る。
(Prior art) It is already well known that ultra-high molecular weight polyethylene is formed into fibers, tapes, etc. and stretched to produce molecularly oriented molded products with high elastic modulus and high tensile strength. , JP-A-56-15408 describes spinning a dilute solution of ultra-high molecular weight polyethylene and drawing the resulting filament. Also, JP-A-59-1
No. 30313 describes that ultra-high molecular weight polyethylene and wax are melt-kneaded, the mixed material is extruded, cooled and solidified, and then stretched.
No. 4 describes that the above melt-kneaded product is extruded, drafted, cooled and solidified, and then stretched.

(発明が解決しようとする問題点) 超高分子量ポリエチレンを繊維の形態に成形し、これを
強延伸することにより、延伸倍率の増大に伴って、弾性
率及び引張強度の増大が得られ、この延伸繊維は、高弾
性率、高引張強度という機械的性質、軽量性、耐水性、
耐候性等には優れているが、その耐熱性はポリエチレン
の融点が一般に120乃至140℃の比較的低い範囲内
にあるという制約を根本的に免れないものであり、更に
超高分子量ポリエチレン繊維を高温で使用する場合には
、強度の保持率が著しく減少し、またりIJ−プが著し
く増大するといり欠点がある。
(Problems to be Solved by the Invention) By forming ultra-high molecular weight polyethylene into a fiber form and subjecting it to strong stretching, the elastic modulus and tensile strength can be increased as the stretching ratio increases. Stretched fibers have mechanical properties such as high elastic modulus and high tensile strength, light weight, water resistance,
Although it has excellent weather resistance, its heat resistance is fundamentally limited by the fact that the melting point of polyethylene is generally within a relatively low range of 120 to 140°C. When used at high temperatures, there are drawbacks such as a significant decrease in strength retention and a significant increase in IJ-p.

従って、本発明の目的は、新規な結晶融解特性を有し、
耐熱性と耐クリープ性とが顕著に改善された超高分子量
ポリエチレン系の分子配向成形体を提供するにある。
Therefore, it is an object of the present invention to have novel crystal melting properties,
It is an object of the present invention to provide a molecularly oriented ultra-high molecular weight polyethylene molded article having significantly improved heat resistance and creep resistance.

本発明の他の目的は、例えば170℃で5分間の熱処理
のような高温熱履歴を受けた場合にも、著しく高い強度
保持率及び弾性率保持率を示し、且つ高温下でのクリー
プが著しく低いレベルに抑制された超高分子量/ IJ
エチレン系の分子配向成形体を提供するにある。
Another object of the present invention is to exhibit significantly high strength retention and elastic modulus retention even when subjected to high-temperature thermal history such as heat treatment at 170°C for 5 minutes, and to exhibit significantly low creep at high temperatures. Ultra-high molecular weight/IJ suppressed to a low level
An object of the present invention is to provide an ethylene-based molecularly oriented molded product.

(問題点を解決するための手段) 本発明者等は、炭素数5以上のα−オレフィンを限定さ
れた少量でエチレンと共重合せしめた超高分子量エチレ
ン−α−オレフィン共重合体を、押出成形し、強延伸し
て分子配向成形体とするときには従来の4リエチレンの
延伸成形体には全く認められない融解温度の向上現象の
ある新規な分子配向成形体が得られること、及びこの分
子配向成形体は、170℃で5分間熱処理した場合にも
強度や弾性率が殆んど低下しないか、或いは逆にこれら
の値が向上する、という高温時の機械的特性を有するこ
とを見出した。更にこの分子配向成形体は)超高分子量
ポリエチレンの延伸成形体に特有の高強度及び高弾性率
を保有しながら、顕著に改善された耐クリープ性を有す
ることもわかった。
(Means for Solving the Problem) The present inventors have developed an ultra-high molecular weight ethylene-α-olefin copolymer in which a limited amount of α-olefin having 5 or more carbon atoms is copolymerized with ethylene. When molded and strongly stretched to obtain a molecularly oriented molded product, a novel molecularly oriented molded product can be obtained which exhibits an improvement in melting temperature that is completely unobservable in the conventional stretched 4-lyethylene molded product, and this molecular orientation It has been found that the molded product has mechanical properties at high temperatures such that the strength and elastic modulus hardly decrease or, conversely, these values improve even when heat treated at 170° C. for 5 minutes. Furthermore, it has been found that this molecularly oriented molded product has significantly improved creep resistance while retaining the high strength and high modulus characteristic of a stretched molded product of ultra-high molecular weight polyethylene.

即ち、本発明によれは、極限粘度〔η〕が少なくとも5
dt/iで、炭素数5以上のα−オレフィンの含有量が
炭素数1000個あたり平均0.1〜15個である超高
分子エチレン−α−オレフィン共重合体の分子配向成形
体であって、該成形体は拘束状態で示差走査熱量計で測
定し九とき、少なくとも2個の結晶融解吸熱ピークを有
すると共に、二回目昇温時の主融解吸熱ピークとして求
められる超高分子量エチレン−α−オレフィン共重合体
本来の結晶融解温度(Tm)よりも少なくとも20℃高
い温度に少なくとも1個の結晶融解吸熱ピーク(Tp 
)を有し、且つ全融解熱量当りのこの結晶融解吸熱ピー
ク(Tp)K基づく熱量が15係以上であることを特徴
とする分子配向成形体が提供される。
That is, according to the present invention, the intrinsic viscosity [η] is at least 5
dt/i, the content of α-olefins having 5 or more carbon atoms is on average 0.1 to 15 per 1000 carbon atoms; , the molded body has at least two crystal melting endothermic peaks when measured with a differential scanning calorimeter in a restrained state, and has ultra-high molecular weight ethylene-α- which is determined as the main melting endothermic peak at the second heating. at least one crystal melting endothermic peak (Tp) at a temperature at least 20°C higher than the original crystal melting temperature (Tm) of the olefin copolymer;
), and the amount of heat based on this crystal melting endothermic peak (Tp) K per total heat of fusion is provided.

(作用) 本発明は、限定された量のα−オレフィン(C3以上)
をエチレンと共重合させて得られた超高分子量エチレン
−α−オレフィン共重合体を押出成形し、強延伸して分
子配向成形体とすると、分子配向成形体を構成する重合
体鎖の融点が拘束条件下において向上するという驚くべ
き知見に基づくものである。
(Function) The present invention provides a limited amount of α-olefin (C3 or more)
When an ultra-high molecular weight ethylene-α-olefin copolymer obtained by copolymerizing with ethylene is extruded and strongly stretched to form a molecularly oriented molded product, the melting point of the polymer chains constituting the molecularly oriented molded product increases. This is based on the surprising finding that performance improves under restraint conditions.

尚、本明細書において、拘束状態乃至拘束条件とは、分
子配向成形体に積極的な緊張は与えられていないが、自
由変形が防止されるように端部が固定されていることを
意味する。
In this specification, the term "restricted state" or "restricted condition" means that no active tension is applied to the molecularly oriented molded product, but the ends are fixed so as to prevent free deformation. .

重合体の融点は、重合体中の結晶の融解に伴なうもので
あり、一般に示差走査熱量計での結晶融解に伴なう吸熱
ピーク温度として測定される。この吸熱ピーク温度は、
重合体の種類が定まれに一定であり、その後処理、例え
ば延伸処理や架橋処理等によってそれが変動することは
殆んどなく、変動しても、最も変動する場合として良く
知られている延伸熱処理でも高々15℃程度高温側へ移
動するに留まる。
The melting point of a polymer is associated with the melting of crystals in the polymer, and is generally measured as the endothermic peak temperature associated with crystal melting using a differential scanning calorimeter. This endothermic peak temperature is
The type of polymer remains the same, and it hardly changes due to subsequent treatments such as stretching or crosslinking. Even with heat treatment, the temperature only moves to the high temperature side by about 15°C at most.

添付図面第1図は本発明に用いる超高分子量工チレンー
4−メチルペンテンーx共重合体(K−4MP)原料、
第2図はこの共重合体(E−4MP)の高延伸フィラメ
ント、第3図は通常の超高分子量ポリエチレン原料、及
び第4図はこの超高分子量ポリエチレンの高延伸フィラ
メントの各々についての示差走査熱量計による吸熱曲線
であり、高延伸フィラメントの吸熱曲線はフィラメント
の拘束条件で測定されたものである。尚、各重合体の組
成及びフィラメントの処理条件については後述する例を
参照されたい。
The attached drawings, Figure 1, show the ultra-high molecular weight engineered tyrene-4-methylpentene-x copolymer (K-4MP) raw material used in the present invention;
Figure 2 is a differential scan of highly drawn filaments of this copolymer (E-4MP), Figure 3 is a normal ultra-high molecular weight polyethylene raw material, and Figure 4 is a differential scan of highly drawn filaments of this ultra-high molecular weight polyethylene. This is an endothermic curve measured by a calorimeter, and the endothermic curve of the highly drawn filament was measured under filament restraint conditions. For the composition of each polymer and the processing conditions for filaments, please refer to the examples described later.

尚、第1図および第3図の原料粉末の吸熱曲線の測定は
重合時の諸熱履歴を消去するためにASTM D 34
18に記載の方法で行った。
The endothermic curves of the raw material powders shown in Figures 1 and 3 were measured in accordance with ASTM D 34 in order to eliminate various heat histories during polymerization.
The method described in 18 was used.

これらの結果から、通常の超高分子量ポリエチレンの延
伸フィラメントでは、原料の超高分子量ポリエチレンか
ら約15℃高い約150℃の温度に結晶融解に伴なう吸
熱ピークを示すのに対して、本発明による超高分子量エ
チレン−α−オレフィン共重合体の延伸フィラメントで
は、原料共重合体に比して何れも吸熱ピークが高温側に
顕著に移行していると共に、超高分子量ポリエチレンの
ホモ重合体の延伸フィラメントに比しても吸熱ピークが
かなり高温側に位置していることがわかる。
From these results, it is clear that the drawn filament of ordinary ultra-high molecular weight polyethylene exhibits an endothermic peak associated with crystal melting at a temperature of about 150°C, which is about 15°C higher than the ultra-high molecular weight polyethylene used as the raw material. In the drawn filaments of ultra-high molecular weight ethylene-α-olefin copolymer, the endothermic peak shifted significantly to the high temperature side compared to the raw material copolymer, and It can be seen that the endothermic peak is located on the considerably higher temperature side compared to the drawn filament.

第5図は夫々、第2図の試料をセカンド・ラン(第2図
の測定を行った後、2回目の昇温測定)に賦したときの
吸熱曲線を示す。第5図の結果から、再昇温の場合には
結晶融解の主ピークは原料の超高分子量エチレン−4−
メチルペンテン−1共重合体の融解ピーク温度と殆んど
同じ温度に表われ、しかも第5図の測定時には試料中の
分子配向は殆んど消失していることから、第2図の試料
における吸熱ピークの高温側への移行は成形体中での分
子配向と密接に関連していることを示している。
FIG. 5 shows endothermic curves obtained when the samples shown in FIG. 2 were subjected to a second run (second temperature-raising measurement after the measurement shown in FIG. 2 was performed). From the results shown in Figure 5, in the case of reheating, the main peak of crystal melting is the ultra-high molecular weight ethylene-4-
It appears at almost the same temperature as the melting peak temperature of the methylpentene-1 copolymer, and moreover, the molecular orientation in the sample had almost disappeared at the time of the measurement in Figure 5, so the This indicates that the shift of the endothermic peak toward higher temperatures is closely related to the molecular orientation in the compact.

また、第2図と第4図との対比から、第2図の試料にお
ける吸熱ピークの高温側への移行は、重合体鎖中への少
量のC6以上のα−オレフィンの組込みによって生じた
分岐鎖の存在とも密接に関連していることがわかる。
Furthermore, from the comparison between Figure 2 and Figure 4, the shift of the endothermic peak to the higher temperature side in the sample in Figure 2 is due to the branching caused by the incorporation of a small amount of C6 or higher α-olefin into the polymer chain. It can be seen that this is closely related to the presence of chains.

本発明の分子配向成形体Kj?いて、エチレンに少量の
炭素数5以上のα−オレフィンを共重合させたものを用
りることによシ、吸熱ピークの高温側への移行が生じる
という事実は、重合体鎖への共単量体成分の導入は結晶
性の低下と融点の低下とをもたらすという一般的事実に
徴しても真に意外のものであることがわかる。
Molecularly oriented molded product Kj of the present invention? The fact that the endothermic peak shifts to the high temperature side when ethylene is copolymerized with a small amount of α-olefin having 5 or more carbon atoms is due to the fact that the comonomer in the polymer chain This is truly surprising considering the general fact that the introduction of mercury components leads to a decrease in crystallinity and a decrease in melting point.

本発明の分子配向成形体において、結晶融解温度が高温
側に移行する理由は未だ十分に解明されるに至っていな
いが、前述した測定結果の解析から次のように推定され
る。即ち、超高分子量ポリエチレンの分子配向成形体で
は、多数の重合体鎖が結晶部と非晶部とを交互に通り且
つ重合体鎖が延伸方向に配向した構造をとると考えられ
るが、との高分子量ポリエチレンに4−メチルペンテン
−1等のα−オレフィンの少量を共重合により導入した
ものの分子配向成形体では、導入されたα−オレフィン
鎖の部分、即ち側鎖が形成された部分が選択的に非晶部
となり、この非晶部を介して反復エチレン鎖の部分が配
向結晶部となると信じられる。この際、重合体鎖中に炭
素原子1000個当り平均0.1乃至15個の数で導入
された側鎖部分が非晶部に集中することにより、反復エ
チレン鎖の配向結晶化がかえつて規則性良く大きなサイ
ズ迄進行するか、或いは配向結晶部両端の非晶部で分子
鎖間の絡い合いが増大して重合体鎖が動きにくくなるた
め、配向結晶部の融解温度が上昇するものと思われる。
Although the reason why the crystal melting temperature shifts to the higher temperature side in the molecularly oriented molded product of the present invention has not yet been fully elucidated, it is estimated as follows from the analysis of the measurement results described above. That is, in a molecularly oriented molded product of ultra-high molecular weight polyethylene, it is thought that a large number of polymer chains have a structure in which they alternately pass through crystalline parts and amorphous parts, and the polymer chains are oriented in the stretching direction. In the molecularly oriented molded product obtained by copolymerizing a small amount of α-olefin such as 4-methylpentene-1 into high molecular weight polyethylene, the portion of the introduced α-olefin chain, that is, the portion where the side chain is formed, is selected. It is believed that the repeating ethylene chain becomes an oriented crystalline part via this amorphous part. At this time, the side chain moieties introduced into the polymer chain at an average number of 0.1 to 15 per 1000 carbon atoms concentrate in the amorphous part, which makes the oriented crystallization of the repeating ethylene chain more regular. The melting temperature of the oriented crystal part increases because the polymer chain progresses to a large size with good stability, or the entanglement between molecular chains increases in the amorphous parts at both ends of the oriented crystal part, making it difficult for the polymer chains to move. Seem.

本発明における分子配向成形体は、170℃で5分間熱
処理した場合にも、未熱処理のものに比して、強度の低
下が実質上なく、しかも弾性率が未処理のものに比して
むしろ向上するという特徴を有する。更に1この分子配
向成形体は高温での耐クリーブ性においても顕著に優れ
ておシ、後に詳述する方法で求めたクリーブ(CR,。
Even when the molecularly oriented molded product of the present invention is heat-treated at 170°C for 5 minutes, there is virtually no decrease in strength compared to the untreated product, and the elastic modulus is considerably lower than that of the untreated product. It has the characteristic of improving. Furthermore, this molecularly oriented molded product also had remarkable high-temperature cleaving resistance, and the cleave (CR) was determined by the method described in detail later.

)が、通常の超高分子量ポリエチレン配向成形体の1/
2以下であり、またクリープ速度6.。−48゜(5e
e−’)が超高分子量ポリエチレン配向成形体のそれよ
りも2桁以上のオーダーで小さいという驚くべき特性を
有している。これらの特性の顕著な改良は、前述した配
向結晶部の新規な微細構造に由来するものと思われる。
) is 1/1 of that of a normal ultra-high molecular weight polyethylene oriented molded product.
2 or less, and the creep rate is 6. . -48° (5e
e-') is smaller than that of an ultra-high molecular weight polyethylene oriented molded product by more than two orders of magnitude, which is a surprising property. It is believed that these remarkable improvements in properties are due to the novel microstructure of the oriented crystal parts mentioned above.

本発明の分子配向成形体に用いるエチレン−α−オレフ
ィン共重合体は、炭素数5以上のα−オレフィンを炭素
数1000個当り0.1乃至15個、特に0.5乃至1
0個の量で含有することが重要である。即ち、炭素数5
以上のα−オレフィンを用いた共重合体は・炭素数が5
よりも小さいα−オレフィン、例えば超高分子量ポリエ
チレン及びプロピレンを用いたエチレン共重合体に比し
て、耐クリープ性に特に優れた分子配向成形体を与える
The ethylene-α-olefin copolymer used in the molecularly oriented molded article of the present invention contains 0.1 to 15 α-olefins, particularly 0.5 to 1 α-olefin, per 1000 carbon atoms.
It is important to contain the amount of 0 pieces. That is, carbon number 5
Copolymers using the above α-olefins have a carbon number of 5
The present invention provides a molecularly oriented molded article having particularly excellent creep resistance compared to ethylene copolymers using smaller α-olefins such as ultra-high molecular weight polyethylene and propylene.

これは非晶部に存在する長い側鎖が高温時における重合
体鎖の動きにくさを増大させるためと思われる。このα
−オレフィンが上記量で含有されることも極めて!!喪
であり、この含有量が上記範囲よりも少ない場合には、
分子配向(よる結晶融解温度の上昇効果が殆んど認めら
れず、また上記範囲より4大きいと、エチレン−α−オ
レフィン共重合体そのものの融点が低下する傾向が大き
くなると共に、分子配向による結晶融解温度の上昇効果
、弾性率も小さくなる傾向がある。
This is thought to be because the long side chains present in the amorphous portion make it more difficult for the polymer chain to move at high temperatures. This α
- It is extremely possible to contain the above amount of olefin! ! If the content is less than the above range,
There is almost no effect of increasing the crystal melting temperature due to molecular orientation, and if it is 4 higher than the above range, the melting point of the ethylene-α-olefin copolymer itself tends to decrease, and the crystal melting temperature due to molecular orientation increases. The effect of increasing the melting temperature and the elastic modulus also tend to decrease.

また、このエチレン−α−オレフィン共重合体は、極限
粘度〔η〕が5dt/I以上・特に7乃至  。
Further, this ethylene-α-olefin copolymer has an intrinsic viscosity [η] of 5 dt/I or more, particularly 7 to 7.

30dt/Iの範囲にあることも分子配向成形体の機械
的特性や耐熱性から重要である。即ち、分子端末は繊維
強度に寄与しなく、分子端末の数は分子量(粘度)の逆
数であることから、極限粘度〔η〕の大きいものが高強
度を与えることがわかる。
Being in the range of 30 dt/I is also important from the viewpoint of mechanical properties and heat resistance of the molecularly oriented molded product. That is, since molecular terminals do not contribute to fiber strength and the number of molecular terminals is the reciprocal of the molecular weight (viscosity), it can be seen that a material with a large intrinsic viscosity [η] gives high strength.

本発明の分子配向成形体は、二回目昇温時の主融解吸熱
ピークとして求められ超高分子量エチレンーα−オレフ
ィン共重合体本来の結晶融解温度(Tm)よりも少なく
とも20℃高い温度に少なくとも1個の結晶融解吸熱ピ
ーク(Tp)を有すること、及び全融解熱量当りのこの
結晶融解吸熱ピーク(Tp)に基づく熱量が15%以上
、好ましくは201特に30幅以上であることが、分子
配向成形体の耐熱性、即ち高温下での強度や弾性率の保
持性や高温下での耐クリープ性の点で重要である。
The molecularly oriented molded product of the present invention is heated to a temperature at least 20°C higher than the original crystal melting temperature (Tm) of the ultra-high molecular weight ethylene-α-olefin copolymer, which is determined as the main melting endothermic peak during the second heating. Molecular orientation molding It is important in terms of the heat resistance of the body, that is, the ability to maintain strength and elastic modulus at high temperatures, and the creep resistance at high temperatures.

即ち、Tmよりも20℃以上高い温度領域に結晶融解吸
熱ピニク(Tp)を有しない分子配向成形体や、この温
度領域に結晶融解吸熱ピークを有していてもそれに基づ
く吸熱量が全融解熱量の15幅を下廻る分子配向成形体
では、170℃で5分間熱処理したときの強度保持率や
弾性率保持率が実質上低下する傾向があシ、また加熱時
におけるクリープやクリープ速度も大きくなる傾向があ
る。
In other words, even if a molecularly oriented molded product does not have a crystal melting endothermic peak (Tp) in a temperature range that is 20°C or more higher than Tm, or even if it has a crystal melting endothermic peak in this temperature range, the endothermic amount based on it is the total heat of fusion. In molecularly oriented molded products with a width of less than 15, the strength retention and elastic modulus retention when heat treated at 170°C for 5 minutes tend to substantially decrease, and the creep and creep rate during heating also increase. Tend.

(好適実施態様の説明) 本発明を、その理解が容易なように、原料、製造方法及
び目的物の順に以下に説明する。
(Description of Preferred Embodiments) The present invention will be described below in order of raw materials, manufacturing method, and object for easy understanding.

原料 本発明に用いる超高分子量エチレン−α−オレフィン共
重合体は、エチレンとコモノマーとしての炭素数5以上
のα−オレフィンとを、チーグラー系触媒を使用し、例
えば有機溶媒中でスラリー重合させることにより得られ
る。
Raw materials The ultra-high molecular weight ethylene-α-olefin copolymer used in the present invention can be obtained by slurry polymerizing ethylene and an α-olefin having 5 or more carbon atoms as a comonomer using a Ziegler catalyst, for example, in an organic solvent. It is obtained by

炭素数5以上のα−オレフィンとしては、ペンテン−1
,4−メチルペンテン−1,ヘキセン−1、へブテン−
1,オクテン−1の1種又は2種以上の組合せ等が挙げ
られるが、4−メチルペンテン−1,ヘキセン−1,オ
クテン−1等の炭素数6以上のα−オレフィンが好適で
ある。用いるα−オレフィンコモノマーの量は、炭素数
1000個当り前述した範囲の重合体鎖中のα−オレフ
ィン含有量を与えるものでなければならない。また、用
いる超高分子量エチレン−α−オレフィン共重合体は、
前述した極限粘度〔η〕に対応する分子量を有するべき
である。
As the α-olefin having 5 or more carbon atoms, pentene-1
, 4-methylpentene-1, hexene-1, hebutene-
Examples include one or a combination of two or more of 1, octene-1, and α-olefins having 6 or more carbon atoms such as 4-methylpentene-1, hexene-1, and octene-1. The amount of alpha-olefin comonomer used must be such as to give an alpha-olefin content in the polymer chain per 1000 carbon atoms in the ranges stated above. In addition, the ultra-high molecular weight ethylene-α-olefin copolymer used is
It should have a molecular weight corresponding to the aforementioned intrinsic viscosity [η].

α−オレフィン含有量が0.1個/1000炭素原子以
下の場合には、耐クリープ特性改良に有効な構造を作る
ことができないし、又、逆にα−オレフィン含有量が1
5個/1000炭素原子を越える場合には結晶化度が著
しく低下し、高弾性率を得ることができない。
If the α-olefin content is less than 0.1 carbon atoms/1000 carbon atoms, a structure that is effective in improving creep resistance cannot be created;
When the number exceeds 5 carbon atoms/1000 carbon atoms, the degree of crystallinity decreases significantly, making it impossible to obtain a high elastic modulus.

本発明における超高分子量エチレン−α−オレフィン共
重合体中のα−オレフィン成分の定量は赤外分光光度計
(日本分光工業製)によって行なった。つtジエチレン
鎖の中に取り込まれたα−オレフィンのメチル基の変角
振動を表わす1378副−1の吸光度を測定し、これか
らあらかじめ130核磁気共鳴装置にて、モデル化合物
を用いて作成した検量線にて1000炭素原子当りのメ
チル分岐数に換算することにより測定した値である。
In the present invention, the α-olefin component in the ultra-high molecular weight ethylene-α-olefin copolymer was determined using an infrared spectrophotometer (manufactured by JASCO Corporation). The absorbance of 1378 sub-1, which represents the bending vibration of the methyl group of the α-olefin incorporated into the diethylene chain, was measured, and from this, a calibration prepared using a model compound using a 130 nuclear magnetic resonance apparatus was performed. This is a value measured by converting the number of methyl branches per 1000 carbon atoms using a line.

製造方法 本発明では、上記超高分子量エチレン−α−オレフィン
共重合体の溶融成形を可能にするために、上記成分と共
に稀釈剤を配合する。このような稀釈剤としては、超高
分子量エチレン共重合体に対する溶剤や、超高分子量エ
チレン共重合体に対して相溶性を有する各種ワックス状
物が使用される。
Manufacturing method In the present invention, a diluent is blended with the above components in order to enable melt molding of the ultrahigh molecular weight ethylene-α-olefin copolymer. As such a diluent, a solvent for the ultra-high molecular weight ethylene copolymer and various wax-like substances having compatibility with the ultra-high molecular weight ethylene copolymer are used.

溶剤は、好ましくは前記共重合体の融点以上、更に好ま
しくは融点+20℃以上の沸点を有する溶剤である。
The solvent preferably has a boiling point higher than the melting point of the copolymer, more preferably higher than the melting point +20°C.

かかる溶剤としては、具体的には、n−ノナン、n−デ
カン、n−ウンデカン、n〜ドデカン、n−テトラデカ
ン、n−オクタデカンあるいは流動パラフィン、灯油等
の脂肪族炭化水素系溶媒、キシレン、ナフタリン、テト
ラリン、ブチルベンゼン、p〜シメン、シクロヘキシル
ベンゼン、ジエチルベンゼン、ペンチルベンゼン、ドデ
シルベンゼン、ビシクロヘキシル、デカリン、メチルナ
フタリン、エチルナフタリン等の芳香族炭化水素系溶媒
あるいはその水素比誘一体、1,1,2.2−テトラク
ロロエタン、ペンタクロロエタン、ヘキサクロロエタン
、1.2.3−トリクロロプロノぐン、ジクロロベンゼ
ン、1,2.4−)ジクロロベンゼン、ブロモベンゼン
等のハロゲン化炭化水素溶媒、パラフィン系プロセスオ
イル、ナフテン系プロセスオイル、芳香族系プロセスオ
イル等の鉱油が挙げられる。
Specific examples of such solvents include n-nonane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-octadecane, liquid paraffin, aliphatic hydrocarbon solvents such as kerosene, xylene, and naphthalene. , aromatic hydrocarbon solvents such as tetralin, butylbenzene, p-cymene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dodecylbenzene, bicyclohexyl, decalin, methylnaphthalene, ethylnaphthalene, or their hydrogen dielectric compounds, 1,1, 2. Halogenated hydrocarbon solvents such as 2-tetrachloroethane, pentachloroethane, hexachloroethane, 1.2.3-trichloropronogne, dichlorobenzene, 1,2.4-)dichlorobenzene, bromobenzene, paraffin-based processes Examples include mineral oils such as oil, naphthenic process oil, and aromatic process oil.

ワックス類としては、脂肪族炭化水素化合物或いはその
誘導体が使用される。
As the waxes, aliphatic hydrocarbon compounds or derivatives thereof are used.

脂肪族炭化水素化合物としては、飽和脂肪族炭化水素化
合物を主体とするもので、通常分子量が2000以下、
好ましくは1000以下、更に好ましくは800以下の
ノ臂うフイン系ワ、クスと呼ばれるものである。これら
脂肪族炭化水素化合物としては、具体的にはトコサン、
トリコサン、テトラコサン、トリアコンタン等の炭素数
22以上のn−アルカンあるいはこれらを主成分とした
低級n−アルカンとの混合物、石油から分離精製された
所謂パラフィンワックス、エチレンあるいはエチレンと
他のα−オレフィンとを共重合して得られる低分子量重
合体である中・低圧ポリエチレンワックス、高圧法ポリ
エチレンワックス、エチレン共重合ワックスあるいは中
・低圧法ポリエチレン、高圧法ポリエチレン等のポリエ
チレンを熱減成等に−より分子量を低下させたワックス
及びそれらのワックスの酸化物あるいはマレイン酸変性
等の酸化ワックス、マレイン酸変性ワックス等が挙げら
れる。
The aliphatic hydrocarbon compounds are mainly saturated aliphatic hydrocarbon compounds, and usually have a molecular weight of 2000 or less,
It is preferably 1000 or less, more preferably 800 or less, and is called a wax. These aliphatic hydrocarbon compounds include tocosan,
n-alkanes with 22 or more carbon atoms such as tricosane, tetracosane, triacontane, or mixtures of these with lower n-alkanes as main components, so-called paraffin wax separated and purified from petroleum, ethylene or ethylene and other α-olefins Polyethylene such as medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax, medium/low pressure polyethylene, high pressure polyethylene, etc., which is a low molecular weight polymer obtained by copolymerizing with Examples include waxes with reduced molecular weights, oxides of these waxes, oxidized waxes modified with maleic acid, and waxes modified with maleic acid.

脂肪族炭化水素化合物誘導体としては、例えば脂肪族炭
化水素基(アルキル基、アルケニル基)の末端もしくは
内部に1個又はそれ以上、好ましくは工ないし2個、特
に好ましくは1個の力A/がキシル基、水酸基、カルバ
モイル基、エステル基、メルトカプト基、カルがニル基
等の官能基を有する化合物である炭素数8以上、好まし
くは炭素数12〜50又は分子量130〜2000、好
ましくは200〜800の脂肪酸、脂肪族アルコール、
脂肪酸アミド、脂肪酸エステル、脂肪族メルカプタン、
脂肪族アルデヒド、脂肪族ケトン等を挙けることができ
る。
As an aliphatic hydrocarbon compound derivative, for example, one or more, preferably 1 to 2, particularly preferably 1 force A/ is present at the end or inside of an aliphatic hydrocarbon group (alkyl group, alkenyl group). A compound having a functional group such as a xyl group, a hydroxyl group, a carbamoyl group, an ester group, a meltcapto group, or a cal-nyl group, with a carbon number of 8 or more, preferably a carbon number of 12 to 50, or a molecular weight of 130 to 2,000, preferably 200 to 800. fatty acids, aliphatic alcohols,
Fatty acid amides, fatty acid esters, aliphatic mercaptans,
Examples include aliphatic aldehydes and aliphatic ketones.

具体的には、脂肪酸としてカプリン酸、ラウリン酸、ミ
リスチン酸、パル電チン酸、ステアリン酸、オレイン酸
、脂肪族アルコールとしてラウリルアルコール、ミリス
チルアルコール、セチルアルコール、ステアリルアルコ
ール、脂肪酸アミドとしてカプリンアミド、ラウリンア
ミド、ノ母ルミチンアミド、ステアリルアミド、脂肪酸
エステルとしてステアリル酢酸エステル等を例示するこ
とができる。
Specifically, the fatty acids include capric acid, lauric acid, myristic acid, pallic acid, stearic acid, and oleic acid; the fatty alcohols include lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol; and the fatty acid amides include caprinamide and laurin. Examples of the amide, lumitinamide, stearylamide, and fatty acid ester include stearyl acetate.

超高分子量エチレン共重合体と稀釈剤との比率は、これ
らの種類によつても相違するが、一般的に言って3:9
7乃至80 : 20、特に15:85乃至60:40
の重量比で用いるのがよい。
The ratio of ultra-high molecular weight ethylene copolymer to diluent varies depending on the type, but generally speaking, it is 3:9.
7 to 80:20, especially 15:85 to 60:40
It is best to use a weight ratio of

稀釈剤の量が上記範囲よりも低い場合には、溶融粘度が
高くなり過ぎ、溶融混線や溶融成形が困難となると共に
、成形物の肌荒れが著しく、延伸切れ等を生じ易い。一
方、釈釈剤の量が上記範囲よりも多いと、やはり溶融混
線が困難となり、ま九成形品の延伸性が劣るようになる
When the amount of the diluent is lower than the above range, the melt viscosity becomes too high, making it difficult to perform melt intermixing and melt molding, and the surface of the molded product becomes extremely rough, easily causing stretching breakage and the like. On the other hand, if the amount of the diluent is larger than the above range, melt intermixing becomes difficult and the stretchability of the molded product becomes poor.

浴融混練は一般に150乃至300℃、特に170乃至
270℃の温度で行なうのが望ましく、上記範囲よりも
低い温度では、溶融粘度が高すぎて、溶融成形が困難と
なり、また上記範囲よりも高い場合には、熱減成により
超高分子量エチレン共重合体の分子量が低下して高弾性
率及び高強度の成形体を得ることが困難となる。尚、配
合はヘンシェルミキサー、■型ブレンダー等による乾式
ブレンドで行ってもよいし、或いは単軸或いは多軸押出
機を用いる溶融混合で行ってもよい。
The bath melt kneading is generally preferably carried out at a temperature of 150 to 300°C, particularly 170 to 270°C; at temperatures lower than the above range, the melt viscosity becomes too high and melt molding becomes difficult; In some cases, the molecular weight of the ultra-high molecular weight ethylene copolymer decreases due to thermal degradation, making it difficult to obtain a molded article with high elastic modulus and high strength. The blending may be carried out by dry blending using a Henschel mixer, type 2 blender, etc., or by melt mixing using a single-screw or multi-screw extruder.

溶融成形は、一般に溶融押出成形により行われる。例え
ば、紡糸口金を通して溶融押出することにより、延伸用
フィラメントが得られ、またフラ、トダイ或いはリング
ダイを通して押出すことによp1延伸用フィルム或いは
シート或いはテープが得られ、更にサーキュラ−ダイを
通して押出すことにより、延伸ブロー成形用/4′イグ
()やリソン)が得られる。本発明は特に、延伸フィラ
メントの製造に有用であり、この場合、紡糸口金より押
出された浴融物にドラフト、即ち溶融状態での引き伸し
を加えることもできる。溶融樹脂のグイ・オリフィス内
での押出速[Voと冷却固化した未延伸物の巻き取り速
Hvとの比をドラフト比として次式で定義することがで
きる。
Melt molding is generally performed by melt extrusion. For example, filaments for drawing can be obtained by melt extrusion through a spinneret, and films, sheets or tapes for p1 drawing can be obtained by extrusion through a flat, to die or ring die, and further extrusion through a circular die. By doing this, stretch-blow molding/4' Ig() and Rison) are obtained. The present invention is particularly useful for producing drawn filaments, in which case the bath melt extruded from a spinneret may be subjected to drafting, ie, drawing in the molten state. The ratio of the extrusion speed [Vo] of the molten resin in the Gouy orifice to the winding speed Hv of the undrawn material cooled and solidified can be defined as a draft ratio by the following formula.

ドラフト比=V、/Vo    −−−−−−(2)か
かるドラフト比は混合物の温度及び超高分子量エチレン
共重合体の分子量等によるが通常は3以上、好ましくは
6以上とすることができる。
Draft ratio = V, /Vo ------- (2) This draft ratio depends on the temperature of the mixture, the molecular weight of the ultra-high molecular weight ethylene copolymer, etc., but can usually be 3 or more, preferably 6 or more. .

勿論、溶融成形は押出成形のみに限定されず、各種延伸
成形容器等の製造の場合には、射出成形で延伸プロー成
形用のプリフ、−ムを製造することも可能である。成形
物の冷却固化は風冷、水冷等の強制冷却手段で行うこと
ができる。
Of course, melt molding is not limited to extrusion molding, and in the case of manufacturing various stretch molded containers, it is also possible to manufacture preforms for stretch blow molding by injection molding. The molded product can be cooled and solidified by forced cooling means such as air cooling or water cooling.

かくして得られる超高分子量エチレン共重合体の未延伸
成形体を延伸処理する。延伸処理O程度は、勿論、成形
体の超高分子量エチレン共重合体に少なくとも一軸方向
の分子配向が有効に付与されるようなものである。
The unstretched molded product of the ultra-high molecular weight ethylene copolymer thus obtained is subjected to a stretching treatment. Of course, the degree of stretching treatment is such that molecular orientation in at least one axis direction is effectively imparted to the ultra-high molecular weight ethylene copolymer of the molded article.

超高分子量エチンン共重合体の成形体の延伸は、一般に
40乃至160℃、特に80乃至145℃の温度で行う
のが望ましい。未延伸成形体を上記温度に加熱保持する
ための熱媒体としては、空気、水蒸気、液体媒体の何れ
をも用いることができる。
It is desirable that the molded article of the ultra-high molecular weight ethyne copolymer be stretched at a temperature of generally 40 to 160°C, particularly 80 to 145°C. As a heat medium for heating and maintaining the unstretched molded body at the above-mentioned temperature, any of air, water vapor, and a liquid medium can be used.

しかしながら、熱媒体として、前述した稀釈剤を溶出除
去することができる溶媒で、しかもその沸点が成形体組
成物の融点よりも高いもの、具体的にはデカリン、デカ
ン、灯油等を使用して、延伸操作を行なうと、前述した
稀釈剤の除去が可能となると共に、延伸時の延伸むらの
解消並びに高延伸倍率の達成が可能となるので好ましい
However, as a heat medium, a solvent capable of eluting and removing the diluent mentioned above and whose boiling point is higher than the melting point of the molded body composition, specifically, decalin, decane, kerosene, etc., is used. Stretching is preferred because it makes it possible to remove the diluent mentioned above, eliminate stretching unevenness during stretching, and achieve a high stretching ratio.

勿論、超高分子量エチレン共重合体から過剰の稀釈剤を
除去する手段は、前記方法に限らず、未延伸物をヘキサ
ン、ヘゲタン、熱エタノール、クロロホルム、ベンゼン
等の溶剤で処理後延伸する方法、延伸物をヘキサン、へ
ブタン、熱エタノール、クロロホルム、ベンゼン等の溶
剤で処理スル方法によっても、成形物中の過剰の稀釈剤
の除去を有効に行ない、高弾性率、高強度の延伸物を得
ることができる。
Of course, the means for removing excess diluent from the ultra-high molecular weight ethylene copolymer is not limited to the above method, but may include a method of treating an unstretched material with a solvent such as hexane, hegetane, hot ethanol, chloroform, or benzene, and then stretching it; Excess diluent in the molded product can also be effectively removed by treating the stretched product with a solvent such as hexane, hebutane, hot ethanol, chloroform, benzene, etc. to obtain a stretched product with high elastic modulus and high strength. be able to.

延伸操作は、一段或いは二段以上の多段で行うことがで
きる。延伸倍率は、所望とする分子配向及びこれに伴な
う融解温度向上の効果にも依存するが、一般に5乃至8
0倍、特に10乃至50倍の延伸倍率となるように延伸
操作を行えば満足すべき結果が得られる。
The stretching operation can be performed in one stage or in multiple stages of two or more stages. The stretching ratio depends on the desired molecular orientation and the associated effect of increasing the melting temperature, but is generally between 5 and 8.
Satisfactory results can be obtained if the stretching operation is carried out at a stretching ratio of 0 times, especially 10 to 50 times.

一般には、二段以上の多段延伸が有利であり、一段目で
は80乃至120℃の比較的低い温度で押出成形体中の
稀釈剤を抽出しながら延伸操作を行い、二段目以降では
120乃至160t:の温度でしかも一段目延伸温度よ
りも高い温度で成形体の延伸操作を続行するのがよい。
In general, multistage stretching of two or more stages is advantageous; in the first stage, the stretching operation is carried out at a relatively low temperature of 80 to 120°C while extracting the diluent in the extruded product, and in the second and subsequent stages, the stretching operation is carried out at a relatively low temperature of 80 to 120°C. It is preferable to continue the stretching operation of the molded body at a temperature of 160 t: and at a temperature higher than the first-stage stretching temperature.

フィラメント、テープ或いは一軸延伸等の一軸延伸操作
の場合には、周速の異なるローラ間で引張延伸を行えば
よく、また二軸延伸フ)ルムの場合には、周速の異なる
ローラ間で縦方向に引張延伸を行なうと共に、テンター
等により横方向にも引張延伸を行う。また、インフレー
ション法による二軸延伸も可能である。更に、容器等の
立体成彫物の場合には、軸方向への引張り延伸と周方向
への膨張延伸との組合せによりニ軸延伸成形体を得るこ
とができる。
In the case of uniaxial stretching operations such as filament, tape, or uniaxial stretching, tension stretching can be performed between rollers with different peripheral speeds, and in the case of biaxially stretched films, longitudinal stretching can be performed between rollers with different peripheral speeds. In addition to carrying out tensile stretching in the direction, tensile stretching is also carried out in the transverse direction using a tenter or the like. Biaxial stretching by an inflation method is also possible. Furthermore, in the case of a three-dimensional molded article such as a container, a biaxially stretched molded article can be obtained by a combination of tensile stretching in the axial direction and expansion stretching in the circumferential direction.

かくして得られる分子配向成形体は、所望により拘束条
件下に熱処理することができる。この熱処理は、一般に
140乃至180℃、特に150乃至175℃の温度で
、1乃至20分間、特に3乃至10分間行うことができ
る。熱処理により、配向結晶部の結晶化が一層進行し、
結晶融解温度の高温側移行、強度及び弾性率の向上及び
高温での耐クリープ性の向上がもたらされる。
The molecularly oriented molded product thus obtained can be heat-treated under restrictive conditions if desired. This heat treatment can generally be carried out at a temperature of 140 to 180°C, in particular 150 to 175°C, for 1 to 20 minutes, especially 3 to 10 minutes. By heat treatment, the crystallization of the oriented crystal part further progresses,
This results in a shift of the crystal melting temperature to a higher temperature side, an improvement in strength and elastic modulus, and an improvement in creep resistance at high temperatures.

既に述べた通り、本発明による超高分子量エチレン−α
−オレフィン共重合体の分子配向成形体は、該共重合体
本来の結晶融解温度(′rn1)よりも少なくとも20
℃高い温度に少なくとも1個の結晶融解ピーク(Tp 
)を有し、しかも全融解熱量当りのこの結晶融解ピーク
(Tp)に基づく融解熱量が15チ以上、好ましくは2
0%以上、特に30チ以上であるという特徴を有する。
As already mentioned, ultrahigh molecular weight ethylene-α according to the present invention
- The molecularly oriented molded article of the olefin copolymer is at least 20 degrees higher than the original crystal melting temperature ('rn1) of the copolymer.
At least one crystal melting peak (Tp
), and the heat of fusion based on this crystal melting peak (Tp) per total heat of fusion is 15 or more, preferably 2
It has the characteristic that it is 0% or more, especially 30% or more.

超高分子量エチレン共重合体本来の結晶融解温度(Tm
)は、この成形体を一度完全に融解した後冷却して、成
形体における分子配向を緩和させた後、再度昇温させる
方法、Mill示差走査型熱量計におけるセカンド・ラ
ンで求めることができる。
Ultra-high molecular weight ethylene copolymer original crystal melting temperature (Tm
) can be determined by a second run in a Mill differential scanning calorimeter by completely melting the molded body, cooling it to relax the molecular orientation in the molded body, and then raising the temperature again.

更に説明すると、本発明の分子配向成形体では、前述し
た共1合体本来の結晶融解温度域には結晶融解ピークは
全く存在しないか、存在するとしても極くわずかにテー
リングとして存在するにすぎない。結晶融解ピーク(T
p)は一般に、温度範囲Tm+20℃〜Tm+ 50℃
、特にTm+20℃〜Tm+100’Cの領域に表われ
るのが普通であり、このピーク(Tp)は上記温度範囲
内に交数個のピークとして表われることが多い。即ち、
この結晶融解ピーク(Tp)は、温度範囲Tm+35℃
〜Tm+100℃における高温側融鱗ビーク(Tpt)
と、温度範囲Tm+20℃〜Tm+35℃における低温
側融解ピーク(Tpt)との2つに分離して表われるこ
とが多く、分子配向成形体の製造条件によっては、TP
xやTp!が更に複数個のピークから成ることもある。
To explain further, in the molecularly oriented molded product of the present invention, there is no crystal melting peak at all in the above-mentioned crystal melting temperature range inherent to the co-mono-coalescence, or even if it exists, it exists only as a very slight tailing. . Crystal melting peak (T
p) generally within the temperature range Tm+20°C to Tm+50°C
In particular, it usually appears in the region of Tm+20°C to Tm+100'C, and this peak (Tp) often appears as several intersecting peaks within the above temperature range. That is,
This crystal melting peak (Tp) is within the temperature range Tm + 35°C
~Tm+100°C high temperature side melting scale peak (Tpt)
and a low-temperature melting peak (Tpt) in the temperature range Tm + 20°C to Tm + 35°C. Depending on the manufacturing conditions of the molecularly oriented molded product, TP
x and Tp! may further consist of multiple peaks.

これらの高い結晶融解ピーク(TpI −Tpt )は
1超高分子量エチレンーα−オレフィン共重合体の成形
体の耐熱性を顕著に向上させ、かつ高温の熱履歴後での
強度保持率や弾性率保持率に寄与するものであると思わ
れる。
These high crystal melting peaks (TpI - Tpt ) significantly improve the heat resistance of the molded product of the ultra-high molecular weight ethylene-α-olefin copolymer, and also improve the strength retention rate and elastic modulus retention after high-temperature thermal history. This is thought to contribute to the rate.

又、温度範囲Tm+35℃〜Tm+ 100℃の高温側
融解ピーク(Tpt)に基づく融解熱量の総和は、全融
解熱量当り、1.5係以上、特に3.0%以上にあるこ
とが望ましい。
Further, it is desirable that the sum of the heat of fusion based on the high temperature side melting peak (Tpt) in the temperature range Tm+35°C to Tm+100°C be 1.5% or more, particularly 3.0% or more based on the total heat of fusion.

又、高温側融解ピーク(Tpt)に基づく融解熱量の総
和が上述の値を満している限りにおいては、高温側融解
ピーク(Tps)が主たるピークとして突出して現われ
ない場合、つまり小ピークの集合体もしくはブロードな
ピークになったとしても、耐熱性は若干失なわれる場合
もあるが、耐クリープ特性については優れている。
In addition, as long as the sum of the heat of fusion based on the high-temperature side melting peak (Tpt) satisfies the above-mentioned value, if the high-temperature side melting peak (Tps) does not stand out as a main peak, that is, a collection of small peaks. Even if the peak becomes large or broad, the heat resistance may be slightly lost, but the creep resistance is excellent.

本発明における融点及び結晶融解熱量は以下の方法によ
り測定した。
The melting point and heat of crystal fusion in the present invention were measured by the following method.

融点は示差走査熱量計で以下の様に行なった。The melting point was determined using a differential scanning calorimeter as follows.

示差走査熱量計はDSCn型(パーキンエルマー社製)
を用いた。試料は約3■を4霞×4■、厚さ0、2 w
mのアルミ板に巻きつけることによシ配向方向に拘束し
た。次いでアルミ板に巻きつけた試料をアルミ/#ンの
中に封入し、測定用試料とした。
Differential scanning calorimeter is DSCn type (manufactured by PerkinElmer)
was used. The sample is approximately 3 cm, 4 haze x 4 cm, thickness 0.2 w
It was restrained in the orientation direction by wrapping it around an aluminum plate of m. Next, the sample wrapped around an aluminum plate was encapsulated in an aluminum plate and used as a measurement sample.

又、リファレンスホルダーに入れる通常空のアルミ/譬
ンには試料に用いたと同じアルミ板を封入し熱バランス
を取った。まず試料を30℃で約1分間保持し、その後
10℃/ m l nの昇温速度で250℃まで昇温し
、第1回目昇温時の融点測定を完了した。引き続き25
0℃の状態で10分間保持し、次いで20℃/ m i
 nの降温速度で降温し、さらに30℃で10分間試料
を保持した。次いで二回目の昇温を10℃/ m 1 
nの昇温速度で250℃まで昇温し、この際2回目昇温
時(セカンドラン)の融点測定を完了した。このとき融
解ピークの最大値をもって融点とした。ショルダーとし
て現われる場合はショルダーのすぐ低温側の変曲点とす
ぐ高温側の変曲点で接線を引き交点を融点とした。
In addition, the same aluminum plate used for the sample was sealed in the normally empty aluminum tube placed in the reference holder to maintain heat balance. First, the sample was held at 30°C for about 1 minute, and then the temperature was raised to 250°C at a temperature increase rate of 10°C/mln, and the melting point measurement at the first temperature increase was completed. Continued 25
Hold at 0 °C for 10 minutes, then 20 °C/mi
The temperature was lowered at a temperature lowering rate of n, and the sample was further held at 30°C for 10 minutes. Then, the second temperature increase was performed at 10℃/m 1
The temperature was increased to 250° C. at a temperature increase rate of n, and at this time, the melting point measurement was completed during the second temperature increase (second run). At this time, the maximum value of the melting peak was taken as the melting point. When it appears as a shoulder, a tangent is drawn between the inflection point immediately on the low-temperature side and the inflection point immediately on the high-temperature side of the shoulder, and the intersection is taken as the melting point.

iた吸熱曲線の60℃と240℃との点を結び該直線(
ベースライン)と二回目昇温時の主融解ピークとして求
められる超高分子量エチレン共重合体本来の結晶融解温
度(Tm)よシ20℃高い点に垂線を引き、これらによ
って囲まれた低温側の部分を超高分子量エチレン共重合
体本来の結晶融解(Tm)に基づくものとし、又高温側
の部分を本発明成形体の機能を発現する結晶融解(Tp
)に基づくものとし、それぞれの結晶融解熱量は、これ
らの面積よジ算出した。又、TplおよびTpl  の
融解に基づく融解熱量も上述の方法に従い、Tm+20
℃からの垂線とTm+35℃ からの垂線に囲まれた部
分をTp2の融解に基づく融解熱量のものとし高温側部
分をTptの融解に基づく融解熱量のものとして同様に
算出した。
Connect the points 60°C and 240°C of the endothermic curve and draw the straight line (
Draw a perpendicular line to a point 20°C higher than the original crystalline melting temperature (Tm) of the ultra-high molecular weight ethylene copolymer, which is determined as the main melting peak during the second temperature rise, and The part on the high temperature side is based on the crystal melting (Tm) inherent to the ultra-high molecular weight ethylene copolymer, and the part on the high temperature side is based on the crystal melting (Tp) that exhibits the function of the molded article of the present invention.
), and the heat of fusion of each crystal was calculated based on these areas. In addition, the heat of fusion based on the melting of Tpl and Tpl was determined by Tm+20 according to the above method.
The portion surrounded by the perpendicular line from 0.degree. C. and the perpendicular line from Tm+35.degree. C. was the heat of fusion based on the melting of Tp2, and the high temperature side portion was similarly calculated as the heat of fusion based on the melting of Tpt.

成形体における分子配向の程度は、X線回折法、複屈折
法、螢光偏光法等で知ることができる。本発明の超高分
子量エチレン共重合体の延伸フィラメントの場合、例え
ば呉祐吉、久保輝一部:工業化学雑誌第39巻、992
頁(1939)に詳しく述べられている半値巾による配
向度、即ち式式中、H’は赤道線上最強の79ラトロ一
グ面のデバイ環に溢っての強度分布曲線の半価幅(″)
である。
The degree of molecular orientation in a molded article can be determined by an X-ray diffraction method, a birefringence method, a fluorescence polarization method, or the like. In the case of the drawn filament of the ultra-high molecular weight ethylene copolymer of the present invention, for example, Yukichi Go, Teru Kubo: Industrial Chemistry Magazine Vol. 39, 992.
(1939), where H' is the half-width ('' )
It is.

で定義される配向度(F)が0.90以上、特に0.9
5以上となるように分子配向されていることが、機械的
性質の点で望ましい。
The degree of orientation (F) defined by is 0.90 or more, especially 0.9
From the viewpoint of mechanical properties, it is desirable that the molecules be oriented so that the number of particles is 5 or more.

本発明の超高分子量エチレン−α−オレフィン共重合体
の延伸フィラメントは、170℃で5分間の熱履歴を与
えた後での強度保持率が95チ以上で、弾性率保持率が
904以上、特に95チ以上と、従来のポリエチレンの
延伸フィラメントには全く認められない優れた耐熱性を
有している。
The drawn filament of the ultra-high molecular weight ethylene-α-olefin copolymer of the present invention has a strength retention rate of 95 degrees or more and an elastic modulus retention rate of 904 degrees or more after being subjected to a heat history of 5 minutes at 170°C. In particular, it has an excellent heat resistance of 95 inches or more, which is completely unrecognizable in conventional drawn polyethylene filaments.

tた、この延伸フィラメントは高温下での耐りリーf%
性に際立って優れており、荷重を30チ破断荷重とし、
雰囲気温度を70℃とし、90秒後の伸び(チ)として
求めたクリープが7%以下、特に5慢以下であり、更に
90秒から180秒後のクリープ速度(i、5ea)が
4 X 10  sec以下、特に5 X 10  s
ec  以下である。
In addition, this drawn filament has a resistance to leak f% under high temperature.
It has outstanding properties, with a breaking load of 30 inches,
The atmospheric temperature is 70°C, and the creep measured as elongation (chi) after 90 seconds is 7% or less, especially 5% or less, and the creep rate (i, 5ea) after 90 seconds to 180 seconds is 4 x 10 sec or less, especially 5 X 10 s
ec or less.

更に、本発明の超高分子量エチレン−α−オレフィン共
重合体の分子配向成形体は機械的特性にも優れておpl
例えば延伸フィラメントの形状で20 GPa以上、特
に30 GPa以上の弾性率と、1.2GPa以上、特
に1.5GPa以上の引張強度とを有している。
Furthermore, the molecularly oriented molded product of the ultra-high molecular weight ethylene-α-olefin copolymer of the present invention has excellent mechanical properties and is a plastic product.
For example, in the form of a drawn filament, it has an elastic modulus of 20 GPa or more, especially 30 GPa or more, and a tensile strength of 1.2 GPa or more, especially 1.5 GPa or more.

(発明の効果) 本発明の超高分子量エチレン−α−オレフィン共重合体
の分子配向成形体は、耐熱性、耐りIJ−プ性、機械的
性質の組合せに優れている。かくして、この特性を利用
して、本発明の分子配向成形体は、高強度マルチフィラ
メント、ひも、ロープ、織布、不織布等の産業用紡織材
料の他に1梱包用テープ等の包装材料として有用である
(Effects of the Invention) The molecularly oriented molded article of the ultra-high molecular weight ethylene-α-olefin copolymer of the present invention has an excellent combination of heat resistance, IJ-proofing properties, and mechanical properties. Thus, by utilizing this characteristic, the molecularly oriented molded product of the present invention is useful as a packaging material such as packing tape in addition to industrial textile materials such as high-strength multifilaments, strings, ropes, woven fabrics, and non-woven fabrics. It is.

また、フィラメントの形態の成形体を、ニブキシ樹脂、
不飽和ポリエステル等の各種樹脂や合成ゴム等に対する
補強繊維として使用すると、従来の超高分子量ポリエチ
レン延伸フィラメントに比して、耐熱性や耐クリーブ性
の点で著しい改善がなされることが明白であろう。又、
このフィラメントは高強度でしかも密度が小さいことか
ら従来のガラス繊維、炭素繊維、?ロン繊維、芳香族ポ
リアミド繊維、芳香族ポリイミド繊維等を用いた成形物
に比べ、特に軽量化を計れるので有効である。ガラス繊
維等を用いた複合材料と同様に、UD (Unit D
ir@ctional )積層板、SMC(Sheet
Molding Compound )、BMC(Bu
lk MoldingCompound )等の成形加
工を行うことができ、自動車部品、?−トやヨツトの構
造体、電子回路用基板等の軽量、高強度分野での各種複
合材料用途が期待される。
In addition, a molded body in the form of a filament is made of niboxi resin,
It is clear that when used as reinforcing fibers for various resins such as unsaturated polyester and synthetic rubber, there is a significant improvement in heat resistance and cleaving resistance compared to conventional drawn ultra-high molecular weight polyethylene filaments. Dew. or,
This filament has high strength and low density, so it is different from conventional glass fiber, carbon fiber, etc. It is particularly effective because it can be made lighter compared to molded products using lon fibers, aromatic polyamide fibers, aromatic polyimide fibers, etc. Similar to composite materials using glass fiber etc., UD (Unit D
ir@ctional) laminate, SMC (Sheet
Molding Compound), BMC (Bu
It is possible to perform molding processing such as lk Molding Compound), automobile parts, etc. - It is expected that the composite material will be used in various lightweight, high-strength fields such as structures for boats and yachts, and substrates for electronic circuits.

実施例1 く超高分子量エチレン−4−メチルペンテン−1共重合
体の重合〉 チーグラー系触媒を用いて、n−デカン11を重合溶媒
として、エチレンのスラリー重合を行った。このとき、
共単量体として4−メチル4ンテン−1を25d、また
分子量の調整のため水素を3ONmを初期一括添加し重
合を開始した。エチレンガスを反応器の圧力が5kg1
5+”の一定圧力を保つ様に連続供給し重合は70℃で
1.5時間で終了した。得られた超高分子量エチレン−
4−メチルペンテン−1共重合体粉末の収量は2641
で極限粘度〔η〕(デカリン、135℃)は9.66d
f#。
Example 1 Polymerization of ultra-high molecular weight ethylene-4-methylpentene-1 copolymer> Slurry polymerization of ethylene was carried out using a Ziegler catalyst and n-decane 11 as a polymerization solvent. At this time,
Polymerization was started by initially adding 25 d of 4-methyl-4-tene-1 as a comonomer and 3 ONm of hydrogen to adjust the molecular weight. The pressure of the reactor is 5kg1 for ethylene gas.
The polymerization was completed in 1.5 hours at 70°C by continuously supplying the polymer to maintain a constant pressure of 5+".The obtained ultra-high molecular weight ethylene-
The yield of 4-methylpentene-1 copolymer powder is 2641
The intrinsic viscosity [η] (decalin, 135°C) is 9.66d.
f#.

赤外分光光度計による4−メチルインテン−1含量は1
000炭素原子あたvl、7個であった。
The content of 4-methylinthene-1 determined by infrared spectrophotometer is 1
000 carbon atoms per vl, 7 pieces.

く超高分子量エチレン−4−メチルインテン−1共重合
体延伸配向物の調製〉 上述の超高分子量エチレン−4−メチルインテン−1共
重合体とノクラフィンワ、クス(融点=69℃9分子量
=490)との20:80.重量比の混合物を以下の条
件下で溶融紡糸した。該混合物にプロセス安定剤として
3,5−ジメチル−tert−ブチル−4−ハイドロキ
シトルエンを超高分子量エチレン−4−メチルペンテン
−1共重合体に対して0.1重量部配合した。次いで該
混合物をスクリュ一式押出機(スクリュー径=25■。
Preparation of stretched oriented product of ultra-high molecular weight ethylene-4-methylinten-1 copolymer> The above-mentioned ultra-high molecular weight ethylene-4-methylinten-1 copolymer and Nokurafinwa, Kusu (melting point = 69°C, molecular weight = 490 ) with 20:80. The weight ratio mixture was melt spun under the following conditions. 0.1 part by weight of 3,5-dimethyl-tert-butyl-4-hydroxytoluene was added to the mixture as a process stabilizer based on the ultra-high molecular weight ethylene-4-methylpentene-1 copolymer. Next, the mixture was extruded using a single screw extruder (screw diameter = 25 mm).

L/D=25.サーモグラスチック工業社製)を用いて
、設定温度190℃で溶融混練を行い、引き続き該溶融
物を押出機に付属するオリフィス径2■の紡糸ダイより
溶融紡糸した。紡糸繊維を1801のエアーギャップで
36倍のドラフト比で引き取り、空気中にて冷却、固化
し、未延伸繊維とした。さらに該未延伸糸を以下の条件
で延伸し配向繊維を得た。王台のゴデツトロールを用い
て二段延伸を行った。このとき第−延伸槽の熱媒はn−
デカンであり、温度は110℃第二延伸槽の熱媒はトリ
エチレングリコールであり温度は145℃であった。槽
の有効長はそれぞれ50備であった。
L/D=25. Thermoplastic Kogyo Co., Ltd.) was used to melt-knead the mixture at a set temperature of 190° C., and then the melt was melt-spun using a spinning die with an orifice diameter of 2 mm attached to an extruder. The spun fibers were taken with an air gap of 1801 at a draft ratio of 36 times, and were cooled and solidified in air to obtain undrawn fibers. Further, the undrawn yarn was drawn under the following conditions to obtain oriented fibers. Two-stage stretching was performed using a Godetstrol from Ohdai. At this time, the heating medium in the -th drawing tank is n-
The heating medium in the second drawing tank was triethylene glycol and the temperature was 145°C. The effective length of each tank was 50 mm.

延伸に際しては第1−i”プツトロールの回転速度を0
.5 m/ml nとして第3ゴデツトロールの回転速
度を変更することにより、所望の延伸比の繊維を得た。
During stretching, the rotational speed of the 1-i'' putter roll was set to 0.
.. Fibers with the desired draw ratio were obtained by changing the rotational speed of the third godet roll as 5 m/ml n.

第2:2″デ、トロールの回転速度は安定延伸可能な範
囲で適宜選択した。初期に混合された/ぐラフインワッ
クスは大部分が延伸時にn−fカン槽中で抽出された。
2nd: The rotational speed of the 2'' trolley was appropriately selected within the range that allowed stable stretching. Most of the initially mixed/graft-in wax was extracted in the n-f can tank during stretching.

延伸比は第1ゴデアトロールと第3がプツトロールとの
回転速度比より計算によって求めた。
The stretching ratio was determined by calculation from the rotational speed ratio of the first Godetrol and the third Godetrol.

く引張特性の測定〉 弾性率および引張強度は島津製作所製DO8−50M型
引張試験機を用い、室温(23℃)にて測定した。この
時フランジ間の試料長は100m+で引張速度100 
w/minであった。弾性率は初期弾性率で接線の傾き
を用いて計算した。計算に必要な繊維断面積は密度を0
.9617ccとして重量から計算で求めた。
Measurement of tensile properties> The elastic modulus and tensile strength were measured at room temperature (23° C.) using a DO8-50M tensile tester manufactured by Shimadzu Corporation. At this time, the sample length between the flanges was 100 m+ and the tensile speed was 100.
It was w/min. The elastic modulus was calculated using the slope of the tangent at the initial elastic modulus. The fiber cross-sectional area required for calculation is calculated by setting the density to 0.
.. It was calculated from the weight as 9617cc.

く耐クリープ特性の測定〉 クリープテストは熱応力歪測定装置TMA/8810(
セイコー電子工業株式会社製)を用いて試料長1c!n
、雰囲気温度70℃、荷重は室温での破断荷重の30係
に相当する重量の促進条件下で行なった。りIJ −7
’tを定量的に評価するため以下の二つの値を求めた。
Measurement of creep resistance characteristics〉 The creep test was performed using a thermal stress strain measuring device TMA/8810 (
Sample length is 1c! n
The test was carried out under accelerated conditions at an ambient temperature of 70° C. and a weight equivalent to 30 times the breaking load at room temperature. IJ-7
In order to quantitatively evaluate 't, the following two values were obtained.

まず90秒後の伸びチをCR,。、又90秒から180
秒後の平均クリーブ速度(see” )を鼻とした。
First, CR the stretch after 90 seconds. , and from 90 seconds to 180
The average cleave speed (see'') after seconds was taken as the nose.

〈熱履歴後の引張弾性率・強度保持率〉熱履歴試験はギ
ヤーオーブン(−4−フェクトオープン二田葉井製作所
製)内に放置することKよりて行りた。
<Tensile modulus and strength retention after heat history> The heat history test was conducted by leaving the material in a gear oven (manufactured by -4-Fect Open Nitabai Seisakusho).

試料は約3F+1の長さでステンレス粋の両端に複数個
の滑車を装置し友ものに折り返しかけて試料両端を固定
した。この際、試料両端は試料がたるまない程度に固定
し、積極的に試料に張力はかけなかった。熱履歴後の引
張特性は前述の引張特性の測定の記載に基づいて測定し
た。
The sample had a length of about 3F+1, and a plurality of pulleys were installed at both ends of a stainless steel piece, and both ends of the sample were fixed by folding it back over the other end. At this time, both ends of the sample were fixed to such an extent that the sample did not sag, and no tension was actively applied to the sample. The tensile properties after the thermal history were measured based on the description of the measurement of tensile properties described above.

第1表に延伸配向線維の引張特性を示す。Table 1 shows the tensile properties of the stretched oriented fibers.

第1表 試料−17,9252,0646,75,26試料−1
の示差走査熱量計による第1回目の吸熱特性曲線を第2
図に、また第2回目(セカンドラン)の吸熱特性曲線を
第5図に示す。試料−1の本来の結晶融解ピークは12
9.2℃で、試料−1の全結晶融解ピーク面積にたいす
るTpおよびTPtの割り合いはそれぞれ57.1%、
13.3%でありた。耐クリープ性はCReo = 4
.9 %  g = 3.33 X10  s・Cであ
った。試料−1のクリープ特性を第15図に示した。ま
た170℃、5分間の熱履歴後の弾性率保持率Fi11
2.8%強度保持率は97.1%であり、熱履歴により
強度にごくわずかの保持率低下が認められたが、弾性率
は逆に改良された。
Table 1 Sample-17,9252,0646,75,26 Sample-1
The first endothermic characteristic curve measured by the differential scanning calorimeter is
Furthermore, the endothermic characteristic curve of the second run (second run) is shown in FIG. The original crystal melting peak of sample-1 is 12
At 9.2°C, the ratios of Tp and TPt to the total crystal melting peak area of Sample-1 were 57.1%, respectively.
It was 13.3%. Creep resistance is CReo = 4
.. 9% g = 3.33 x 10 s·C. The creep characteristics of Sample-1 are shown in FIG. In addition, the elastic modulus retention after heat history at 170°C for 5 minutes is Fi11.
The 2.8% strength retention rate was 97.1%, and although a slight decrease in strength retention rate was observed due to thermal history, the elastic modulus was on the contrary improved.

実施例2 <a高分子iエチレン・4−メチルペンテン−1共重合
体の重合〉 チーグラー系触媒を用いて、n−デカ7Ltを重合溶媒
としてエチレンのスラリー重合金行った。
Example 2 <Polymerization of a polymer i ethylene/4-methylpentene-1 copolymer> A slurry polymerization of ethylene was carried out using a Ziegler catalyst and n-deca 7Lt as a polymerization solvent.

このとき、共単量体として4−メチルペンテン−150
m、また分子量の調整のため水素を5ONdを重合開始
前に一括添加し重合を開始し次。
At this time, 4-methylpentene-150 as a comonomer
In order to adjust the molecular weight, 5ONd of hydrogen was added all at once before starting the polymerization, and then the polymerization was started.

エチレンガスを反応器の圧力が5 ’Kji/cm2の
一定圧力を保つ様に連続供給し、重合は70℃で1時間
半で終了した。得られ次超高分子量エチレンー4−メチ
ルインテン−1共重合体粉末の収量は172gで極限粘
度〔η〕(デカリン、135℃)は10、55 di/
g 、赤外分光光度計による4−メチルペンテン−1共
単量体の含量は1000炭素原子あ念9062個であり
た。
Ethylene gas was continuously supplied to the reactor to maintain a constant pressure of 5'Kji/cm2, and the polymerization was completed at 70° C. in 1.5 hours. The yield of the ultra-high molecular weight ethylene-4-methylinthene-1 copolymer powder was 172 g, and the intrinsic viscosity [η] (decalin, 135°C) was 10.55 di/
g. The content of 4-methylpentene-1 comonomer measured by infrared spectrophotometer was 9062 out of 1000 carbon atoms.

〈超高分子量エチレン・4−メチルペンテン−1共重合
体延伸配向物の調製と物性〉 実施例1に記載した方法により延伸配向繊維の調製を行
りた。得られた延伸配向繊維の引張特性を第2表に示す
<Preparation and physical properties of ultra-high molecular weight ethylene/4-methylpentene-1 copolymer drawn and oriented product> A drawn and oriented fiber was prepared by the method described in Example 1. The tensile properties of the obtained drawn and oriented fibers are shown in Table 2.

第2表 試料−214,6162,1953,64,5試料−2
の示差走査熱量計による第1回目の吸熱特性曲線を第6
図に、また第2回目(セカンドラン)の吸熱特性曲線を
第7図に示す。試料−2の本来の結晶融解ピークは13
1.3℃で試料−2の全結晶融解ピーク面積に九いする
TpおよびTplの割シ合いはそれぞれ93.13%と
3.8%であっ次。
Table 2 Sample-214, 6162, 1953, 64, 5 Sample-2
The first endothermic characteristic curve measured by the differential scanning calorimeter is the sixth
In addition, the endothermic characteristic curve of the second run (second run) is shown in FIG. The original crystal melting peak of sample-2 is 13
At 1.3°C, the proportions of Tp and Tpl in the total crystal melting peak area of Sample-2 were 93.13% and 3.8%, respectively.

耐クリープ性はCReo = 2.46 %、iミ1.
21 X I Q−5sec  であった。
Creep resistance is CReo = 2.46%, iMi1.
It was 21XIQ-5sec.

試料−2のクリープ特性を第15図に示す。また170
℃、5分間の熱履歴後の弾性率保持率は108.3%、
強度保持率は96.3チであシ、強度保持率にごくわづ
かの低下が見られたが逆に弾性率は向上した。
The creep characteristics of Sample-2 are shown in FIG. 170 again
℃, the elastic modulus retention rate after 5 minutes of thermal history is 108.3%,
The strength retention rate was 96.3 cm, and although there was a slight decrease in the strength retention rate, on the contrary, the elastic modulus improved.

実施例3 く超高分子量エチレン・ヘキセン−1共重合体の重合〉 チーグラー系触媒を用いて、n−jカン11を重合溶媒
としてエチレンのスラリー重合を行った。
Example 3 Polymerization of ultra-high molecular weight ethylene/hexene-1 copolymer> Slurry polymerization of ethylene was carried out using a Ziegler catalyst and n-j can 11 as a polymerization solvent.

このとき共単量体としてヘキセン−1t”25mJと分
子量調整の几めの水!4ONmを重合開始前に一括添加
し、重合を開始した。エチレンガスを反応器の圧力が5
 kg7cm2の一定圧力を保つ様に連続供給し、重合
は70℃、1時間半で終了した。得られた超高分子量エ
チレン・ヘキセン−1共重合体粉末の収量は231.9
、で極限粘度〔η〕(デカリン、135℃)はg、 3
7 dl!/I %赤外分光光度計によるヘキセリン−
1共単址体含量は1000炭素原子当り2.3個であり
た。
At this time, 25 mJ of hexene 1t'' and 4ONm of water to adjust the molecular weight were added at once as a comonomer before starting the polymerization. Ethylene gas was added to the reactor at a pressure of 5.
The polymerization was completed in 1.5 hours at 70° C. by continuously supplying so as to maintain a constant pressure of 7 cm 2 kg. The yield of the obtained ultra-high molecular weight ethylene/hexene-1 copolymer powder was 231.9
, the intrinsic viscosity [η] (decalin, 135°C) is g, 3
7 dl! /I% hexerin by infrared spectrophotometer
The monomer content was 2.3 per 1000 carbon atoms.

く超高分子量エチレン・ヘキセン−1共重合体延伸配向
物の調製とその物性〉 実施例1に記載し友方法によシ延伸配向繊維の調製を行
−)友。得られた延伸配向繊維の引張特性を第3表に示
す。
Preparation of a drawn and oriented ultra-high molecular weight ethylene/hexene-1 copolymer and its physical properties> A drawn and oriented fiber was prepared by the method described in Example 1. Table 3 shows the tensile properties of the obtained drawn and oriented fibers.

試料−313,7141,8942,45,21試料−
3の示差走査熱量計による第1回目の吸熱特性曲線を第
8図に、また第2回目(セカンドラン)の吸熱特性曲線
を第9図に示す。試料−3の本来の結晶融解ピークは1
29.1℃で試料−3の全結晶融解ピーク面積にたいす
るTpおよびTTltの割り合いはそれぞれ89.1 
%と16チであった。
Sample-313, 7141, 8942, 45, 21 sample-
The endothermic characteristic curve of the first run measured by the differential scanning calorimeter of No. 3 is shown in FIG. 8, and the endothermic characteristic curve of the second run (second run) is shown in FIG. The original crystal melting peak of sample-3 is 1
At 29.1°C, the ratio of Tp and TTlt to the total crystal melting peak area of sample-3 was 89.1, respectively.
% and 16chi.

試料−3の耐クリープ性はCRoe = 2.55チ、
!=1.21X10  sec  であっ次。試料−3
のクリープ特性を第15図に示す。また170℃、5分
間の熱履歴後の弾性率保持率102.(1、強度保持率
99.5係であった。
The creep resistance of sample-3 is CRoe = 2.55 chi,
! = 1.21X10 sec. Sample-3
Figure 15 shows the creep characteristics of . In addition, the elastic modulus retention rate after 5 minutes of thermal history at 170°C was 102. (1. Strength retention rate was 99.5.

実施例4 く超高分子量エチレン・オクテン−1共重合体の重合〉 チーグラー系触媒を用いて、n−デカンII!を重合溶
媒としてエチレンのスラリー重合を行っ次。
Example 4 Polymerization of ultra-high molecular weight ethylene/octene-1 copolymer> Using a Ziegler catalyst, n-decane II! Next, slurry polymerization of ethylene was carried out using as the polymerization solvent.

このとき共単量体としてオクテン−1を125m1と分
子量調整のための水素4ONmlを重合開始前に一括添
加し、重合を開始した。エチレンガスを反応器の圧力が
5 kg7cmの一定圧力を保つ様に連続供給し重合は
70℃、2時間で終了した。得られた超高分子量エチレ
ン・オクテン−1共重合体粉末の収量は178Iでその
極限粘度〔η〕(デカリン、135℃)は10.666
i/9、赤外分光光度計によるオクテン−1共単量体含
量は1000炭素原子尚シ0.5個であった。
At this time, 125 ml of octene-1 as a comonomer and 4 ON ml of hydrogen for molecular weight adjustment were added all at once before starting the polymerization to start the polymerization. Ethylene gas was continuously supplied to the reactor so as to maintain a constant pressure of 5 kg 7 cm, and the polymerization was completed at 70° C. in 2 hours. The yield of the obtained ultra-high molecular weight ethylene/octene-1 copolymer powder was 178I, and its intrinsic viscosity [η] (decalin, 135°C) was 10.666.
i/9, and the octene-1 comonomer content by infrared spectrophotometer was 0.5 out of 1000 carbon atoms.

く超高分子量エチレン・オクテン−1共重合体延伸配向
物の調製とその物性〉 実施例1に記載した方法により延伸配向繊維の調製を行
った。得られた延伸配向繊維の引張特性を第4表に示す
Preparation of drawn and oriented ultra-high molecular weight ethylene/octene-1 copolymer and its physical properties> A drawn and oriented fiber was prepared by the method described in Example 1. Table 4 shows the tensile properties of the obtained drawn and oriented fibers.

第4表 試料−411,1162,1865,73,68試料−
4の示差走査熱量計による第1回目の吸熱特性曲線を第
10図にまた第2回目(セカンドラン)の吸熱特性曲線
を第11図に示す。試料−4の本来の結晶融解ピークは
132℃で試料−4の全結晶融解ピーク面積にたいする
TpおよびTptの割シ合いはそれぞれ97.7%、お
よび5.0%であった。試料−4の耐クリープ性はCH
2O= 2.01チ、ε= 9.52 X 10  s
ec  テ;hッfc。試料−4のり!J7’特性全第
15図に示す。また、170℃5分間の熱履歴後の弾性
率保持率は109.2%、強度保持率は101.9%で
あり熱履歴により弾性率・強度ともに向上を示し次。
Table 4 samples - 411, 1162, 1865, 73, 68 samples -
The endothermic characteristic curve of the first run measured by the differential scanning calorimeter No. 4 is shown in FIG. 10, and the endothermic characteristic curve of the second run (second run) is shown in FIG. The original crystal melting peak of Sample-4 was 132°C, and the ratios of Tp and Tpt to the total crystal melting peak area of Sample-4 were 97.7% and 5.0%, respectively. The creep resistance of sample-4 is CH
2O = 2.01 chi, ε = 9.52 x 10 s
ec te;hfc. Sample-4 glue! All J7' characteristics are shown in FIG. In addition, the elastic modulus retention rate after heat history at 170°C for 5 minutes was 109.2%, and the strength retention rate was 101.9%, indicating that both elastic modulus and strength improved with heat history.

比較例1 超高分子量ポリエチレン(ホモポリマー)粉末(極限粘
度Cyy )=7.42 di/I、デカリン。
Comparative Example 1 Ultra-high molecular weight polyethylene (homopolymer) powder (intrinsic viscosity Cyy) = 7.42 di/I, Decalin.

135℃)=20重量部とパラフィンワックス(融点;
69℃、分子量=490):80重量部の混合物を実施
例1の方法で溶融紡糸、延伸し、延伸配向繊維を得た。
135°C) = 20 parts by weight and paraffin wax (melting point;
69°C, molecular weight = 490): 80 parts by weight of the mixture was melt-spun and drawn by the method of Example 1 to obtain draw-oriented fibers.

第5表に得られた延伸配向繊維の引張特性を示す。Table 5 shows the tensile properties of the obtained drawn and oriented fibers.

第5表 試料−59,3252,5371,54,31超高分子
iポリエチレン延伸配向繊維試料−5の示差走査熱量計
による第1回目昇温時の吸熱特性曲線を第4図に示し、
また第2回目の昇温(セカンドラン)時の吸熱特性曲線
を第12図に示す。
Table 5 Sample-59, 3252, 5371, 54, 31 The endothermic characteristic curve of Ultra High Polymer i Polyethylene Stretched Oriented Fiber Sample-5 at the first temperature increase measured by a differential scanning calorimeter is shown in FIG.
Furthermore, the endothermic characteristic curve during the second temperature increase (second run) is shown in FIG.

超高分子量ポリエチレン試料−5本来の結晶融解ピーク
は135.IC1全結晶融解ピ一ク面積にたいするTp
の割υ合いは8.8チでありた。
The original crystal melting peak of ultra-high molecular weight polyethylene sample-5 is 135. Tp relative to IC1 total crystal melting peak area
The ratio of υ was 8.8chi.

また同様に全結晶融解ピーク面積にたいする高温側ピー
クTpIの割り合いは1.Omであった。さらに170
℃、5分間の熱履歴後の弾性率保持率は80.4%、強
度保持率は79.2チであり、弾性率及び強度とも熱履
歴により低下した。耐クリープ性はCR,、= 12.
01、t = 1.07 X 10−58ec−’であ
りた。試料−5のクリープ特性を第15図に示す。
Similarly, the ratio of the high temperature side peak TpI to the total crystal melting peak area is 1. It was Om. Another 170
After a heat history of 5 minutes at ℃, the retention of elastic modulus was 80.4% and the retention of strength was 79.2%, and both the elastic modulus and strength decreased due to the heat history. Creep resistance is CR,, = 12.
01, t = 1.07 x 10-58ec-'. The creep characteristics of Sample-5 are shown in FIG.

比較例2 超高分子量ポリエチレン(ホモポリマー)粉末(極限粘
度〔η:l = 10.2 di/g.デカリン。
Comparative Example 2 Ultra-high molecular weight polyethylene (homopolymer) powder (intrinsic viscosity [η:l = 10.2 di/g. Decalin.

135℃)=20重量部とノ譬ラフインワックス(融点
=69℃、分子量=490):80重量部の混合物を実
施例1記載の方法で溶融紡糸、延伸し、延伸・配向繊維
を得念。第6表に得られ念延伸配向繊維の引張特性を示
す。
A mixture of 20 parts by weight (135°C) and 80 parts by weight of rough-in wax (melting point = 69°C, molecular weight = 490) was melt-spun and drawn by the method described in Example 1 to obtain drawn and oriented fibers. . Table 6 shows the tensile properties of the obtained tele-stretched oriented fibers.

第6表 試 料 繊 度 延伸倍率 強 度 弾性率 伸 びデ
ニール   倍   GPa   GPa    チ試
料−66,0253,1878,25,78超高分子量
ポリエチレン延伸配向繊維試料−6の示差走査熱量計に
よる第1回目昇温時の吸熱特性曲線を第13図に示し、
また第2回目昇温(セカンドラン)時の吸熱特性曲線を
第14図に示す。
Table 6 Samples Fineness Stretching ratio Strength Elastic modulus Elongation denier times GPa GPa Sample-66, 0253, 1878, 25, 78 Ultra-high molecular weight polyethylene stretch oriented fiber sample-6 1st measurement by differential scanning calorimeter The endothermic characteristic curve during temperature rise is shown in Figure 13.
Furthermore, the endothermic characteristic curve during the second temperature increase (second run) is shown in FIG.

超高分子量ポリエチレン繊維試料−6本来の結晶融解ピ
ークは135.5℃、全結晶融解ピーク面積にたいする
TpおよびTplの割り合いはそれぞれ13.8チおよ
び1.1 %であった。試料−6の耐クリープ性はCR
会◎=8.2%、;=4.t7xto−’5ee−’で
あった。試料−6のクリ−7’%性を第15図に示す。
The original crystal melting peak of ultra-high molecular weight polyethylene fiber sample-6 was 135.5°C, and the ratios of Tp and Tpl to the total crystal melting peak area were 13.8% and 1.1%, respectively. The creep resistance of sample-6 is CR
Meeting ◎=8.2%, ;=4. It was t7xto-'5ee-'. FIG. 15 shows the cre-7'% property of Sample-6.

さらに170℃5分間の熱履歴後の弾性率保持率は86
,1%、強度保持率は93.1チであり特に弾性率が著
しく低下した。
Furthermore, the elastic modulus retention after 5 minutes of heat history at 170°C was 86.
, 1%, the strength retention rate was 93.1 cm, and the elastic modulus in particular decreased significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で用いた超高分子量エチレン・4−メ
チルインテル−1共重合体粉末の示差走査熱量計による
吸熱特性曲線、 第2図は実施例1で得られた超高分子量エチレン・4−
メチルペンテン−1共重合体延伸配向繊維の拘束状態で
の示差走査熱量計による吸熱特性曲線、第3図は比較例
1で用いた超高分子t−1e’)エチレン粉末の示差走
査熱量計による吸熱特性曲線、第4図は比較例1で得ら
れた超高分子量ポリエチレン延伸配向繊維の拘束状態で
の示差走査熱量計による吸熱特性曲線、 第5図は第2図の試料を2回目の昇温測定(セカンドラ
ン)に付したときの吸熱特性曲線、第6図は実施例2で
得られた超高分子量エチレン・4−メチルペンテン−1
共重合体延伸配向繊維の拘束状態での示差走査熱量計に
よる吸熱特性曲線、 第7図は第6図の試料を2回目の昇温測定に付したとき
の吸熱特性曲線、 W、8図は実施例3で得られた超高分子量エチレン・ヘ
キセン−1共重合体延伸配向繊維の拘束状態での示差走
査熱量計による吸熱特性曲線、第9図は第8図の試料を
2回目の昇温測定に付したときの吸熱特性曲線、 第10図は実施例4で得られ九超高分子量エチレン・オ
クテン−1共重合体延伸配向繊維の拘束状態での示差走
査熱量計による吸熱特性曲線、第11図は第10図の試
料を2回目の昇温測定に付したときの吸熱特性曲線、 第12図は第4図の試料を2回目の昇温測定に付したと
きの吸熱特性曲線、 第13図は比較例2で得られた超高分子量ポリエチレン
延伸配向繊維の拘束状態での示差走査熱量計による吸熱
特性曲線、 第14図は第13図の試料を2回目の昇温測定に付した
ときの吸熱特性曲線、及び 第15図は実施例1.実施例2.実施例3.実施例4.
比較例1及び比較例2で得られた各重合体の延伸配向繊
維のクリープ特性曲線全示す。 手続ネ甫正書(自発) 昭和63年 6月20日 特許庁長官  吉 1)文 毅 殿 1、事件の表示 昭和62年特許願第109724号 2、発明の名称 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区霞が関三丁目2番5号名称 (5
88)三井石油化学工業株式会社4、代理人〒105 6、補正の対象 明細書の発明の詳細な説明、図面の簡単な説明の欄及び
図面 7、補正の内容 ■9発明の詳細な説明 (1)明細書第29頁7行目と同8行目の間に次の文を
加入する。 r 本発明によるエチレン−α−オレフン(Cs以上)
共重合体繊維は、破断荷重よりも若干小さい荷重を室温
で印加したとき、破断する迄の時間が著しく長いという
特徴を有する。 即ち、これらの繊維は、室温で750乃至1500MP
aの荷重(F)を印加したときの破壊時間(T、 ho
ur)が であるという特徴を有する。超高分子量のホモポリエチ
レン繊維やエチレン−プロピレン共重合体繊維では、こ
の破壊時間(T)が上記のものに比してかなり短い。 くクリープ破壊時間の測定〉 クリープ破壊時間は以下の様にして求めた。試料要約1
50cmの試料中央から等間隔で100cmの標線間距
離を設け、標線な入れる。雰囲気温度23℃、相対湿度
55%の条件で試料に所望の荷重を印加する。印加直後
から破断までの経過時間を測定し、クリープ破壊時間と
する。標線間外で破断したもの6士除き、6測定で最低
破壊時間の1測定をV余き、5測定の平均クリープ破壊
時間を測定イ直とする。1 (2)仝第41頁2行目と同3行目の間に次の文を加入
する。 r 試料−4の印加荷重とクリープ破壊時間との関係を
第5表に示した。 第5表 印加荷重とクリープ破壊時間との関係を第16図に示し
た。」 (3)全第41頁の9行目及び111行目「第5表」を
、r第6表1に訂正する。 (4)全第42頁下から2行目及び第43頁1行目の「
第6表」を、「第7表1と訂正する。 (5)全第43頁下から2行目と3行目の間に次の文を
加入する。 r 試料−6の印加荷重とクリープ破壊時間との関係を
第8表に示した。 第8表 室温での印加荷重と破壊時間との関係を第16図に試料
−4と合わせて示した。1 ++ 、図面の簡単な説明 (1)明細書第45頁末行の下に次の文を加入する。 r 第16図は、各繊維について室温での印加荷重と破
壊時間との関係を示す線図である。1 1II 、図面 (1)第16図を別紙の通り補充する。 以上
Figure 1 shows the endothermic characteristic curve of the ultra-high molecular weight ethylene/4-methylinter-1 copolymer powder used in Example 1, measured by a differential scanning calorimeter. Figure 2 shows the ultra-high molecular weight ethylene obtained in Example 1.・4-
The endothermic characteristic curve of the methylpentene-1 copolymer stretched oriented fiber measured by a differential scanning calorimeter in a restrained state. Figure 3 shows the endothermic characteristic curve measured by a differential scanning calorimeter of the ultra-polymer t-1e') ethylene powder used in Comparative Example 1. Figure 4 shows the endothermic characteristic curve of the drawn and oriented ultra-high molecular weight polyethylene fiber obtained in Comparative Example 1 measured by a differential scanning calorimeter in a restrained state. The endothermic characteristic curve when subjected to temperature measurement (second run), Figure 6 shows the ultra-high molecular weight ethylene/4-methylpentene-1 obtained in Example 2.
The endothermic characteristic curve measured by differential scanning calorimetry of the copolymer drawn and oriented fiber in a restrained state, Figure 7 shows the endothermic characteristic curve when the sample in Figure 6 was subjected to the second temperature increase measurement, W, and Figure 8 shows The endothermic characteristic curve measured by a differential scanning calorimeter in a restrained state of the ultra-high molecular weight ethylene/hexene-1 copolymer stretched oriented fiber obtained in Example 3. Figure 9 shows the second heating of the sample in Figure 8. Figure 10 shows the endothermic characteristic curve obtained in Example 4, measured by a differential scanning calorimeter, of the nine ultra-high molecular weight ethylene octene-1 copolymer stretched and oriented fibers in a restrained state. Figure 11 shows the endothermic characteristic curve when the sample in Figure 10 is subjected to the second heating measurement. Figure 12 is the endothermic characteristic curve when the sample in Figure 4 is subjected to the second heating measurement. Figure 13 shows the endothermic characteristic curve of the ultra-high molecular weight polyethylene stretched oriented fiber obtained in Comparative Example 2 measured by a differential scanning calorimeter in a restrained state. Figure 14 shows the sample shown in Figure 13 subjected to a second heating measurement. The endothermic characteristic curve and FIG. 15 are for Example 1. Example 2. Example 3. Example 4.
The creep characteristic curves of the drawn and oriented fibers of each polymer obtained in Comparative Example 1 and Comparative Example 2 are shown in full. Procedural proceedings (spontaneous) June 20, 1988 Director General of the Japan Patent Office Yoshi 1) Takeshi Moon 1, Indication of the case 1988 Patent Application No. 109724 2, Title of the invention 3, Person making the amendment and the case Relationship Patent applicant address 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Name (5
88) Mitsui Petrochemical Industries Co., Ltd. 4, Agent 〒105 6. Detailed explanation of the invention in the specification subject to amendment, column for brief explanation of drawings and drawing 7, Contents of amendment ■9 Detailed explanation of the invention ( 1) Add the following sentence between line 7 and line 8 on page 29 of the specification. r Ethylene-α-olefin (Cs or more) according to the present invention
Copolymer fibers have a characteristic that when a load slightly smaller than the breaking load is applied at room temperature, it takes a significantly long time to break. That is, these fibers have a strength of 750 to 1500 MP at room temperature.
Breaking time (T, ho) when applying a load (F) of a
ur) has the characteristic that . For ultra-high molecular weight homopolyethylene fibers and ethylene-propylene copolymer fibers, this breaking time (T) is considerably shorter than that for the above-mentioned fibers. Measurement of creep rupture time> Creep rupture time was determined as follows. Sample summary 1
Provide a distance between the gauge lines of 100 cm at equal intervals from the center of the 50 cm sample, and insert the gauge lines. A desired load is applied to the sample under conditions of an ambient temperature of 23° C. and a relative humidity of 55%. The elapsed time from immediately after application to rupture is measured and taken as the creep rupture time. Excluding the 6 cases that fractured outside the marked line, one measurement of the minimum failure time in the 6 measurements was taken as the surplus V, and the average creep rupture time of the 5 measurements was taken as the measurement value. 1 (2) Add the following sentence between the second and third lines of page 41. r Table 5 shows the relationship between the applied load and the creep rupture time for Sample-4. The relationship between the applied load in Table 5 and the creep rupture time is shown in FIG. (3) ``Table 5'' in lines 9 and 111 on page 41 is corrected to ``Table 6'' in Table 6. (4) 2nd line from the bottom on page 42 and 1st line on page 43:
"Table 6" is corrected to "Table 7 1. (5) Add the following sentence between the second and third lines from the bottom of page 43. r Applied load and creep of sample-6 The relationship between the fracture time and the fracture time is shown in Table 8. The relationship between the applied load in Table 8 and the fracture time at room temperature is shown in Figure 16 together with sample-4. 1 ++ , Brief explanation of the drawing ( 1) Add the following sentence under the last line of page 45 of the specification: r Figure 16 is a diagram showing the relationship between applied load and failure time at room temperature for each fiber. 1 1II, Drawing (1) Add Figure 16 as attached.

Claims (3)

【特許請求の範囲】[Claims] (1)極限粘度〔η〕が少なくとも5dl/gで炭素数
が5以上のα−オレフィンの含有量が炭素数1000個
あたり平均0.1〜15個である超高分子量エチレン−
α−オレフィン共重合体の分子配向成形体であって、該
成形体は拘束状態で示差走査熱量計で測定したとき、少
なくとも2個の結晶融解吸熱ピークを有すると共に、二
回目昇温時の主融解吸熱ピークとして求められる超高分
子量エチレン−α−オレフィン共重合体本来の結晶融解
温度(Tm)よりも少なくとも20℃高い温度に少なく
とも1個の結晶融解吸熱ピーク(Tp)を有し且つ全融
解熱量当りのこの結晶融解吸熱ピーク(Tp)に基づく
熱量が15%以上であることを特徴とする分子配向成形
体。
(1) Ultra-high molecular weight ethylene having an intrinsic viscosity [η] of at least 5 dl/g and an average content of α-olefins having 5 or more carbon atoms from 0.1 to 15 per 1000 carbon atoms.
A molecularly oriented molded product of an α-olefin copolymer, the molded product has at least two crystal melting endothermic peaks when measured with a differential scanning calorimeter in a restrained state, and has a main peak during the second heating. It has at least one crystal melting endothermic peak (Tp) at a temperature that is at least 20°C higher than the original crystal melting temperature (Tm) of the ultra-high molecular weight ethylene-α-olefin copolymer, which is determined as a melting endothermic peak, and is completely melted. A molecularly oriented molded article characterized in that the amount of heat based on this crystal melting endothermic peak (Tp) per amount of heat is 15% or more.
(2)α−オレフィンが炭素数6以上のものである特許
請求の範囲第1項記載の分子配向成形体。
(2) The molecularly oriented molded article according to claim 1, wherein the α-olefin has 6 or more carbon atoms.
(3)α−オレフィンの含有量が炭素数1000個あた
り平均0.5乃至10個である特許請求の範囲第1項記
載の分子配向成形体。
(3) The molecularly oriented molded article according to claim 1, wherein the content of α-olefins is on average 0.5 to 10 per 1000 carbon atoms.
JP62109724A 1987-05-06 1987-05-07 Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer Expired - Lifetime JPH089802B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62109724A JPH089802B2 (en) 1987-05-07 1987-05-07 Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer
DE3850905T DE3850905T2 (en) 1987-05-06 1988-04-08 Molecularly oriented molded structure made of ultra-high molecular weight ethylene-alpha-olefin copolymer.
AT88303170T ATE109522T1 (en) 1987-05-06 1988-04-08 MOLECULARLY ORIENTED MOLDED FORM OF ULTRA HIGH MOLECULAR WEIGHT ETHYLENE ALPHA OLEFIN COPOLYMER.
EP88303170A EP0290141B1 (en) 1987-05-06 1988-04-08 Molecularly oriented molded body of ultra-high-molecular-weight ethylene/alpha-olefin copolymer
NZ224210A NZ224210A (en) 1987-05-06 1988-04-11 Ultra-high-molecular-weight ethylene/alpha-olefin copolymers in molecularly oriented moulded bodies and filaments
AU14722/88A AU618257B2 (en) 1987-05-06 1988-04-18 Molecularly oriented molded body of ultra-high-molecular-weight ethylene/alpha-olefin copolymer
KR1019880004459A KR930007820B1 (en) 1987-05-06 1988-04-20 Molecularly oriented molded body of ultra high molecular weight ethylene/alpha olefin copolymer
CN88102519A CN1031076C (en) 1987-05-06 1988-04-22 Molecule directed form body of ultrahigh molecular weight ethene, alpha-alkene copolymers
CA000565732A CA1303290C (en) 1987-05-06 1988-05-03 MOLECULARLY ORIENTED MOLDED BODY OF ULTRA-HIGH- MOLECULAR-WEIGHT ETHYLENE/.alpha.-OLEFIN COPOLYMER
US07/504,105 US5115067A (en) 1987-05-06 1990-04-04 Molecularly oriented molded body of ultra-high-molecular weight ethylene/α-olefin copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109724A JPH089802B2 (en) 1987-05-07 1987-05-07 Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer

Publications (2)

Publication Number Publication Date
JPS63275710A true JPS63275710A (en) 1988-11-14
JPH089802B2 JPH089802B2 (en) 1996-01-31

Family

ID=14517619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109724A Expired - Lifetime JPH089802B2 (en) 1987-05-06 1987-05-07 Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer

Country Status (1)

Country Link
JP (1) JPH089802B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115367A (en) * 1999-08-09 2001-04-24 Mitsui Chemicals Inc Soft nonwoven fabric
WO2008001772A1 (en) * 2006-06-27 2008-01-03 Asahi Kasei Chemicals Corporation Stretch-molded ultra-high-molecular-weight polyolefin sheet having excellent transparency and mechanical propreties, and method for production thereof
JP2019142990A (en) * 2018-02-16 2019-08-29 東ソー株式会社 Ultrahigh-molecular weight polyethylene copolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS6116832A (en) * 1975-11-05 1986-01-24 ナシヨナル・リサーチ・デイベロツプメント・コーポレイシヨン Orientated polymer
JPS61187316U (en) * 1985-05-16 1986-11-21
JPS61187856U (en) * 1985-05-16 1986-11-22
JPS61188781U (en) * 1985-05-17 1986-11-25
JPS6241341A (en) * 1985-08-08 1987-02-23 東洋紡績株式会社 High speed stretching of gel fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116832A (en) * 1975-11-05 1986-01-24 ナシヨナル・リサーチ・デイベロツプメント・コーポレイシヨン Orientated polymer
JPS5881612A (en) * 1981-10-17 1983-05-17 スタミカ−ボン・ビ−・ベ− Production of polyethylene filament with high tensile strength
JPS61187316U (en) * 1985-05-16 1986-11-21
JPS61187856U (en) * 1985-05-16 1986-11-22
JPS61188781U (en) * 1985-05-17 1986-11-25
JPS6241341A (en) * 1985-08-08 1987-02-23 東洋紡績株式会社 High speed stretching of gel fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115367A (en) * 1999-08-09 2001-04-24 Mitsui Chemicals Inc Soft nonwoven fabric
WO2008001772A1 (en) * 2006-06-27 2008-01-03 Asahi Kasei Chemicals Corporation Stretch-molded ultra-high-molecular-weight polyolefin sheet having excellent transparency and mechanical propreties, and method for production thereof
US8304064B2 (en) 2006-06-27 2012-11-06 Asahi Kasei Chemicals Corporation Stretch-formed sheet of ultra-high molecular weight polyolefin having excellent transparency and mechanical properties, and production method thereof
JP5072040B2 (en) * 2006-06-27 2012-11-14 旭化成ケミカルズ株式会社 Ultra high molecular weight polyolefin stretch-molded sheet having excellent transparency and mechanical properties and method for producing the same
JP2019142990A (en) * 2018-02-16 2019-08-29 東ソー株式会社 Ultrahigh-molecular weight polyethylene copolymer

Also Published As

Publication number Publication date
JPH089802B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPH01148807A (en) Polyolefin fiber having improved initial elongation and production thereof
CA1297247C (en) Molecularly oriented molded body of ultra-high-molecular-weight ethylene/polyene copolymer
EP0290141B1 (en) Molecularly oriented molded body of ultra-high-molecular-weight ethylene/alpha-olefin copolymer
JPS62257415A (en) Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof
JPS63275710A (en) Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer
JPH0657055A (en) Ultra-high-molecular-weight polypropylene composition
JPS63275708A (en) Molecularly oriented molded product of ultrahigh-molecular weight ethylene-propylene copolymer
JPS63275711A (en) Molecularly oriented molded product of ultrahigh-molecular weight ethylene-alpha-olefin copolymer
JPH0641814A (en) Production of drawn molded body of ultrahigh-molecular weight polypropylene
JPS63275709A (en) Molecularly oriented molded product of ultrahigh-molecular weight ethylene-butene-1 copolymer
JP3070694B2 (en) Ultra-high molecular weight stretched polypropylene article and method for producing the same
JPH0465512A (en) Molecular oriented formed polyethylene having excellent creep resistance
JPH01256335A (en) Fishing line
JP3082955B2 (en) Flying object resistant material
JPH01260077A (en) Rope for mountain-climbing
JPH01260078A (en) Rope for fastening tent
JPH0251539A (en) Laminate with low dielectric characteristics
JP3122479B2 (en) Racket gut
JPH0192407A (en) Draw-formed article of ultra-high molecular weight ethylene-alpha-olefin copolymer having high breaking energy and production thereof
JP2557460B2 (en) Yacht rope
JPH0253840A (en) Composition having low permittivity
JPH01250282A (en) Course rope for pool
JPH01260079A (en) Rope for mooring
JPH01254005A (en) Stay for fixing antenna
JPH0252507A (en) Parabolic antenna

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12