JPS62257415A - Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof - Google Patents

Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof

Info

Publication number
JPS62257415A
JPS62257415A JP61237887A JP23788786A JPS62257415A JP S62257415 A JPS62257415 A JP S62257415A JP 61237887 A JP61237887 A JP 61237887A JP 23788786 A JP23788786 A JP 23788786A JP S62257415 A JPS62257415 A JP S62257415A
Authority
JP
Japan
Prior art keywords
ultra
temperature
weight polyethylene
molecular weight
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61237887A
Other languages
Japanese (ja)
Other versions
JP2618866B2 (en
Inventor
Kazuo Yagi
和雄 八木
Hitoshi Mantoku
万徳 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to US06/934,701 priority Critical patent/US4870136A/en
Priority to CA000523712A priority patent/CA1279167C/en
Priority to EP86309331A priority patent/EP0229477B1/en
Priority to DE3650215T priority patent/DE3650215T2/en
Priority to KR1019870004126A priority patent/KR950013728B1/en
Priority to CN 87103889 priority patent/CN1033048C/en
Publication of JPS62257415A publication Critical patent/JPS62257415A/en
Priority to US07/181,698 priority patent/US4902460A/en
Application granted granted Critical
Publication of JP2618866B2 publication Critical patent/JP2618866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Abstract

PURPOSE:To obtain a molecule orientated molded article having improved heat resistance, by thermally molding a composition containing ultra-high- molecular-weight polyethylene, silane compound, etc., drawing, impregnating the molded article with a silanol condensation catalyst, bringing the impregnated molded article into contact with water and crosslinking. CONSTITUTION:A composition comprising an ultra-high-molecular-weight polyethylene having >=5dl/g intrinsic viscosity in decalin solvent at 135 deg.C, silane compound, radical initiator and diluent is thermally molded to give a molded article of an ultra-high-molecular-weight polyethylene onto which the silane compound is grafted. Then the molded article is drawn. The molded article is brought into contact with a silanol condensation catalyst during or after drawing. Consequently, the molded article of a molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene is obtained. The polyethylene shows two or more crystal melt peaks at temperature 10 deg.C higher than the original crystal melt temperature (Tm).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、分子配向及びシラン架橋超高分子量ポリエチ
レン成形体及びその製法に関するもので、より詳細には
、超高分子量4リエチレンの延伸成形体に特有の高弾性
率及び高引張強度を有すると共に、耐熱性及び接着性の
顕著に改善された成形体及びその製法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene molded article and a method for producing the same, and more particularly relates to a stretched molded article of ultra-high molecular weight 4-lyethylene. The present invention relates to a molded product having a high modulus of elasticity and high tensile strength characteristic of , as well as significantly improved heat resistance and adhesiveness, and a method for producing the same.

(従来の技術) 超高分子量ポリエチレンを繊維、テープ等に成形し、こ
れを延伸することにより、高弾性率、高引張強度を有す
る分子配向成形体とすることは既に公知であり、例えば
、特開昭56−15408号公報には、超高分子量ポリ
エチレンの希薄溶液を紡糸し、得られるフィラメントを
延伸することが記載されている。また、特開昭59−1
30313号公報には、超高分子1?リエチレンとワッ
クスとを溶融混練し、この混線物を押出し、冷却固化後
延伸することが記載され、更に特開昭59−18761
4号公報には、上記溶融混線物を押出し、ドラフトをか
けた後冷却固化し、次いで延伸することが記載されてい
る。
(Prior art) It is already known that ultra-high molecular weight polyethylene can be formed into fibers, tapes, etc. and stretched to produce molecularly oriented molded products having high elastic modulus and high tensile strength. JP-A-56-15408 describes spinning a dilute solution of ultra-high molecular weight polyethylene and drawing the resulting filament. Also, JP-A-59-1
In Publication No. 30313, Superpolymer 1? It is described that melt-kneading polyethylene and wax, extruding the mixed wire, cooling and solidifying, and then stretching, and furthermore, JP-A-59-18761
Publication No. 4 describes that the above-mentioned molten mixture is extruded, drafted, cooled and solidified, and then stretched.

一方、ポリオレフィンに耐熱性等を賦与することを目的
として、シラン架橋を行うことも既に知られておυ、例
えば特公昭48−1711号公報には、ポリエチレンに
ラジカル発生剤の存在下にシラン化合物をグラフトさせ
た後、シラノール縮合触媒の存在下水分に曝して架橋を
行うことが記載されている。また、特開昭54−111
54号公報には、シラングラフトポリオレフィン成形物
をシラノール縮合触媒と溶剤の混合液に浸漬して架橋処
理を迅速化させることが記載され、更に、特開昭52−
154872号公報には、シラングラフトポリオレフィ
ンの配向物を架橋後、抽出処理に賦することが記載され
ている。
On the other hand, it is already known that silane crosslinking is carried out for the purpose of imparting heat resistance etc. to polyolefin. It is described that after grafting, crosslinking is carried out by exposing to moisture in the presence of a silanol condensation catalyst. Also, JP-A-54-111
No. 54 describes that a silane-grafted polyolefin molded product is immersed in a mixed solution of a silanol condensation catalyst and a solvent to speed up the crosslinking process, and furthermore, JP-A No. 52-
Japanese Patent No. 154872 describes that an oriented product of silane grafted polyolefin is subjected to extraction treatment after crosslinking.

(発明が解決しようとする問題点) しかしながら、超高分子量ポリエチレンの延伸成形体、
例えば繊維、テープ等は高弾性嘉、高引張強度を有し、
且つ軽量で耐水性、耐候性等に優れているが、ポリエチ
レン本来の欠点、耐熱性及び接着性に劣るという欠点を
その1ま有している。
(Problems to be Solved by the Invention) However, a stretched product of ultra-high molecular weight polyethylene,
For example, fibers, tapes, etc. have high elasticity, high tensile strength,
Although it is lightweight and has excellent water resistance and weather resistance, it has one of the drawbacks inherent to polyethylene: poor heat resistance and poor adhesiveness.

また、従来のポリエチレンのシラン架橋技術では、高弾
性率、高引張強度の延伸成形物は得られず、また耐熱性
の改良効果も不十分である。
Further, with conventional polyethylene silane crosslinking technology, a stretched molded product with high elastic modulus and high tensile strength cannot be obtained, and the effect of improving heat resistance is also insufficient.

一般に、ポリエチレンの分子配向によシ、或い ゛はポ
リエチレンの架橋によりポリオレフィンの耐熱性が向上
すること自体は公知であるが、この従来技術における耐
熱性の向上には自ら限界があり、所詮はポリエチレンの
融点が110乃至140℃の比較的低い範囲にあるとい
う制約を根本的には免れないものであって、本発明者等
の知る限シ、ポリエチレンの成形体を180℃の温度に
10分間曝した後においては、殆んどのものが融解し、
その強度が失われるのである。
It is generally known that the heat resistance of polyolefins is improved by molecular orientation of polyethylene or by crosslinking of polyethylene, but there are limits to the improvement of heat resistance in this conventional technology. The melting point of polyethylene is in the relatively low range of 110 to 140°C, and as far as the present inventors know, it is impossible to avoid the restriction that the melting point of polyethylene is in a relatively low range of 110 to 140°C. After exposure, most things melt,
Its strength is lost.

従って、本発明の目的は、耐熱性、接着性及び耐クリー
プ性の顕著に改善された超高分子量ポリエチレン分子配
向成形体を提供するにある。
Therefore, an object of the present invention is to provide a molecularly oriented molded article of ultra-high molecular weight polyethylene which has significantly improved heat resistance, adhesion and creep resistance.

本発明の他の目的は、180℃の温度に1o分間曝され
た場合にも融解することなく延伸成形体の形態が維持さ
れると共に、上記熱履歴後においても高い強度保持率が
維持されるような耐熱性を有する分子配向及びシラン架
橋超高分子量、i? IJエチレン成形体を提供するに
ある。
Another object of the present invention is to maintain the shape of the stretched molded product without melting even when exposed to a temperature of 180°C for 10 minutes, and to maintain a high strength retention rate even after the above-mentioned thermal history. Molecular orientation and silane cross-linked ultra-high molecular weight, i? An object of the present invention is to provide an IJ ethylene molded product.

本発明の更に他の目的は、樹脂複合材の強度繊維として
の用途に適した耐熱性、接着性及び耐クリープ性の組合
せを持ったシラン架橋超高分子量ポリエチレン成形体及
びその製法を提供するにある。
Still another object of the present invention is to provide a silane-crosslinked ultra-high molecular weight polyethylene molded article having a combination of heat resistance, adhesiveness and creep resistance suitable for use as strength fibers in resin composites, and a method for producing the same. be.

(問題点を解決するだめの手段) 本発明者等は、極限粘度〔η〕が5dt/i以上の超高
分子XZVエチレンにラジカル開始剤の存在下、シラン
化合物をグラフトした後押出成形し、次いで該押出物を
廷伸後もしくは延伸中にシラノール縮合触媒を含浸させ
た後水分に曝して架橋するときには、従来のポリエチレ
ンの延伸成形体や架橋成形体には全く認められない融解
温度の向上現象が認められる新規な分子配向成形体が得
られること、及びこの分子配向成形体においては、18
0℃の温度に10分間lI!露された場合にも融解する
ことなく延伸成形体の形態が維持されると共に、この熱
履歴後においても高い強度保持率が維持されることを見
出した。また、この延伸成形体では、超高分子量ポリエ
チレン延伸成形体に特有の高弾性率及び高引張り強度が
維持されると共に、接着性及び耐クリープ性も顕著に改
善されることを見出した。
(Means for Solving the Problem) The present inventors grafted a silane compound to ultra-high molecular weight XZV ethylene having an intrinsic viscosity [η] of 5 dt/i or more in the presence of a radical initiator, and then extruded it. Then, when the extrudate is impregnated with a silanol condensation catalyst after stretching or during stretching and then exposed to moisture and crosslinked, a phenomenon of improvement in the melting temperature that is not observed at all in conventional polyethylene stretched and crosslinked products occurs. It is possible to obtain a novel molecularly oriented molded product in which 18
10 minutes at a temperature of 0°C! It has been found that the shape of the stretched molded product is maintained without melting even when exposed to heat, and that a high strength retention rate is maintained even after this heat history. Furthermore, it has been found that in this stretched molded product, the high elastic modulus and high tensile strength characteristic of ultra-high molecular weight polyethylene stretched molded products are maintained, and the adhesion and creep resistance are also significantly improved.

即ち、本発明によれば、分子配向及びシラン架橋された
超高分子量ポリエチレンの成形体であって、該成形体は
拘束状態で示差走査熱量計で測定したとき、二回目昇温
時の主融解ピークとして求められる超高分子量ポリエチ
レン本来の結晶融解温!(Tm)よりも少なくとも10
℃高い温度に少なくとも2個の結晶融解ピーク(Tp 
)を有すると共に、全融解熱量当りのこの結晶融解ピー
ク(Tp )に基ずく融解熱量が40%以上であり、且
つ180℃で10分間の熱履歴を与えた後での強度保持
率が60%以上であることを特徴とする成形体が提供さ
れる。
That is, according to the present invention, there is provided a molded article of molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene, which has a main melting point during the second temperature rise when measured with a differential scanning calorimeter in a restrained state. The original crystal melting temperature of ultra-high molecular weight polyethylene is required as a peak! (Tm) at least 10
At least two crystal melting peaks (Tp
), the heat of fusion based on this crystal melting peak (Tp ) per total heat of fusion is 40% or more, and the strength retention rate after giving a thermal history of 10 minutes at 180 ° C. is 60%. A molded article characterized by the above is provided.

本発明によればまた、極限粘度〔η〕が5dl11以上
の超高分子量ぼりエチレン、シラン化合物、ラジカル開
始剤及び稀釈剤を含む組成物を熱成形し、シラン化合物
がグラフトされた超高分子量ポリエチレンの成形物を延
伸し、延伸中又は延伸後に該成形物の延伸成形体中にシ
ラノール縮合触媒を含浸させ、次いで該延伸成形体を水
分と接触させて架橋することを特徴とする分子配向及び
シラ/架橋超高分子址?リエチレン成形体の製法が提供
される。
According to the present invention, a composition containing ultra-high molecular weight ethylene having an intrinsic viscosity [η] of 5 dl11 or more, a silane compound, a radical initiator, and a diluent is thermoformed, and ultra-high molecular weight polyethylene grafted with a silane compound is produced. A molecular orientation and silica method characterized by stretching a molded product, impregnating a silanol condensation catalyst into the stretched molded product during or after stretching, and then crosslinking the stretched molded product by bringing it into contact with moisture. /Cross-linked superpolymer site? A method for producing a polyethylene molded body is provided.

(作用) 本発明は、超高分子量ポリエチレンにシラン類をグラフ
トさせたものを成形し、この成形物を延伸した後シラン
架橋を行うと、この延伸架橋成形体を構成する少なくと
も一部の重合体鎖の融点が拘束条件下に向上するという
驚くべき知見に基ずくものである。
(Function) The present invention provides that when ultra-high molecular weight polyethylene grafted with silanes is molded, this molded product is stretched, and then silane crosslinking is performed, at least a portion of the polymer constituting the stretched and crosslinked molded product is formed. This is based on the surprising finding that the melting point of the chains increases under restraint conditions.

重合体の融点は、重合体中の結晶の融解に伴なうもので
あシ、一般に示差走査熱量計での結晶融解に伴なう吸熱
ピーク温度として測定される。この吸熱ピーク温度は、
重合体の種類が定まれば一定であり、その後処理、例え
ば延伸処理や架橋処理等によってそれが変動することは
殆んどなく変動しても、最も変動する場合として良く知
られている延伸熱処理でも高々15℃程度高温側へ移動
するに留まる。
The melting point of a polymer is associated with the melting of crystals in the polymer, and is generally measured as the endothermic peak temperature associated with crystal melting using a differential scanning calorimeter. This endothermic peak temperature is
Once the type of polymer is determined, it remains constant, and it hardly changes due to subsequent treatments, such as stretching treatment or crosslinking treatment.Even if it does change, it is well known that the most variable case is stretching heat treatment. However, it will only move to the higher temperature side by about 15 degrees Celsius at most.

添付図面第1乃至4図は、原料超高分子量ポリエチレン
(第1図)、該プリエチレンの延伸フィラメント(第2
図)、該ポリエチレンにシラン架橋を行った未延伸フィ
ラメント(第3図)及び本発明に従いシラングラフト超
高分子量ポリエチレンを延伸した後架橋処理を行ったフ
ィラメント(第4図)の各々について拘束条件下に測定
した示差走査熱量計による吸熱曲線を示す。尚、処理条
件の詳細については後述する例を参照されたい。
Figures 1 to 4 of the attached drawings show raw ultra-high molecular weight polyethylene (Figure 1) and drawn filaments of the polyethylene (Figure 2).
), undrawn filaments obtained by crosslinking the polyethylene with silane (Fig. 3), and filaments obtained by drawing the silane-grafted ultra-high molecular weight polyethylene and then crosslinking according to the present invention (Fig. 4) under restraint conditions. The endothermic curve measured using a differential scanning calorimeter is shown. For details of the processing conditions, please refer to the example described later.

これらの結果から、超高分子量ポリエチレンの単なる延
伸物やシラン架橋物では、未処理の超高分子量ポリエチ
レンと殆んど同じ約135℃に結晶融解に伴なう吸熱ピ
ークを示し、またシラン架橋物ではピーク面積(融解熱
量)が未処理のもののピーク面積に比して減少している
のに対して、本発明による延伸架橋成形体では、未処理
の超高分子量ポリエチレンの融解ピーク温度の位置には
小さいピークが残留するが、大きいピークはむしろかな
り高温側に移行していることがわかる。
These results show that simply drawn or silane-crosslinked ultra-high molecular weight polyethylene exhibits an endothermic peak associated with crystal melting at approximately 135°C, which is almost the same as untreated ultra-high molecular weight polyethylene; The peak area (heat of fusion) is smaller than that of the untreated product, whereas the stretch-crosslinked molded product according to the present invention has a peak area (heat of fusion) at the melting peak temperature of the untreated ultra-high molecular weight polyethylene. It can be seen that although small peaks remain, the large peaks have rather shifted to the high temperature side.

第5図は、第4図の試料をセカンド・ラン(第4図の測
定を行った後、2回目の昇温測定)に賦したときの吸熱
曲線を示す。第5図の結果から再昇温の場合には結晶融
解の主ピークは未処理の超高分子量ポリエチレンの融解
ピーク温度と殆んど同じ温度に弄われ、第5図の測定時
には試料中の分子配向は殆んど消失していることから、
第4図の試料における吸熱ピークの高温側への移行は、
成形体中での分子配向と密接に関連していることを示し
ている。
FIG. 5 shows an endothermic curve when the sample shown in FIG. 4 was subjected to a second run (second temperature raising measurement after the measurement shown in FIG. 4 was performed). The results shown in Figure 5 indicate that in the case of re-heating, the main peak of crystal melting is at almost the same temperature as the melting peak temperature of untreated ultra-high molecular weight polyethylene; Since the orientation has almost disappeared,
The shift of the endothermic peak to the high temperature side in the sample in Figure 4 is as follows:
This shows that it is closely related to the molecular orientation in the molded body.

本発明において、超高分子量テリエチレンの延伸とシラ
ン架橋とによって、成形体を構成する少なくとも一部の
重合体鎖の結晶融解温度がこのように高温側に移行する
という事実は、結晶融解温度を高めるよう々手段が従来
知られていなかったことからも、真に予想外で且つ新規
な発見であった。
In the present invention, the fact that the crystal melting temperature of at least some of the polymer chains constituting the molded article shifts to a higher temperature side due to the drawing of the ultra-high molecular weight teriethylene and the silane crosslinking increases the crystal melting temperature. This was a truly unexpected and novel discovery, as the means to do so were previously unknown.

本発明の配向架橋成形体において、結晶融解温度が高温
側に移行する理由は、未だ十分には解明されるに至って
いないが、本発明者等はこの理由を次のように推定して
いる。即ち、シラングラフト超高分子量テリエチレンを
延伸操作に賦すると、シラングラフト部分が選択的に非
晶部となり、この非晶部を介して配向結晶部が生成する
。次いで、この延伸成形体をシラノール縮合触媒の存在
下に架橋させると、非晶部に選択的に架橋構造が形成さ
れ、配向結晶部の両端がシラン架橋で固定された構造と
なる。通常の延伸成形体では、配向結晶部両端の非晶部
分から結晶融解が進行するのに対して、本発明の延伸架
橋成形体では、配向結晶部両端の非晶部が選択的に架橋
され、重合体鎖が動きにくくなっているため、配向結晶
部の融解温度が向上するものと認められる。この構造は
、示差走査熱量計による観察でさらに以下の様に特徴づ
けることができる。第6図には第4図に示された昇温状
態での測定から、第5図で示された昇温状態での測定す
なわちセカンドラ/に移るための降温過程を利用して測
定した結晶化時の発熱曲線を示す。これより主発熱ピー
クの高温側にショルダー、又はブロードなサブピークが
観察される。又、2回目昇温時のセカンドランにおいて
も(第5図)Tm  ピークの高温側にショルダーが観
察される。
Although the reason why the crystal melting temperature shifts to a higher temperature side in the oriented crosslinked molded article of the present invention has not yet been fully elucidated, the present inventors estimate this reason as follows. That is, when the silane-grafted ultra-high molecular weight teriethylene is subjected to a stretching operation, the silane-grafted portion selectively becomes an amorphous portion, and an oriented crystal portion is generated through this amorphous portion. Next, when this stretched molded body is crosslinked in the presence of a silanol condensation catalyst, a crosslinked structure is selectively formed in the amorphous portion, resulting in a structure in which both ends of the oriented crystalline portion are fixed by silane crosslinking. In a normal stretched molded product, crystal melting proceeds from the amorphous portions at both ends of the oriented crystal part, whereas in the stretched and crosslinked molded product of the present invention, the amorphous parts at both ends of the oriented crystal part are selectively crosslinked, It is recognized that because the polymer chains are less likely to move, the melting temperature of the oriented crystal portion is improved. This structure can be further characterized as follows by observation using a differential scanning calorimeter. Figure 6 shows the crystallization measured using the temperature-lowering process to move from the measurement at the elevated temperature shown in Figure 4 to the measurement at the elevated temperature shown in Figure 5, i.e., the second temperature. Shows the heat generation curve at From this, a shoulder or broad sub-peak is observed on the high temperature side of the main exothermic peak. Also, in the second run during the second temperature increase (FIG. 5), a shoulder is observed on the high temperature side of the Tm peak.

通常ポリエチレンでは溶融状態からの冷却過程では、一
本のシャープな発熱ピークが観察され、このピークの高
温側にショルダー又はピークは観察されることはない。
Normally, in polyethylene, a single sharp exothermic peak is observed during the cooling process from a molten state, and no shoulder or peak is observed on the high temperature side of this peak.

また通常の架橋ポリエチレンにおいてもピークはブロー
ドになることはあっても同様に高温側にショルダー、又
はピークが観察されることはない。セカンドランにおい
てもTmの高温側に吸熱のシ叢ルダー、ピークが観察さ
れることは、通常のポリエチレン、架橋ポリエチレンに
おいて共にない。つまシこの熱挙動が新規な配向架橋構
造の痕跡でありすぐれた耐熱特性、耐クリ−7°特性な
どに関係していると考えられる。かくして、本発明にお
いては、成形体が160℃のような高温においても、単
に形態が安定に保持されるばかりではなく、この熱履歴
後にも高い強度保持率が達成さnるのである。
Further, even in the case of ordinary crosslinked polyethylene, although the peak may be broad, no shoulder or peak is observed on the high temperature side. Even in the second run, an endothermic peak on the high temperature side of Tm is not observed in both normal polyethylene and crosslinked polyethylene. It is believed that this thermal behavior is a trace of the new oriented crosslinked structure and is related to the excellent heat resistance properties, Cree-7° resistance, etc. Thus, in the present invention, the molded product not only maintains its shape stably even at a high temperature such as 160°C, but also achieves a high strength retention rate even after this thermal history.

(発明の好適実施態様の説明) 不発明を、その理解が容易なように、原料、処理手段及
び目的物の順に以下に詳細に説明する。
(Description of Preferred Embodiments of the Invention) In order to facilitate understanding, the invention will be described in detail below in the order of raw materials, processing means, and objects.

原料 本発明の方法に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135℃における極限粘度〔η〕が5
dll1以上、好ましくは7ないし30dlliの範囲
のものである。〔η〕が5dt/i未満のものは、延伸
倍率を大さくとっても引張強度に優れた延伸物がえられ
ない。又〔η〕の上限にとくに限定はされないが、30
dl/1/を超えるものは高練度下での溶融粘度が極め
て高く、押出時にメルトフラクチャー等が発生し溶融紡
糸性に劣る傾向にある。かかる超高分子量ポリエチレン
とは、エチレンあるいはエチレンと少量の他のα−オレ
フィン、例えばプロピレン、1−プデン、4−メチル−
1−ペンテン、1−ヘキセン等とを所謂チーグラー重合
によシ、重合することによシ得られるポリエチレンの中
で、遥かに分子量が高い範躊のものである。
Raw material The ultra-high molecular weight polyethylene (A) used in the method of the present invention is a decalin solvent with an intrinsic viscosity [η] of 5 at 135°C.
dlli or more, preferably in the range of 7 to 30 dlli. If [η] is less than 5 dt/i, a stretched product with excellent tensile strength cannot be obtained even if the stretching ratio is increased. Also, there is no particular restriction on the upper limit of [η], but 30
Those exceeding dl/1/ have an extremely high melt viscosity at a high kneading level, tend to cause melt fractures during extrusion, and have poor melt spinnability. Such ultra-high molecular weight polyethylene refers to ethylene or ethylene and small amounts of other α-olefins such as propylene, 1-pudene, 4-methyl-
Among polyethylenes obtained by polymerizing 1-pentene, 1-hexene, etc. by so-called Ziegler polymerization, it has a much higher molecular weight.

一方、グラフト処理に使用するシラン、化合物としては
、グラフト処理と架橋処理とが可能なシラン化合物であ
れば任意のものでよく、このようなシラン化合物は、ラ
ジカル重合可能な有機基と加水分解可能な有機基との両
方を有するものであり、下記一般式 %式%(1) 式中、Rはラジカル重合可能なエチレン系不飽和を含む
有機基であり、Yは加水分解可能な有機基であυ、nは
1又は2の数でるる で表わされる。
On the other hand, the silane and compound used for grafting treatment may be any silane compound as long as it is capable of grafting treatment and crosslinking treatment, and such silane compounds can be hydrolyzed with radically polymerizable organic groups. It has both an organic group and the following general formula % formula % (1), where R is an organic group containing radically polymerizable ethylenic unsaturation, and Y is a hydrolyzable organic group. Aυ, n is a number of 1 or 2 and is expressed as ruru.

ラジカル重合性有機基としては、ビニル基、アリル基、
ブテニル基、シクロヘキセニル基等のエチレン系不飽和
炭化水素基や、アクリルオキシアルキル基、メタクリル
オキシアルキル基等のエチレン系不飽和カルボン酸エス
テル単位を含有するアルキル基等を挙げることができる
が、ビニル基が好適である。加水分解可能な有機基とし
ては、アルコキシ基やアシルオキシ基等が挙げられる。
Examples of radically polymerizable organic groups include vinyl group, allyl group,
Examples include ethylenically unsaturated hydrocarbon groups such as butenyl and cyclohexenyl groups, and alkyl groups containing ethylenically unsaturated carboxylic acid ester units such as acryloxyalkyl and methacryloxyalkyl groups. groups are preferred. Examples of hydrolyzable organic groups include alkoxy groups and acyloxy groups.

シラン化合物の適当な例は、これに限定されないが、ビ
ニルトリエトキシシラン、ビニルトリメトキシシラン、
ビニルトリス(メトキシエトキシ)シラン等である。
Suitable examples of silane compounds include, but are not limited to, vinyltriethoxysilane, vinyltrimethoxysilane,
Vinyltris(methoxyethoxy)silane and the like.

グラフト及び成形 本発明によれば、上記超高分子量ポリエチレン、シラン
化合物、ラジカル開始剤及び稀釈剤を含む組成物を溶融
押出等により熱成形することによりシラングラフトと成
形とを行う。即ち、ラジカル開始剤と溶融混練時の熱と
の作用により、超高分子量ポリエチレンにポリマーラジ
カルが発生し、このポリマーラジカルとシラン化合物と
の反応によりシラン化合物の超高分子量ポリエチレンへ
のグラフトが生じる。
Grafting and Molding According to the present invention, silane grafting and molding are performed by thermoforming a composition containing the ultra-high molecular weight polyethylene, a silane compound, a radical initiator, and a diluent by melt extrusion or the like. That is, due to the action of the radical initiator and the heat during melt-kneading, polymer radicals are generated in the ultra-high molecular weight polyethylene, and the reaction between the polymer radicals and the silane compound causes grafting of the silane compound to the ultra-high molecular weight polyethylene.

ラジカル開始剤としては、この種のグラフト処理しで使
用されているラジカル開始剤は全て使用でき、例えば有
機ペルオキシド、有機ベルエステル、例えばベンゾイル
ペルオキシド、ジクロルベンゾイルイルオキシド、ジク
ミルペルオキシド、ジーtert−ブチルイルオキシp
、2.5−ゾ(イルオキシrベンゾエート)へキシル−
3,1,4−に’ス(t+ert−ブチルイルオキシイ
ソプロピル)ベンゼン、ラウロイルペルオキシド、te
rt−ブチルベルアセテート、2.5−ツメチル−2,
5−ジ(tert−ブチルペルオキシ)ヘキシン−3,
2,5−ジメチル−2,5−ジ(tart −ブチルペ
ルオキシ)ヘキサン、tert −ブチルベルベンゾニ
ー)、  tart−ブチルベルフェニルアセテ−)、
tart−ブチルベルイソブチレート、tert−ブチ
ルベルー5ee−オクトエ−)、t@rt−ブチルイル
ビバレート、クミルイルピバレートおよびtert−ブ
チルベルジエチルアセテート、その他アゾ化合物、例え
ばアゾビスイソブチロニトリル、ジメチルアゾイソブチ
レートがある。超高分子量ポリエチレンの溶融混PJ灸
件下でグラフトを有効に行うためには、ラジカル開始剤
の半減期温度が100乃至200℃の範囲にあることが
望ましい。
As radical initiators it is possible to use all the radical initiators used in this type of grafting, for example organic peroxides, organic bersesters such as benzoyl peroxide, dichlorobenzoyl oxide, dicumyl peroxide, di-tert- Butylyloxy p
, 2,5-zo(yloxyrbenzoate)hexyl-
3,1,4-ni'su(t+ert-butylyloxyisopropyl)benzene, lauroyl peroxide, te
rt-butylberacetate, 2.5-tmethyl-2,
5-di(tert-butylperoxy)hexyne-3,
2,5-dimethyl-2,5-di(tart-butylperoxy)hexane, tert-butylberbenzony), tart-butylberphenylacetate),
tart-butylberisobutyrate, tert-butylberisobutyrate, tert-butylberyl bivalate, cumylyl pivalate and tert-butylberdiethyl acetate, other azo compounds such as azobisisobutyronitrile, There is dimethyl azoisobutyrate. In order to effectively carry out grafting under melt-blended PJ moxibustion conditions of ultra-high molecular weight polyethylene, it is desirable that the half-life temperature of the radical initiator is in the range of 100 to 200°C.

本発明では、シラングラフト超高分子量ポリエチレンの
溶融成形を可能にするために、上記成分と共に稀釈剤を
配合する。このような稀釈剤としては、超高分子量ポリ
エチレンに対する溶剤や、超高分子量ポリエチレンに対
して相溶性を有する各種ワックス状物が使用される。
In the present invention, a diluent is blended with the above components to enable melt molding of the silane-grafted ultra-high molecular weight polyethylene. As such a diluent, a solvent for ultra-high molecular weight polyethylene and various wax-like substances having compatibility with ultra-high molecular weight polyethylene are used.

溶剤は、好ましくは前記ポリエチレンの融点以上、更に
好ましくは融点+20℃以上の沸点を有する溶剤である
The solvent preferably has a boiling point higher than the melting point of the polyethylene, more preferably higher than the melting point +20°C.

かかる溶剤としては、具体的には、n−ノナン、n−デ
カン、n−ウンデカン、n−ドデカン、n〜テトラデカ
ン、n−オクタデカンあるいは流動パラフィン、灯油等
の脂肪族炭化水素系溶媒、キシレン、ナフタリン、テト
ラリン、ブチルベンゼン、p−シメン、シクロヘキシル
ベンゼン、ジエチルベンゼン、ペンチルベンゼン、ドデ
シルベンゼン、ビシクロヘキシル、デカリン、メチルナ
フタリン、エチルナフタリン等の芳香族炭化水素系溶媒
あるいはその水素化誘導体、1,1,2.2−テトラク
ロロエタン、ペンタクロロエタン、ヘキサクロロエタン
、1,2.3− ) リクロログロノ譬ン、ジクロロベ
ンゼン、11214− ) IJ クロロベンゼン、ク
ロモベンゼン等のハロゲン化炭化水素溶媒、パラフィン
系プロセスオイル、ナフテン系プロセスオイル、芳香族
系プロセスオイル等の鉱油が挙げられる。
Specific examples of such solvents include n-nonane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-octadecane, liquid paraffin, aliphatic hydrocarbon solvents such as kerosene, xylene, and naphthalene. , aromatic hydrocarbon solvents such as tetralin, butylbenzene, p-cymene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dodecylbenzene, bicyclohexyl, decalin, methylnaphthalene, ethylnaphthalene, or hydrogenated derivatives thereof, 1,1,2 .2-Tetrachloroethane, pentachloroethane, hexachloroethane, 1,2.3-) Lichloroglonomon, dichlorobenzene, 11214-) IJ Halogenated hydrocarbon solvents such as chlorobenzene and chromobenzene, paraffinic process oil, naphthenic process Examples include mineral oils such as oil and aromatic process oil.

ワックス類としては、脂肪族炭化水素化合物或いはその
誘導体が使用される。
As the waxes, aliphatic hydrocarbon compounds or derivatives thereof are used.

脂肪族炭化水素化合物としては、飽和脂肪族炭化水素化
合物を主体とするもので、通常分子量が2000以下、
好ましくは1000以下、更に好ましくは800以下の
ノ4ラフイン系ワックスと呼ばれるものである。これら
脂肪族炭化水素化合物としては、具体的にはトコサン、
トリコサン、テトラコサン、トリアコンタン等の炭素数
22以上のn−アルカンあるいはこれらを主成分とした
低級n−アルカンとの混合物、石油から分離精製された
所謂パラフィンワックス、エチレンあるいはエチレンと
他のα−オレフィンとを共重合して得られる低分子量重
合体である中・低圧ポリエチレンワックス、高圧法ポリ
エチレンワックス、エチレン共重合ワックスあるいは中
・低圧法プリエチレン、高圧法ポリエチレン等のポリエ
チレンを熱減成等によシ分子量を低下させたワックス及
びそれらのワックスの酸化物あるいはマレイン酸変性等
の酸化ワックス、マレイン酸変性ワックス等が挙げられ
る。
The aliphatic hydrocarbon compounds are mainly saturated aliphatic hydrocarbon compounds, and usually have a molecular weight of 2000 or less,
The wax is preferably 1000 or less, more preferably 800 or less, which is called a rough-in wax. These aliphatic hydrocarbon compounds include tocosan,
n-alkanes with 22 or more carbon atoms such as tricosane, tetracosane, triacontane, or mixtures of these with lower n-alkanes as main components, so-called paraffin wax separated and purified from petroleum, ethylene or ethylene and other α-olefins Polyethylene such as medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax, medium/low pressure polyethylene, high pressure polyethylene, etc., which are low molecular weight polymers obtained by copolymerizing with Examples include waxes with reduced molecular weights, oxides of these waxes, oxidized waxes modified with maleic acid, and waxes modified with maleic acid.

脂肪族炭化水素化合物誘導体としては、例えば脂肪族炭
化水素基(アルキル基、アルケニル基)の末端もしくは
内部に1個又はそれ以上、好ましくは1ないし2個、特
に好ましくは1個のカルボキシル基、水酸基、カルバモ
イル基、エステル基、メルトカプト基、カルゲニル基等
の官能基を有する化合物である炭素数8以上、好ましく
は炭素数12〜50又は分子量130〜2000、好ま
しくは200〜800の脂肪酸、脂肪族アルコール、脂
肪酸アミド、脂肪酸エステル、脂肪族メルカプタン、脂
肪族アルデヒド、脂肪族ケトン等を挙げることができる
Examples of aliphatic hydrocarbon compound derivatives include one or more, preferably one or two, particularly preferably one, carboxyl group or hydroxyl group at the terminal or inside of an aliphatic hydrocarbon group (alkyl group, alkenyl group). , fatty acids and aliphatic alcohols having 8 or more carbon atoms, preferably 12 to 50 carbon atoms, or molecular weights 130 to 2,000, preferably 200 to 800, which are compounds having functional groups such as carbamoyl groups, ester groups, meltcapto groups, and cargenyl groups. , fatty acid amides, fatty acid esters, aliphatic mercaptans, aliphatic aldehydes, aliphatic ketones, and the like.

具体的には、脂肪酸としてカプリン酸、ラウリン酸、ミ
リスチン酸、パルミチン酸、ステアリン戯、オレイン酸
、脂肪族アルコールとしてラウリルアルコール、ミリス
チルアルコール、セチルアルコール、ステアリルアルコ
ール、脂肪酸アミドとしてカプリンアミド、ラウリンア
ミド、ノ譬ルミチンアミド、ステアリルアミド、脂肪酸
エステルとしてステアリル酢酸エステル等を例示するこ
とができる。
Specifically, the fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; the fatty alcohols include lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol; and the fatty acid amides include caprinamide, laurinamide, Examples of lumitinamide, stearylamide, and fatty acid ester include stearyl acetate.

本発明において、前記超高分子量ポリエチレン100重
量部当りシラン化合物は0.1乃至10重量部、特に0
.2乃至5.0重量部、ラジカル開始剤は触媒量、一般
に0.01乃至3.0重量部、特に0.05乃至0.5
重量部及び稀釈剤は9900乃至33重量部、特に19
00乃至100重量部の′量で使用するのがよい、シラ
ン化合物の量が上記範囲よりも低い場合には、最終延伸
架橋成形体の架橋密度が低くなりすぎて、所期の結晶融
解温度の向上が得られなくなる傾向がある。一方、シラ
ン化合物の量が上記範囲を越える場合には、最終延伸架
橋成形体の結晶化度が低下し、機械的性質、部ち弾性率
や引張強度等が低下する傾向がある。
In the present invention, the silane compound is contained in the range of 0.1 to 10 parts by weight, particularly 0.1 to 10 parts by weight, per 100 parts by weight of the ultra-high molecular weight polyethylene.
.. 2 to 5.0 parts by weight, the radical initiator in a catalytic amount, generally 0.01 to 3.0 parts by weight, especially 0.05 to 0.5 parts by weight.
Parts by weight and diluent range from 9900 to 33 parts by weight, especially 19
It is preferable to use the silane compound in an amount of 00 to 100 parts by weight.If the amount of the silane compound is lower than the above range, the crosslink density of the final stretched and crosslinked molded product will be too low and the desired crystal melting temperature will be lowered. There is a tendency for no improvement to be achieved. On the other hand, if the amount of the silane compound exceeds the above range, the crystallinity of the final stretch-crosslinked molded product tends to decrease, and the mechanical properties, part elastic modulus, tensile strength, etc. tend to decrease.

また、シラン化合物は高価であることから経済的にも不
利となる。また、稀釈剤の量が上記範囲よりも低い場合
には、溶融粘度が高くなり過ぎ、溶融混練や溶融成形が
困難となると共に、成形物の肌荒れが著しく、延伸切れ
等を生じ易い。一方、稀釈剤の量が上記範°囲よりも多
いと、やはり溶融混線が困難となり、ま九成形品の延伸
性が劣るようになる。
Furthermore, since silane compounds are expensive, they are economically disadvantageous. Furthermore, if the amount of the diluent is lower than the above range, the melt viscosity will become too high, making melt kneading and melt molding difficult, and the surface of the molded product will be extremely rough, easily causing stretching breakage and the like. On the other hand, if the amount of the diluent is larger than the above range, melt cross-linking will still be difficult and the stretchability of the molded product will be poor.

超高分子量ポリエチレンへの上記各薬品の配合は、任意
の手段で行い得る6例えば、シラン化合物、ラジカル開
始剤及び稀釈剤を同時に配合し、溶融混線を行ってもよ
く、またシラン化合物及びラジカル開始剤を先ず配合し
、次いで稀釈剤を配合する方法や、逆に超高分子量ポリ
エチレンに稀釈剤を先ず配合し、次いでシラン化合物、
及びラジカル開始剤を配合する方法等が用いられる。
The above-mentioned chemicals may be blended into ultra-high molecular weight polyethylene by any method6.For example, a silane compound, a radical initiator, and a diluent may be blended at the same time and melt cross-mixing may be performed; There is a method in which the agent is first blended and then a diluent, or conversely, a diluent is first blended into ultra-high molecular weight polyethylene, and then a silane compound,
and a method of blending a radical initiator.

溶融混練は一般に150乃至300℃、特に170乃至
270℃の温度で行なうのが望ましく、上記範囲よりも
低い温度では、溶融粘度が高すぎて、溶融成形が困難と
なり、また上記範囲よりも高い場合には、熱減成により
超高分子量ポリエチレンの分子量が低下して高弾性率及
び高強度の成形体を得ることが困難となる。尚、配合は
ヘンシェルミキサー、V型プレンダー等による乾式ブレ
ンドで行ってもよいし、或いは単軸或いは多軸押出機を
用いる溶融混合で行りてもよい。
Melt kneading is generally preferably carried out at a temperature of 150 to 300°C, particularly 170 to 270°C; at temperatures lower than the above range, the melt viscosity becomes too high and melt molding becomes difficult; In this case, the molecular weight of ultra-high molecular weight polyethylene decreases due to thermal degradation, making it difficult to obtain a molded article with high elastic modulus and high strength. The blending may be carried out by dry blending using a Henschel mixer, a V-type blender, etc., or by melt mixing using a single-screw or multi-screw extruder.

溶融成形は、一般に溶融押出成形により行われる1例え
ば、紡糸口金を通して溶融押出することにより、延伸用
フィラメントが得られ、またフラットダイ或いはリング
ダイを通して押出すことにより、延伸用フィルム或いは
シート或いはテープが得られ、更にサーキュラ−ダイを
通して押出すことにより、延伸ブロー成形用・々イブ(
パリソン〕が得られる0本発明は特に、延伸フィラメン
トの製造に有用であり、この場合、紡糸口金エリ押出さ
れた溶融物にドラフト、即ち溶融状態での引き伸しを加
えることもできる。溶融樹脂のダイ・オリフィス内での
押出速度voと冷却固化し±未延伸物の巻き取り速度V
との比をドラフト比として次式で定義することができる
Melt forming is generally carried out by melt extrusion. For example, filaments for drawing can be obtained by melt extrusion through a spinneret, and films, sheets or tapes for drawing can be obtained by extrusion through a flat die or ring die. By extruding the obtained product through a circular die, it is possible to obtain a tube for stretch blow molding (
The present invention is particularly useful for producing drawn filaments, in which case the melt extruded from the spinneret can be subjected to drafting, ie, drawing in the molten state. Extrusion speed vo of molten resin in the die orifice and winding speed V of the cooled and solidified ±unstretched material
The draft ratio can be defined by the following formula.

ドラフト比= V / v o、、、 、、、 (2)
かかるドラフト比は混合物の届哀勇温度及び超高分子量
ポリエチレンの分子量等によるが通常は3以上、好まし
くは6以上とすることができる。
Draft ratio = V/vo, (2)
The draft ratio depends on the temperature at which the mixture reaches temperature, the molecular weight of the ultra-high molecular weight polyethylene, etc., but is usually 3 or more, preferably 6 or more.

勿論、溶融成形は押出成形のみに限定されず、各種延伸
成形容器等の製造の場合には、射出成形で延伸プロー成
形用のプリフォームを製造することも可能である。成形
物の冷却固化は風冷、水冷等の強制冷却手段で行うこと
ができる。
Of course, melt molding is not limited to extrusion molding, and in the case of manufacturing various stretch molded containers, it is also possible to manufacture preforms for stretch blow molding by injection molding. The molded product can be cooled and solidified by forced cooling means such as air cooling or water cooling.

延伸 かくして得られるシラングラフト超高分子量ポリエチレ
ンの未延伸成形体を延伸処理する。延伸処理の程度は、
勿論、成形体の超高分子量ポリエチレンに少なくとも一
軸方向の分子配向が有効に付与されるようなものである
Stretching The unstretched molded product of silane-grafted ultra-high molecular weight polyethylene thus obtained is stretched. The degree of stretching treatment is
Of course, the ultra-high molecular weight polyethylene of the molded article is effectively imparted with molecular orientation in at least one axis direction.

シラングラフトポリエチレン成形体の延伸は、一般に4
0乃至160℃、特に80乃至145℃の温度で行うの
が望ましい、未延伸成形体を上記温度に加熱保持するた
めの熱媒体としては、空気、水蒸気、液体媒体の何れを
も用いることができる。
The stretching of the silane-grafted polyethylene molded article is generally carried out by 4
It is desirable to carry out the heating at a temperature of 0 to 160°C, particularly 80 to 145°C. Air, water vapor, or a liquid medium can be used as the heating medium for heating and maintaining the unstretched compact at the above temperature. .

しかしながら、熱媒体として、前述した稀釈剤を溶出除
去することができる溶媒でしかもその沸点が成形体組成
物の融点よりも高いもの、具体的にはデカリン、デカン
、灯油等を使用して、延伸操作を行なうと、前述し九稀
釈剤の除去が可能となると共に、延伸時の延伸むらの解
消並びに高延伸倍率の達成が可能となるので好ましい。
However, as a heating medium, a solvent capable of eluting and removing the diluent mentioned above and whose boiling point is higher than the melting point of the molded article composition, specifically decalin, decane, kerosene, etc., is used to stretch the material. By carrying out this operation, it is possible to remove the above-mentioned diluent, eliminate stretching unevenness during stretching, and achieve a high stretching ratio, which is preferable.

勿論、超高分子量ポリエチレンから過剰の稀釈剤を除去
する手段は、前記方法に限らず、未延伸物をヘキサン、
ヘプタン、熱エタノール、クロロホルム、ベンゼン等の
溶剤で処理後延伸する方法、延伸物をヘキサン、ヘプタ
ン、熱エタノール、クロロホルム、ベンゼン等の溶剤で
処理する方法によっても、成形物中の過剰の稀釈剤の除
去を有効に行ない、高弾性率、高強度の延伸物を得るこ
とができる。
Of course, the means for removing excess diluent from ultra-high molecular weight polyethylene is not limited to the method described above.
Excess diluent in the molded product can be removed by a method of stretching after treatment with a solvent such as heptane, hot ethanol, chloroform, or benzene, or by a method of treating the stretched product with a solvent such as hexane, heptane, hot ethanol, chloroform, or benzene. The removal can be carried out effectively and a stretched product with high elastic modulus and high strength can be obtained.

延伸操作は、一段或いは二段以上の多段で行うことがで
きる。延伸倍率は、所望とする分子配向効果にも依存す
るが、一般に5乃至80倍、特に10乃至50倍の延伸
倍率となるように延伸操作を行えば満足すべき結果が得
られる。
The stretching operation can be performed in one stage or in multiple stages of two or more stages. Although the stretching ratio depends on the desired molecular orientation effect, satisfactory results can be obtained if the stretching operation is performed at a stretching ratio of generally 5 to 80 times, particularly 10 to 50 times.

フィラメント、テープ或いは一軸延伸等の一軸延伸操作
の場合には、周速の異なるローラ間で引張延伸を行えば
よく、また二軸延伸フィルムの場合には、周速の異なる
ローラ間で縦方向に引張延伸を行なうと共に、テンター
等により横方向にも引張延伸を行う。また、インフレー
ション法による二軸延伸も可能’lる。更に、容器等の
立体成形物の場合には、軸方向への引張り延伸と周方向
への膨張延伸との組合せにより二軸延伸成形体を得るこ
とができる。
In the case of uniaxial stretching operations such as filament, tape, or uniaxial stretching, tension stretching can be performed between rollers with different circumferential speeds, and in the case of biaxially stretched films, stretching can be carried out in the longitudinal direction between rollers with different circumferential speeds. In addition to tensile stretching, tensile stretching is also performed in the transverse direction using a tenter or the like. Biaxial stretching by the inflation method is also possible. Furthermore, in the case of a three-dimensional molded product such as a container, a biaxially stretched molded product can be obtained by a combination of axial stretching and expansion stretching in the circumferential direction.

架橋処理 本発明によれば、上記延伸中成いは延伸後に成形物中に
シラノール縮合触媒を含浸させ、次いで延伸成形体を水
分と接触させて架橋を行わせる。
Crosslinking Treatment According to the present invention, a silanol condensation catalyst is impregnated into the molded product during or after the stretching, and then the stretched molded product is brought into contact with moisture to effect crosslinking.

シラノール縮合触媒としては、それ自体公知のもの、例
えばジプチル錫ソラウレート、ノブチル錫ノアセテート
、シブチル錫ジオクトエート等のジアルキル錫ジカルゲ
キシレート:チタン酸テトラブチルエステル等の有機チ
タネート;ナフテン酸鉛等を用いることができる。これ
らのシラノール縮合触媒は、液体媒体中に溶解させた状
態で、未延伸成形体或いは延伸成形体と接触させること
に工す、これらの成形体中に有効に含浸させることがで
きる0例えば、延伸処理を液体媒体中で行う場合には、
この延伸用液体媒体中にシラノール縮合触媒を溶解して
おくことにより、延伸操作と同時に、シラノール縮合触
媒の成形体への含浸処理を行うことができる0本発明方
法において、成形体中に含まれるワックス類等の稀釈剤
は、シラノール縮合触媒の成形体中への一様な含浸を助
長するように作用するものと信じられる。
As the silanol condensation catalyst, those known per se are used, such as dialkyltin dicalgexylate such as diptyltin tholaurate, butyltin noacetate, and sibutyltin dioctoate; organic titanates such as tetrabutyl titanate; lead naphthenate, etc. be able to. These silanol condensation catalysts can be effectively impregnated into unstretched molded bodies or stretched molded bodies by contacting them in a state dissolved in a liquid medium. If the processing is carried out in a liquid medium,
By dissolving the silanol condensation catalyst in this liquid medium for stretching, it is possible to impregnate the molded body with the silanol condensation catalyst at the same time as the stretching operation. It is believed that diluents such as waxes act to promote uniform impregnation of the silanol condensation catalyst into the compact.

成形体中に含浸されるシラノール縮合触媒の量は、所謂
触媒量でよく、直接その量を規定することは困難である
が、一般には、未延伸或いは延伸剤の成形体と接触する
液体媒体中に、10乃至100重t%、特に25乃至7
5重量%の量でシラノール縮合触媒を添加し、この液体
媒体と成形体とを接触させることにより、満足すべき結
果が得られる。
The amount of the silanol condensation catalyst impregnated into the molded article may be a so-called catalytic amount, and it is difficult to directly specify the amount, but in general, the amount of silanol condensation catalyst impregnated into the molded article is either unstretched or a stretching agent in a liquid medium that comes into contact with the molded article. 10 to 100% by weight, especially 25 to 7%
Satisfactory results are obtained by adding a silanol condensation catalyst in an amount of 5% by weight and contacting the molded body with this liquid medium.

延伸成形体の架橋処理は、シラノール綜合触媒を含浸さ
せたシラングラフト超高分子量ポリエチレンの延伸成形
体を水分と接触させることにより行われる。この架橋処
理条件に関して、格別の制限はないが、一般に低い処理
温度では長い処理時間が必要となることから、工業的に
は、50乃至130℃の温度で・ 3乃至24時間、延
伸成形体と水分との接触を行わせるのが有利である。こ
の目的のために、水分は熱水或いは熱水蒸気の形で延伸
成形体に作用させるのがよい。この架橋処理時に、延伸
成形体を拘束条件下におき、配向緩和を防止するように
することもでき、或いは逆に非拘束条件下において、成
る程度の配向緩和が生じるようにしても工い。
The crosslinking treatment of the stretched molded article is carried out by bringing the stretched molded article of silane-grafted ultra-high molecular weight polyethylene impregnated with a silanol synthesis catalyst into contact with moisture. There are no particular restrictions on the conditions for this crosslinking treatment, but generally a long treatment time is required at a low treatment temperature. Advantageously, contact with moisture takes place. For this purpose, moisture is preferably applied to the drawn body in the form of hot water or hot steam. During this crosslinking treatment, the stretched molded product may be placed under restraint conditions to prevent orientation relaxation, or conversely, orientation relaxation may occur to some extent under unrestricted conditions.

分子配向−シラン架橋成形体 尚、延伸成形体を架橋処理した後、更に延伸処理(通常
3倍以下)を行うと、引張強度等の機械的強度が更に改
善される。
Molecular Orientation - Silane Crosslinked Molded Product After the stretched molded product has been crosslinked, if it is further stretched (usually three times or less), mechanical strength such as tensile strength is further improved.

本発明による分子配向及びシラン架橋超高分子量ポリエ
チレン成形体は、拘束条件下において、超高分子量ポリ
エチレン本来の結晶融解温度(Tm)に比してはるかに
高い温度にも結晶融解ピーク(Tp)を示すという驚く
べき特徴を有している。
The molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene molded article according to the present invention exhibits a crystal melting peak (Tp) even at a much higher temperature than the original crystal melting temperature (Tm) of ultra-high molecular weight polyethylene under restraint conditions. It has the surprising characteristic of showing

超高分子量ポリエチレン本来の結晶融解温度(Tm)は
、この成形体を一度完全に融解した後冷却して、成形体
における分子配向を緩和させた後、再度昇温させる方法
、所謂示差走査型熱量計に訃けるセカンド・ランで求め
ることができる。
The original crystal melting temperature (Tm) of ultra-high molecular weight polyethylene can be determined by a method of completely melting the molded body, cooling it to relax the molecular orientation in the molded body, and then raising the temperature again, the so-called differential scanning calorimetry method. It can be found in the second run where the plan fails.

また、拘束条件下とは、成形体に積極的な緊張は与えら
れていないが、自由変形が防止されるように端部が固定
されている条件を言う。
Furthermore, the constraint condition refers to a condition in which no active tension is applied to the molded body, but the end portions are fixed so as to prevent free deformation.

前に説明した第4図から明らかな通り、本発明による成
形体は、超高分子量ポリエチレン本来の結晶融解温度(
Tm)よりも少なくとも10℃高い温度に、少なくとも
2個の結晶融解ピーク(Tp)を有し、しかも全融解熱
量当りのこの結晶融解ピーク(TP) K基づく融解熱
量が40%以上、特に60%以上であるという特徴を有
する。
As is clear from FIG. 4 explained above, the molded article according to the present invention has a crystalline melting temperature (
have at least two crystal melting peaks (Tp) at temperatures at least 10° C. higher than Tm), and the heat of fusion based on the total heat of fusion of these crystal melting peaks (TP) K is 40% or more, in particular 60% It has the above characteristics.

一般に、本発明の成形体における結晶融解ピーク(Tp
)は、温度範囲Tm −)−35℃〜Tm + 120
℃における高温側融解ピーク(Tp l)と、温度範囲
Tm + 10℃〜Tm + 35℃における低温側ピ
ーク(Tpz)との2つに表われることが多く、Tmの
融解ピークそのものは著しく小さい。
Generally, the crystal melting peak (Tp
) is the temperature range Tm -) -35°C to Tm + 120
It often appears as two peaks: a high-temperature side melting peak (Tpl) at °C and a low-temperature peak (Tpz) in the temperature range Tm + 10 °C to Tm + 35 °C, and the Tm melting peak itself is extremely small.

尚、高温側融解部(Tp l)は成形体のシラングラフ
ト量に関係し、シラングラフト量が少ない場合には融解
曲線に明確な極大点(ピーク)が現われず、ブロードな
極大点(ピーク)あるいは低温側融解部(Tp2)の高
温側にTm + 35℃〜Tm+ 120℃に亘ってシ
ョルダーもしくはすそ(テール)として現われることが
多い。
Note that the high temperature side melting zone (Tp l) is related to the amount of silane grafted in the molded body, and when the amount of silane grafted is small, a clear maximum point (peak) does not appear on the melting curve, but a broad maximum point (peak). Alternatively, it often appears as a shoulder or tail on the high temperature side of the low temperature side melting zone (Tp2) over a temperature range of Tm + 35°C to Tm + 120°C.

又、Tmの融解ピークが極端に小さい時は、TPtの融
解ピークショルダーに隠れ確認できない場合もある。仮
にTmの融解ピークがなくても超高分子量ポリエチレン
成形体の機能にはなんら差し障りはない。
Furthermore, when the melting peak of Tm is extremely small, it may be hidden behind the melting peak shoulder of TPt and cannot be confirmed. Even if there is no Tm melting peak, there will be no problem with the functionality of the ultra-high molecular weight polyethylene molded product.

Tm + 35℃〜Tm + 120 Cにおける高温
側融解ピーク(Tp l )と温度範囲Tm + 10
 ’C〜Tm+35℃における低温側融解ピーク(Tp
 z )はそれぞれ試料の調製条件や、融点の測定条件
によりさらに2つ以上の融解ピークに分かれる場合もあ
る。
High temperature side melting peak (Tpl) and temperature range Tm + 10 at Tm + 35°C to Tm + 120 C
'C ~ Tm + 35℃ low temperature side melting peak (Tp
z) may be further divided into two or more melting peaks depending on sample preparation conditions and melting point measurement conditions.

これらの高い結晶融解ピーク(Tps −TP2 )は
、超高分子量ポリエチレン成形体の耐熱性を顕著に向上
させるように作用するものであるが、高温の熱履歴後で
の強度保持率向上に寄与するのは、高温側融解ピーク(
Tpl)であると思われる。
These high crystal melting peaks (Tps - TP2) act to significantly improve the heat resistance of the ultra-high molecular weight polyethylene molded product, but they also contribute to improving the strength retention rate after high-temperature thermal history. is the melting peak on the high temperature side (
Tpl).

従って、温度範囲Tm+35℃〜Tm+120℃の高温
側融解ピーク(Tpl)に基ずく融解熱量の総和は、全
融解熱量当り5チ以上、特に10%以上であることが望
ましい。
Therefore, it is desirable that the sum of the heat of fusion based on the high temperature side melting peak (Tpl) in the temperature range Tm+35°C to Tm+120°C is 5 inches or more, particularly 10% or more, based on the total heat of fusion.

又、高温側融解ピーク(Tpl)に基ずく融解熱量の総
和が上述の値を満している限りにおいては、高温側融解
ピーク(Tpl)が主たるピークとして突出して現われ
ない場合、つま9小ピークの集合体もしくはブロードな
ピークになったとしても、耐熱性は若干失なわれる場合
もあるが、耐クリープ特性については優れている。
In addition, as long as the sum of the heat of fusion based on the high-temperature side melting peak (Tpl) satisfies the above-mentioned value, if the high-temperature side melting peak (Tpl) does not stand out as a main peak, the 9th minor peak Even if it becomes an aggregate or a broad peak, the heat resistance may be slightly lost, but the creep resistance is excellent.

本発明において、上述した結晶融解ピークの高温側への
移行は、単なる延伸ポリエチレン成形体や単なる延伸架
橋ポリエチレン成形体では起こらず、このよう々希釈剤
を含んだポリエチレン組成物へのシランのグラフトと延
伸による分子配向及びシランの架橋とをこの順序に組合
せて行うことにエリ可能となるものである。
In the present invention, the above-mentioned shift of the crystal melting peak to the high temperature side does not occur in a mere stretched polyethylene molded article or a mere stretched cross-linked polyethylene molded article, but when silane is grafted onto a polyethylene composition containing a diluent. This can be achieved by combining molecular orientation by stretching and silane crosslinking in this order.

本発明における融点及び結晶融解熱量は以下の方法によ
り測定した。
The melting point and heat of crystal fusion in the present invention were measured by the following method.

融点は示差走査熱量計で以下の様に行なった。示差走査
熱量計はDSCI[! (〕〕’−キンエルマー社製を
用いた。
The melting point was determined using a differential scanning calorimeter as follows. Differential scanning calorimeter is DSCI [! (]]'--manufactured by KinElmer Co., Ltd. was used.

試料は約3■を4+mX4m、厚さ100μのアルミ板
に巻きつけることにエリ配向方向に拘束した。次いでア
ルミ板に巻きつけた試料をアルミ・マンの中に封入し、
測定用試料とした。又、リファレンスホルダーに入れる
通常空のアルミt4ンには試料に用いたと同じアルミ板
を封入し熱バランスを取った。まづ試料を30℃で約1
分間保持し、その後10′C/m i nの昇温速度で
250℃まで昇温し、第1回目昇温時の融点測定を完了
した。引き続き250℃の状態で10分間保持し1次い
で20℃/ m i nの降温速度で降温し、さらに3
0℃で10分間試料を保持した1次いで二回目の昇温を
10℃/ m i nの昇温速度で250℃まで昇温し
、この際2回目昇温時(セカンドラン)の融点測定を完
了し次、このとき融解ピークの最大値をもりて融点とし
た。ショルダーとして現われる場合はシ、ル〆−のすぐ
低温側の変曲点とすぐ高温側の変曲点で接線を引き交点
を融点とした。
The sample was restrained in the direction of edge orientation by winding approximately 3 cm around an aluminum plate measuring 4+4 m x 4 m and 100 μm thick. Next, the sample wrapped around an aluminum plate was enclosed in an aluminum man.
This was used as a sample for measurement. In addition, the same aluminum plate used for the sample was sealed in the normally empty aluminum T4 tube placed in the reference holder to maintain heat balance. Mazu sample at 30℃ for approx.
The temperature was maintained for 1 minute, and then the temperature was raised to 250°C at a temperature increase rate of 10'C/min, and the melting point measurement at the first temperature increase was completed. Subsequently, the temperature was maintained at 250°C for 10 minutes, then the temperature was lowered at a rate of 20°C/min, and the temperature was further lowered for 3
The sample was held at 0°C for 10 minutes, and then the temperature was raised a second time to 250°C at a rate of 10°C/min. At this time, the melting point was measured during the second heating (second run). After completion, the maximum value of the melting peak at this time was taken as the melting point. If it appears as a shoulder, draw a tangent at the inflection point immediately on the low-temperature side and the inflection point immediately on the high-temperature side of C, L, and take the intersection as the melting point.

また吸熱曲線の60℃と240℃との点を結び該直線(
ベースライン)と二回目昇温時の主融解ピークとして求
められる超高分子量ポリエチレン本来の結晶融解温度(
Tm)工す10℃高い点に垂線を引き、これらによって
囲まれた低温側の部分を超高分子量ポリエチレン本来の
結晶融解(Tm)に基づくものとし、又高温僻の部分を
本発明成形体の機能を発現する結晶融解(Tp)に基づ
くものとし、それぞれの結晶融解熱量は、これらの面積
より算出した。又、TPIお工びTp2の融解に基づく
融解熱量も上述の方法に従い、Tm+10℃からの垂線
とTm+35℃がらの垂線に囲まれた部分をTp2の融
解に基づく融解熱量のものとし高温側部分をTPtの融
解に基づく融解熱量のものとして同様に算出した。
In addition, the straight line (
Baseline) and the original crystalline melting temperature of ultra-high molecular weight polyethylene determined as the main melting peak during the second temperature rise (
Draw a perpendicular line to the point 10°C higher than the Tm), and let the low-temperature side area surrounded by these be based on the original crystal melting (Tm) of ultra-high molecular weight polyethylene, and the high-temperature and low-temperature area be based on the crystal melting (Tm) of the molded article of the present invention. It is based on the crystal melting (Tp) that exhibits the function, and the heat of fusion of each crystal was calculated from these areas. In addition, the heat of fusion based on the melting of Tp2 made by TPI is determined according to the above method, and the part surrounded by the perpendicular line from Tm + 10°C and the perpendicular line from Tm + 35°C is the heat of fusion based on the melting of Tp2, and the high temperature side part is The heat of fusion was similarly calculated based on the melting of TPt.

成形体における分子配向の程度は、X線回折法、複屈折
法、螢光偏光法等で知ることができる0本発明の延伸シ
ラン架橋フィラメントの場合、例えば呉祐吉、久保輝一
部:工業化学雑誌第39巻、992頁(1939)に詳
しく述べられている半価中による配向度、即ち式配向度
F=9に:旦二3− 90゜ 式中、Hoは赤道線上最強の/#ラドロープ面のデバイ
環に沿っての強度分布曲線の半価幅(’)である。
The degree of molecular orientation in a molded product can be determined by X-ray diffraction, birefringence, fluorescence polarization, etc. In the case of the stretched silane crosslinked filament of the present invention, for example, Yukichi Go, Teru Kubo, Kazuhiro Kubo: Industrial Chemistry The degree of orientation according to the half value, that is, the degree of orientation F = 9, which is detailed in the magazine Vol. 39, page 992 (1939): 3-90 degrees, where Ho is the strongest /# radrope on the equator. It is the half-width (') of the intensity distribution curve along the Debye ring of the surface.

で定義される配向度CF)が0.90以上、特に0.9
5以上となるように分子配向されていることが、耐熱性
や機械的性質の点で望ましい。
The degree of orientation CF defined by CF) is 0.90 or more, especially 0.9
It is desirable for the molecules to be oriented in such a way as to have a molecular orientation of 5 or more in terms of heat resistance and mechanical properties.

また、シランのグラフト量は、延伸架橋成形体を135
℃の温度でp−キシレン中で4時間抽出処理を行って、
未反応のシランや含有される稀釈剤を抽出除去し、重量
法或いは原子吸光法″01の定量を行うことにより求め
ることができる。本発明において、シラフグ2フト量は
、超高分子量ポリエチレン当りの81重量%として聚わ
して、0.01乃至5重量%、特に0.035乃至3.
5重量−の範囲にあることが、耐熱性の点で望ましい、
即ち、グラフト量が上記範囲エリも少ない場合には架橋
密度が本発明の場合に比して小さく、一方上記範囲より
も多い場合には結晶性が低下して、何れも耐熱性が不十
分となる。
In addition, the amount of silane grafted was 135
Extraction treatment was carried out in p-xylene for 4 hours at a temperature of ℃,
It can be determined by extracting and removing unreacted silane and diluent contained therein, and performing quantitative determination using a gravimetric method or an atomic absorption method. 81% by weight, 0.01 to 5% by weight, especially 0.035 to 3.
From the viewpoint of heat resistance, it is desirable that the weight is in the range of 5 -
That is, when the amount of grafting is less than the above range, the crosslinking density is lower than in the case of the present invention, while when it is more than the above range, the crystallinity decreases, and in either case, the heat resistance is insufficient. Become.

本発明における分子配向−シラン架橋成形体では、成形
体を構成する少なくとも一部の重合体鎖の結晶融解温度
が前述したように著しく高温側に移行していることから
、極めて耐熱性に優れており、160℃での10分間の
熱履歴を与えた後での強度保持率が80−以上、好まし
くは180℃で10分間の熱履歴を与えた後での強度保
持率が60チ以上、特に80%以上、さらには200℃
で5分間の熱履歴を与えた後での強度保持率が80−以
上であるという、従来の超高分子量ポリエチレンからは
全く予想だにできない驚くべき耐熱性を示す。
In the molecularly oriented silane crosslinked molded article of the present invention, the crystal melting temperature of at least some of the polymer chains constituting the molded article has shifted significantly to the high temperature side as described above, and therefore has extremely excellent heat resistance. The strength retention rate after being subjected to a heat history of 160°C for 10 minutes is 80 degrees or more, preferably the strength retention rate is 60 degrees or more after being subjected to a heat history of 180 degrees Celsius for 10 minutes, especially 80% or more, even 200℃
It exhibits surprising heat resistance, which is completely unexpected from conventional ultra-high molecular weight polyethylene, with a strength retention rate of 80 or more after being subjected to a heat history of 5 minutes.

また本発明の成形体は耐熱クリープ特性、例えば荷重;
30%破断荷重、温度ニア0℃の条件下で未架橋物が1
分間放置後50%以上の伸びを示すに対して該成形体は
30%以下、更には、20 %以下と極めて優れている
Furthermore, the molded article of the present invention has heat-resistant creep properties, such as load resistance;
Under the conditions of 30% breaking load and temperature near 0℃, the uncrosslinked material becomes 1
While the molded product shows an elongation of 50% or more after standing for a minute, the elongation of the molded product is 30% or less, and even 20% or less, which is extremely excellent.

また、本発明の成形体は更に荷重:50%破断荷重、温
度ニア0℃の条件下で未架橋物が1分間を待次ずして伸
長破断するのに対して、1分間放置後の伸びは20%以
下を示す。
In addition, the molded product of the present invention further elongates and breaks after being left for 1 minute under the conditions of a load: 50% breaking load and a temperature of near 0°C, whereas an uncrosslinked product elongates and breaks within 1 minute. indicates 20% or less.

また、この成形体は、グラフトされ且つ架橋されたシラ
ン類を含むことから、接着性、特に種々の樹脂類との接
着性にも優れてお9、この事実は後述する例を参照する
ことKより容易に了解されよう。
In addition, since this molded product contains grafted and crosslinked silanes, it has excellent adhesive properties, particularly with various resins9, and this fact can be seen in the examples described later. It will be easier to understand.

更に、この成形体は超高分子量ポリエチレンから成り、
しかも有効に分子配向が付与されていることから、機械
的特注にも優れており、例えば延伸フィラメントの形状
で20 GPa以上の弾性率と1、2 GPa以上の引
張強度とを示す。
Furthermore, this molded body is made of ultra-high molecular weight polyethylene,
Moreover, since molecular orientation is effectively imparted, it is excellent in mechanical customization, and exhibits an elastic modulus of 20 GPa or more and a tensile strength of 1.2 GPa or more in the form of a drawn filament, for example.

(発明の作用効果) 本発明の分子配向及びシラン架橋超高分子量ポリエチレ
ン成形体は、耐熱性1機械的特性、接着性等の組合せに
優れている。かくして、フィラメントの形態の成形体を
、エポキシ樹脂、不飽和ポリエステル等の各種樹脂や合
成ゴム等に対する補強繊維として使用すると、従来の超
高分子量ポリエチレン延伸フィラメントに比して、耐熱
性や接着性の点で著しい改善がなされることが明白であ
ろう、又、このフィラメントは高強度でしかも密度が小
さいことから従来のガラス繊維、炭素繊維、がロン繊維
、芳香族ポリアミド繊維、芳香族ポリイミド繊維等を用
い喪成形物に比べ、特に軽量化を計れるので有効である
。ガラス繊維等を用いた複合材料と同様に、TJ D 
(Unit Dlrsctional)積層板、SMC
(5heet Moldlng Compound )
、BMC(Bulk Molding Cornpou
nd)等の成形加工を行うことができ、自動車部品、サ
ートやヨツトの構造体、電子回路用基板等の軽量、高強
度分野での各種複合材料用途が期待される。
(Effects of the Invention) The molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene molded article of the present invention is excellent in the combination of heat resistance, mechanical properties, adhesiveness, and the like. Thus, when a molded article in the form of a filament is used as a reinforcing fiber for various resins such as epoxy resin, unsaturated polyester, synthetic rubber, etc., it has better heat resistance and adhesive properties than conventional ultra-high molecular weight polyethylene drawn filaments. It is clear that this filament has a high strength and a low density, so it is superior to conventional glass fibers, carbon fibers, glass fibers, aromatic polyamide fibers, aromatic polyimide fibers, etc. It is particularly effective because it can be made lighter compared to molded molded products. Similar to composite materials using glass fiber etc., TJD
(Unit Dlrsctional) Laminated board, SMC
(5heet Mold Compound)
, BMC (Bulk Molding Cornpou)
nd), etc., and is expected to be used as a variety of composite materials in lightweight, high-strength fields such as automobile parts, structures for seats and yachts, and substrates for electronic circuits.

(実施例) 次に実施例を挙げて本発明を更に具体的に説明するが、
本発明はその要旨を越えない限りそれらの実施例に制約
されるものではない。
(Example) Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these embodiments as long as they do not go beyond the gist of the invention.

実施例1゜ グラフト化および紡糸 超高分子量ポリエチレン(極限粘度〔η) = 8.2
0dt/!i)の粉末: 100重量部に対してビニル
トリメトキシシラン(信越化学展):10重量部及び2
.5−ジメチル−2,5−ノ(t@rt−ブチルペルオ
キシ)ヘキサン(日本油脂製:商品名、バーへキサ25
B):0.1]i量部を均一に配合した後、超高分子量
Iリエチレン100重量部に対してノ9ラフインワック
スの粉末(日本精蝋製、商品名、ルバックス1266、
融点=69℃):370重量部添加混合し混合物を得た
。次いで該混合物をスクリュ一式押出機(スクリュー径
= 20 wrφ、L/D=25)を用いて、設定温度
200℃で溶融混線を行ない、引き続き、該溶融物をオ
リフィス径2+wのグイより紡糸し、シラングラフト完
了した。紡糸繊維は180個のエアーギャップで室温の
空気にて冷却固化し、未延伸超高分子量ポリエチレンシ
ラ/グラフト繊維とした。この未延伸糸は8007′ニ
ールであり、紡糸時のドラフト比率は36.4であり九
、また、この際の巻き取り速度は907q/m1nであ
った。
Example 1 Grafting and spinning ultra-high molecular weight polyethylene (intrinsic viscosity [η) = 8.2
0dt/! i) Powder: 100 parts by weight, vinyltrimethoxysilane (Shin-Etsu Chemical Exhibition): 10 parts by weight and 2
.. 5-dimethyl-2,5-no(t@rt-butylperoxy)hexane (manufactured by NOF: trade name, Barhexa 25
B): 0.1 parts] After uniformly blending 100 parts by weight of ultra-high molecular weight I-lyethylene, powder of No.
Melting point = 69°C): 370 parts by weight were added and mixed to obtain a mixture. Next, the mixture was melt mixed using a single screw extruder (screw diameter = 20 wrφ, L/D = 25) at a set temperature of 200°C, and then the melt was spun through a gouie with an orifice diameter of 2+w. Silang graft completed. The spun fibers were cooled and solidified in air at room temperature through 180 air gaps to obtain undrawn ultra-high molecular weight polyethylene silica/graft fibers. This undrawn yarn had a 8007'neal, a draft ratio at the time of spinning of 36.4, and a winding speed of 907q/m1n.

シラングラフト量の定量 上記方法にて調製された未延伸グラフト繊維的8Iを1
35℃に加熱保持し念p−キシレン200閃に溶解した
0次いで常温にて過剰のへキサン中に超高分子量ポリエ
チレンを析出させ、ノ9ラフインワックスと未反応シラ
ン化合物を除去した。この後、重量法にてSt 重量%
で求めたグラフト量は0.57重量%であった。
Determination of the amount of silane grafting 1
The ultra-high molecular weight polyethylene was heated and maintained at 35 DEG C. and dissolved in 200 g of p-xylene, then precipitated in excess hexane at room temperature to remove rough wax and unreacted silane compounds. After this, St weight% by gravimetric method
The amount of grafting determined was 0.57% by weight.

延伸 前記の方法で超高分子量ポリエチレン混合物から紡糸さ
れたグラフト化未延伸繊維を次の条件で延伸し配向延伸
繊維を得た。王台のゴデツトロールを用いてれ一デカン
を熱媒とした延伸槽にて二段延伸を行った。このとき第
一延伸槽内温度は110℃、第2延伸槽内温度は120
’Cであり檜の有効長はそれぞれ50cmであった。延
伸に際しては第1ゴデツトロールの回転速度を0.5 
m/minとして第3ゴデツトロールの回転数を変更す
ることにより、所望の延伸比の繊維を得た。又、第2ゴ
デツトロールの回転速度は、安定延伸可能な範囲で適宜
選択し念、但し、延伸比は第1コ9プツトロールと第3
コ9プツトロールとの回転比よし計算して求めた。
Stretching The grafted undrawn fibers spun from the ultra-high molecular weight polyethylene mixture by the method described above were drawn under the following conditions to obtain oriented drawn fibers. Two-stage stretching was carried out using a Godetstrol manufactured by Ohdai in a stretching tank using decane as a heating medium. At this time, the temperature inside the first drawing tank was 110°C, and the temperature inside the second drawing tank was 120°C.
'C, and the effective length of each cypress was 50 cm. During stretching, the rotational speed of the first godet roll was set to 0.5.
A fiber with a desired drawing ratio was obtained by changing the rotation speed of the third godet roll in m/min. In addition, the rotational speed of the second godet roll should be appropriately selected within the range that allows stable stretching, but the stretching ratio should be set at the same rate as that of the first godet roll and the third godet roll.
It was obtained by calculating the rotation ratio with the coptrol.

得られ喪繊維を減圧下、室温にて乾燥し延伸超高分子量
Iリエチレンシラングラフト繊維とし虎。
The resulting fibers were dried under reduced pressure at room temperature to form ultra-high molecular weight I-lyethylene silane grafted fibers.

架橋触媒の含浸 前記方法で鉤裂されたシラン化合物グラフト超高分子バ
ーポリエチレンの配向繊維をさらに架橋する場合には延
伸時第2延−伸槽に熱媒としてn−デカンお工びn−デ
カンと等量のツブチル錫ソラウレートの混合物を用い、
パラフィンワックスを抽出すると同時に、ツブチル錫ソ
ラウレートを繊維中に含浸した。得られた繊維は、減圧
化室温にてデカ/臭のなくなるまで乾燥した。
Impregnation of cross-linking catalyst When further cross-linking the oriented fibers of the silane compound-grafted ultra-high polymer bar polyethylene that have been split in the above method, n-decane is used as a heating medium in the second stretching tank during stretching. using a mixture of equal amounts of Tubutyltin Thoraurate,
At the same time as paraffin wax was extracted, subbutyltin tholerate was impregnated into the fiber. The obtained fibers were dried under reduced pressure at room temperature until they were free of deca/odor.

架橋 この後繊維は沸水中で12時間放置して架橋を完了させ
た。
After crosslinking, the fibers were left in boiling water for 12 hours to complete crosslinking.

ダル分率の測定 上記方法にて得られたシラン架橋延伸超高分子量ポリエ
チレン繊維的0.4gをt4ラキシレン200ゴの入っ
ているコンデンサーを装置した三角フラスコに投入し、
4時間沸騰状態にて攪拌した。次いで不溶物をステンレ
ス製300 m@shの金網で口過し友。80℃の減圧
下で乾燥後、秤量し不溶物の重量を求め次。ダル分率は
以下の式で求めた。
Measurement of Dull Fraction 0.4 g of the silane cross-linked stretched ultra-high molecular weight polyethylene fiber obtained by the above method was placed in an Erlenmeyer flask equipped with a condenser containing 200 grams of T4 laxylene.
The mixture was stirred at boiling for 4 hours. Next, the insoluble matter was passed through a stainless steel wire mesh of 300 m@sh. After drying under reduced pressure at 80°C, it was weighed to determine the weight of insoluble matter. The dull fraction was calculated using the following formula.

上記の調製試料のダル分率は51.4チであっ次。The dull fraction of the above prepared sample was 51.4 cm.

引張弾性率、引張強度および破断点伸度はインストロン
万能試験機1123型(インストロン社M)を用いて室
温(23℃)にて測定し念。クランプ間の試料長は10
0■で引張速度100■/minとした。但し、引張弾
性率は初期弾性率である。計算に必要なFll、8ft
断面積はポリエチレンの密度を0.96177cm と
して酸維の重量と長さを測定して求めた。
Tensile modulus, tensile strength, and elongation at break were measured at room temperature (23°C) using an Instron universal testing machine model 1123 (Instron M). Sample length between clamps is 10
The tensile speed was 100/min at 0/min. However, the tensile modulus is the initial modulus. Fl required for calculation, 8ft
The cross-sectional area was determined by measuring the weight and length of the acid fibers, assuming the density of polyethylene as 0.96177 cm 2 .

この様にして得られたシラン架橋延伸超高分子量ポリエ
チレン繊維の物性を表1に示す。
Table 1 shows the physical properties of the silane-crosslinked stretched ultra-high molecular weight polyethylene fiber thus obtained.

表 1 又、二回目昇温時の主融解ピークとして求められる超高
分子量ポリエチレン本来の結晶融解温度(Tm)は13
2.2℃であり、’rpに基づく融解熱量の全結晶融解
熱量に対する割合、お:びTPIに基づく融解熱量の全
結晶融解熱量に対する割合はそれぞれ73%と22チで
あった。この時TI)zの主たるものは151.0℃で
あり、TPtの主たるものは226.5℃であった。
Table 1 In addition, the original crystal melting temperature (Tm) of ultra-high molecular weight polyethylene, which is determined as the main melting peak during the second temperature rise, is 13
The temperature was 2.2°C, and the ratio of the heat of fusion based on 'rp to the total heat of fusion of the crystals, and the ratio of the heat of fusion based on TPI to the total heat of fusion of the crystals were 73% and 22%, respectively. At this time, the main temperature of TI)z was 151.0°C, and the main temperature of TPt was 226.5°C.

第1図には実施例1で用いた超高分子量ポリエチレンを
200℃で厚さ100μのプレスシートに成形したもの
の第1回目昇温時の融解特性曲線を示し念、第2図には
後述する比較例1で調製し念未グラフト延伸超高分子量
ポリエチレン繊維の第1回目昇温時の融解特性曲線を示
した。!た、第3図には実施例1でシラングラフトされ
た未延伸系のノ臂ラフインワックスを常温ヘキサンで抽
出しプレス成形にてプレスシートとし、次いでジプチル
錫ジラウレートを含浸させさらに実施例1の方法で架橋
した試料の第1回目昇温時の融解特性曲線を示し次。そ
して第4図には実施例1にて調製したシラン架橋延伸超
高分子量ポリエチレン繊維の第1回目昇温時の融解特性
曲線をさらに第5図には、該繊維の第2回目昇温時(セ
カンドラン)の融解特性曲線を示した。
Figure 1 shows the melting characteristic curve during the first temperature rise of the ultra-high molecular weight polyethylene used in Example 1, which was formed into a 100μ thick press sheet at 200°C, and Figure 2 shows the melting characteristic curve, which will be described later. The melting characteristic curve of the ungrafted stretched ultra-high molecular weight polyethylene fiber prepared in Comparative Example 1 at the first temperature increase is shown. ! In addition, FIG. 3 shows that the unstretched arm rough-in wax grafted with silane in Example 1 was extracted with hexane at room temperature and formed into a press sheet by press molding, and then impregnated with diptyltin dilaurate. The melting characteristic curve at the first temperature increase of the sample crosslinked by the method is shown below. FIG. 4 shows the melting characteristic curve of the silane-crosslinked stretched ultra-high molecular weight polyethylene fiber prepared in Example 1 during the first temperature rise, and FIG. 5 shows the melting characteristic curve of the fiber during the second temperature rise ( The melting characteristic curve of the second run) is shown.

また第6図には、第1回目昇温から第2回自昇mf危7
.詐氾曲の鉄几什酷轢曲鍵を示1−t。
Figure 6 also shows the temperature rise from the first temperature rise to the second self-rise mf critical 7.
.. 1-t shows the key of the iron flood song.

接着性の評価 接着性の評価は引き抜き法で行なった。接着対象樹脂は
アラルダイト、ラビッド(エポキシ樹脂、昭和高分子株
式会社製)を用い方法はJIS L−1017化学繊維
タイヤコード試[Q方法の接着力A法(Pテスト)に準
じた。結果を第7図に示す。
Evaluation of Adhesiveness Evaluation of adhesiveness was carried out by the drawing method. The resin to be bonded was Araldite and Ravid (epoxy resin, manufactured by Showa Kobunshi Co., Ltd.), and the method was based on the JIS L-1017 chemical fiber tire cord test [Method Q, Adhesion A method (P test). The results are shown in FIG.

本実施例で調製したシラン架橋延伸超高分子量ポリエチ
レン繊維(試料−1)は、後述の比較例1で調製した延
伸超高分子量f IJエチレン繊維(試料−2)と比較
して3倍程度接着力(引き抜き力)が改良されているこ
とが分る。
The silane-crosslinked stretched ultra-high molecular weight polyethylene fiber (Sample-1) prepared in this example has about three times the adhesion as compared to the stretched ultra-high molecular weight f IJ ethylene fiber (Sample-2) prepared in Comparative Example 1 described later. It can be seen that the force (pulling force) has been improved.

クリープ特性の評価 クリープテストは、熱応力歪測定装置TMA/5SIO
(セイコー電子工業株式会社製)を用いて試料長law
、雰囲気温度70℃で行なった。500MPa荷重での
結果を第8図に、また破断荷重の30%荷重での結果を
第9図に示す。本実施例で調製したシラン架橋延伸超高
分子量ポリエチレン繊維(試料−1)は、後述の比較例
1で調製し穴延伸超高分子量ポリエチレン繊維(試料−
2)と比較していづれの場合も著しくクリープ特性が改
良されていることが分る。
Evaluation of creep characteristics The creep test was performed using a thermal stress strain measuring device TMA/5SIO.
(manufactured by Seiko Electronics Co., Ltd.)
, at an ambient temperature of 70°C. The results at a load of 500 MPa are shown in FIG. 8, and the results at a load of 30% of the breaking load are shown in FIG. 9. The silane-crosslinked stretched ultra-high molecular weight polyethylene fiber (Sample-1) prepared in this example is the same as the hole-stretched ultra-high molecular weight polyethylene fiber (Sample-1) prepared in Comparative Example 1 described below.
It can be seen that the creep characteristics are significantly improved in both cases compared to 2).

また、雰囲気温度70℃において、室温での会所荷重の
50優に相当する荷重で行なったクリープ試験で、荷重
直後から1分、2分および3分後の伸びを表2に示した
Table 2 shows the elongation at 1 minute, 2 minutes, and 3 minutes immediately after loading in a creep test conducted at an ambient temperature of 70° C. and a load equivalent to more than 50 times the chamber load at room temperature.

表2 試料−117,4 28,2 38,6 熱履歴試験は、ギヤーオープン(・臂−フェクトオープ
ン:田葉井製作所製)内に放置することによりて行なっ
た。試料は、約3mの長さでステンレス粋の両端に複数
個の滑車を装置し良ものに折り返しかけて試料両端を固
定した。この際試料両端は試料かたる17′:い程度に
固定し、積極的に試料には張力をかけなかった。結果を
我3に示す。
Table 2 Samples 117, 4 28, 2 38, 6 The thermal history test was conducted by leaving the samples in a gear open (arm-effect open: manufactured by Tabai Seisakusho). The sample was approximately 3 m long, and a plurality of pulleys were installed at both ends of a stainless steel piece, and both ends of the sample were fixed by folding it back over the piece. At this time, both ends of the sample were fixed to about 17', and no tension was actively applied to the sample. I will show the results to 3.

表 3 表3から驚くべき耐熱強度保持特性を有していることが
分る。
Table 3 It can be seen from Table 3 that it has surprising heat resistance and strength retention properties.

X線回折による配向度の測定 繊維はフィリップス箆ホルダーに10ないし20回巻き
つけて、片側を切り離し、束状にして測定に供した。配
向度は赤道線上に現われるポリエチレン結晶の(110
)面反射をディフラクトメーターで計測し反射強度分布
を求めた。計算は前述の呉らの方法に従った。この様に
して求めた配向度は0.955であった。
Measurement of degree of orientation by X-ray diffraction The fibers were wound around a Phillips holder 10 to 20 times, one side was cut off, and the fibers were bundled and used for measurement. The degree of orientation is (110
) The surface reflection was measured with a diffractometer and the reflection intensity distribution was determined. The calculations followed the method of Wu et al. described above. The degree of orientation determined in this way was 0.955.

偏光顕微鏡による結晶融解の観察 観察試料は、幅約211I+1、厚さ約0.5mのガラ
ス板に繊維試料巻きつけ両端を固定することにより調製
した。次いで観察試料をホットステージ(メトラ社製、
モデルPF20  )上でlO℃/重量nの昇温速度で
昇温しながら偏光下、顕微鏡にて観察した6本実施例で
調製したシラン架橋延伸超高分子量ポリエチレン繊維は
200℃では結晶の存在が確認できる(第10図)が2
20℃では暗視野となり、結晶の融解が確認され念。
Observation of crystal melting using a polarizing microscope A sample for observation was prepared by winding a fiber sample around a glass plate with a width of about 211I+1 and a thickness of about 0.5 m and fixing both ends. Next, the observation sample was placed on a hot stage (manufactured by Metra,
The silane-crosslinked stretched ultra-high molecular weight polyethylene fiber prepared in this example was observed under a microscope under polarized light while heating at a temperature increase rate of 10°C/weight n on a model PF20). It can be confirmed (Figure 10) that 2
At 20°C, it becomes a dark field, confirming the melting of the crystal.

比較例1゜ 超高分子量ポリエチレン延伸繊維の調製超高分子量ポリ
エチレン(極限粘度〔η〕= 8.20 >の粉末:1
00重量部と実施例1に記載のパラフィンワックスの粉
末:320重量部とを実施例1に記載の方法で紡糸した
。このときドラフト比は25倍で未延伸糸繊度は100
0デニールであり念。次いで同様に延伸し延伸繊維を得
た。得られた繊維の物性を賢4に示す。
Comparative Example 1 Preparation of drawn ultra-high molecular weight polyethylene fiber Ultra-high molecular weight polyethylene (intrinsic viscosity [η] = 8.20 > powder: 1
00 parts by weight and 320 parts by weight of the paraffin wax powder described in Example 1 were spun by the method described in Example 1. At this time, the draft ratio is 25 times and the undrawn yarn fineness is 100.
Just in case it's 0 denier. Then, the fibers were drawn in the same manner to obtain drawn fibers. The physical properties of the obtained fibers are shown in Ken 4.

表 4 本繊維(試料−2)の融解特性曲線を第2図に示した。Table 4 The melting characteristic curve of this fiber (sample-2) is shown in FIG.

接着力は、実施例1のく接着性の評価〉の項に記載され
た方法で測定した。結果は実施例1と合せて第7図に示
した。クリープ特性は、実施例1のくクリープ特性の評
価〉の項に記載された方法で測定した。500 MPa
荷重での結果を第8図にまた破断荷重の30チ荷重での
結果を第9図に示した。
The adhesive strength was measured by the method described in the section ``Evaluation of Adhesion'' in Example 1. The results are shown in FIG. 7 together with Example 1. The creep properties were measured by the method described in the section "Evaluation of creep properties" in Example 1. 500MPa
The results under load are shown in FIG. 8, and the results under a breaking load of 30 inches are shown in FIG. 9.

また、実施例1に記載の方法と同様に行なったクリープ
特性の測定(雰囲気温度=70℃、荷重=室温での破断
荷重の50チの荷重)では、荷重直後に試料が破断した
。図2に1回目昇温時のDSC融解特性曲線を示し次、
二回目昇温時の主融解ピークとして求められる本来の結
晶融解温度Tmは132.2℃でTp に基づく融解熱
量の全結晶融解熱量に対する割り合いおよびTplに基
づく融解熱量の全結晶融解熱量に対する割合いは、それ
ぞれ32.1チ、と1.7チであっな。
In addition, in the measurement of creep properties conducted in the same manner as in Example 1 (ambient temperature = 70°C, load = 50 inches of breaking load at room temperature), the sample broke immediately after loading. Figure 2 shows the DSC melting characteristic curve during the first temperature increase.
The original crystal melting temperature Tm, which is determined as the main melting peak during the second heating, is 132.2°C, and the ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on Tpl to the total heat of fusion of the crystals Well, they are 32.1 inches and 1.7 inches, respectively.

熱履歴後の強度保持率の測定は、実施例1の〈熱履歴後
の強度保持率〉の項に記載した方法で行なったがオープ
ン温度180℃で放置時間10分を待念ずして完全に融
解し念、偏光顕微鏡下での結晶融解の観察は、同様に実
施例1の〈偏光顕微鏡による結晶融解の観察〉の項に記
載された方法で行なった。150℃では結晶が観察(第
11図)されたが、180℃付近で暗視野となった。
The strength retention rate after heat history was measured using the method described in the section ``Strength retention rate after heat history'' in Example 1. In order to ensure that the crystals melted, observation of crystal melting under a polarizing microscope was carried out in the same manner as described in the section of Example 1, <Observation of crystal melting using a polarizing microscope>. Crystals were observed at 150°C (Fig. 11), but a dark field appeared at around 180°C.

比較例2゜ シラン架橋延伸ポリエチレン繊維の調製ポリエチレン(
密度: 0.955 fl/cm 、極限粘度〔7り 
= 2.30 dllfり I)粉末2100重量部と
実施例1に記載されたビニルトリメトキシシラン、ノ母
−オキサイドおよび・々ラフインワックス粉末をそれぞ
れ10重量部、0.11重量部、および33重量部を均
一に混合し、この後実施例1に記載の方法でIIIII
+のダイより紡糸し、1800デニールの未延伸繊維を
得た。この時のグラフト率はSii景チで求めたところ
1.23 wtチであった。引き続き実施例1の記載の
方法で延伸しそして触媒を含浸し、繊維化し、架橋を完
了させた。得られた偵維物性を表5に示した。
Comparative Example 2 Preparation of silane cross-linked stretched polyethylene fiber
Density: 0.955 fl/cm, intrinsic viscosity [7ri]
= 2.30 dllf I) 2100 parts by weight of the powder and 10 parts by weight, 0.11 parts by weight, and 33 parts by weight of the vinyltrimethoxysilane, mother oxide and rough-in wax powders described in Example 1, respectively. Parts by weight were mixed uniformly, and then III was prepared by the method described in Example 1.
The fibers were spun using a + die to obtain undrawn fibers of 1800 denier. The grafting rate at this time was 1.23 wt as determined by Sii Keichi. It was then stretched as described in Example 1 and impregnated with a catalyst to form fibers and complete the crosslinking. The obtained fiber properties are shown in Table 5.

表5 熱履歴後の強度保持率の測定を実施例1のく熱履歴後の
強度保持率〉の項に記載された方法で行った。結果を表
6に示した。
Table 5 The strength retention rate after heat history was measured by the method described in the section ``Strength retention rate after heat history'' in Example 1. The results are shown in Table 6.

浅 6 なお、180℃の履歴には放置時間10分間を待たずし
て融解した。実施例1の試料−1に比較して分子量が低
い喪め熱履歴前の強度も低く、熱履歴後の強度保持率に
も劣る。
Shallow 6 In addition, when the temperature was 180°C, it melted even after being left for 10 minutes. Compared to Sample-1 of Example 1, the molecular weight is lower, the strength before heat history is lower, and the strength retention rate after heat history is also inferior.

また、実施例1に記載された方法によシクリーf%性の
測定(雰囲気温度=70℃、荷重に室温での破断荷重の
50優に相当する荷重)を行なったところ試料は荷重直
後に破断した。図12に1回目昇温時のυSC融解特性
曲#lを示した。2回目昇温時の主融解ピークとして求
められる本来の結晶融解温度Tmは128.0℃で’r
pに基づくMi解熱斂の全結晶融解熱量に対する割合お
よびTptに基づく融解熱量の全結晶融解熱量に対する
割合はそれぞれ47%、と9.5%であっ念。また実施
例1と同様、雰囲気温度70℃において室温での破断荷
重の50%に相当する荷重でクリープ試験を行ったとこ
ろ荷重直後に破断した。
In addition, when the cyclic f% property was measured by the method described in Example 1 (ambient temperature = 70°C, load equivalent to more than 50% of the breaking load at room temperature), the sample broke immediately after loading. did. FIG. 12 shows the υSC melting characteristic curve #l during the first temperature rise. The original crystal melting temperature Tm, which is determined as the main melting peak during the second heating, is 128.0°C.
The ratio of the heat of fusion of Mi based on p to the total heat of fusion of the crystals and the ratio of the heat of fusion based on Tpt to the total heat of fusion of the crystals are 47% and 9.5%, respectively. Similarly to Example 1, a creep test was conducted at an ambient temperature of 70° C. with a load equivalent to 50% of the breaking load at room temperature, and the sample broke immediately after the load was applied.

比較例3゜ ノe−オキサイドによる架橋延伸繊維の調製比較例1に
記載した方法で調製した未延伸糸から過剰のへキサンを
用いてノ+ラフインワックスを抽出した。未延伸糸は減
圧下、室温にて乾燥した。
Comparative Example 3 Preparation of Cross-linked Stretched Fiber with E-Oxide From the undrawn yarn prepared by the method described in Comparative Example 1, Rough-in wax was extracted using excess hexane. The undrawn yarn was dried at room temperature under reduced pressure.

引き続きジクミルパーオキサイド(三井石油化学工業製
、商品名三片DCP)の20重量%アセトン浴液に含浸
し再び減圧下、室温にて乾燥し未延伸糸とした。重量法
によシ、測定したジクミルパーオキサイドの含有量は0
.51重jt%であった。
Subsequently, the yarn was impregnated with dicumyl peroxide (manufactured by Mitsui Petrochemical Industries, Ltd., trade name: Mikata DCP) in a 20% by weight acetone bath and dried again at room temperature under reduced pressure to obtain an undrawn yarn. The content of dicumyl peroxide measured by the gravimetric method was 0.
.. It was 51 weight jt%.

引き続き3台のがガツトロールを用いて赤外線ゴールド
イメージ炉(真空理工株式会社製: RHL−E461
)を延伸槽として二段延伸を行なった。
Subsequently, three Gatsutrols were used to infrared gold image furnace (manufactured by Shinku Riko Co., Ltd.: RHL-E461).
) was used as a stretching tank to carry out two-stage stretching.

このとき第一延伸槽内温度は110℃、第二延伸槽温度
は145℃であり、檜の有効長はそれぞれ42創であっ
た。延伸に際しては第1がプツトロールの回転速度を0
.5 m/m1nとして第3ゴデツト・ロールの回転速
度を調整することにより所望の延伸比の繊維を得た。又
、第2がガツトロールの回転速度は安定延伸可能な範囲
で適宜選択した。但し延伸比は第1がガツトロールと第
3ゴrツトロールとの回転比より計算して求めた。得ら
れた繊維の物性を表7に示した。
At this time, the temperature inside the first drawing tank was 110°C, the temperature in the second drawing tank was 145°C, and the effective length of each cypress was 42 holes. During stretching, the first step is to set the rotational speed of the puttrol to 0.
.. Fibers with the desired draw ratio were obtained by adjusting the rotational speed of the third godet roll as 5 m/m1n. Second, the rotational speed of the Guttrol was appropriately selected within a range that allowed for stable stretching. However, the stretching ratio was calculated from the rotation ratio of the first Gatsutrol and the third Gatsutrol. Table 7 shows the physical properties of the obtained fibers.

表7 又、二回目昇温時の主融解ピークとして求められる本来
の結晶融解温度Tmは133.1℃で、Tpに基づく融
解熱量の全結晶融解熱量に対する割合およびTpsに基
づく融解熱量の全結晶融解熱量に対する割合はそれぞれ
73%と2%であった。熱履歴後の強度保持率の測定は
実施例1のく熱履歴後の強度保持率〉の項に記載された
方法で行なった。180℃で10分間の履歴では繊維形
状は留めたが繊維は溶断した。
Table 7 In addition, the original crystal melting temperature Tm determined as the main melting peak during the second temperature rise is 133.1°C, and the ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the heat of fusion based on Tps to the total crystal The proportions to the heat of fusion were 73% and 2%, respectively. The strength retention rate after heat history was measured by the method described in the section ``Strength retention rate after heat history'' in Example 1. When heated at 180° C. for 10 minutes, the fiber shape remained, but the fibers were fused.

実施例2、 超高分子量ポリエチレン(極限粘度(η〕=8.20d
i/11 )の粉末二100重量部に対してビニルトリ
ス(メトキシエトキシ)シラン(信越化学&&):10
重量部及び2.5−ジメチル−2,5−ジ(tart−
ブチルイルオキシノヘキサン(日本油脂製:商品名、〕
〕臂−ヘキサ25B:0.111i:置部を均一に配合
した後、超高分子量ポリエチレン100重量部に対して
、パラフィンワックスの粉末(日本精蝋製:商品名、ル
バックス1266JI点=69℃):235Xit部を
添加混合し混合物を得た。次いで該混合物をスクリュ一
式押出機(スクリュー径=20諷φ、L/D=25.)
を用いて、設定温度250℃で溶融混練及びグラフト化
を行ない、引き続いて実施例1記載の方法で紡糸、延伸
、架橋を行ない、シラン架橋延伸超高分子量ポリエチレ
ン繊維を得た。
Example 2, ultra-high molecular weight polyethylene (intrinsic viscosity (η) = 8.20d
Vinyltris(methoxyethoxy)silane (Shin-Etsu Chemical &&): 10 parts by weight of powder 2 of i/11)
Parts by weight and 2,5-dimethyl-2,5-di(tart-
Butylyloxynohexane (manufactured by NOF: trade name)
] Arm-Hexa 25B: 0.111i: After uniformly blending the base part, paraffin wax powder (manufactured by Nippon Seiro Co., Ltd.: trade name, Luvax 1266 JI point = 69°C) is added to 100 parts by weight of ultra-high molecular weight polyethylene. :235Xit parts were added and mixed to obtain a mixture. Then, the mixture was passed through a screw extruder (screw diameter = 20 mm, L/D = 25 mm).
Melt-kneading and grafting were performed at a set temperature of 250° C., followed by spinning, stretching, and crosslinking by the method described in Example 1 to obtain silane crosslinked stretched ultra-high molecular weight polyethylene fibers.

この様にして得られた繊維の物性を表8に示す。Table 8 shows the physical properties of the fiber thus obtained.

表8 又、二回目昇温時の土蔵ビークとして求められる超高分
子量ポリエチレン本来の結晶融解温度Tmは132.I
CでありTpに基づく融解熱量の全結晶融解熱量に対す
る割合いおよびTptに基づく融解熱量の全結晶融解熱
量に対する割合はそれぞれ59%と11チであった。こ
のときTp2は148.1℃でめシ、TPsの主たるも
のは170.5℃でめった。また第1回目昇温時の融解
特性曲線を第13図に示す。実施例1に記載された方法
で測定したシラングラフ)i(8i重量%)、グル分率
、及び引張特性保持率を表9,10に示す。
Table 8 In addition, the original crystal melting temperature Tm of ultra-high molecular weight polyethylene, which is determined as the Dozo beak during the second temperature rise, is 132. I
C, the ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on Tpt to the total heat of fusion of the crystals were 59% and 11%, respectively. At this time, Tp2 was removed at 148.1°C, and the main TPs were removed at 170.5°C. Furthermore, the melting characteristic curve at the first temperature increase is shown in FIG. Tables 9 and 10 show the silane graph) i (8i weight %), the glue fraction, and the tensile property retention rate measured by the method described in Example 1.

表9 表10 また、実施例1と同様、雰囲気温度70℃において室温
での破断荷重の50%に相当する荷重でクリープ試験を
行なった。荷重直後から1分、2分、および3分後の伸
びを表11に示した。
Table 9 Table 10 Also, as in Example 1, a creep test was conducted at an ambient temperature of 70° C. with a load equivalent to 50% of the breaking load at room temperature. Table 11 shows the elongation 1 minute, 2 minutes, and 3 minutes after loading.

表11 試 料  時間(分)  伸 び(チ)試料−2110
,8 212,6 313,8 実施例1の方法で求めた配向度は0.950でおった。
Table 11 Sample Time (min) Elongation (H) Sample-2110
,8 212,6 313,8 The degree of orientation determined by the method of Example 1 was 0.950.

実施例3゜ 超高分子量ポリエチレン(極限粘度〔η) = 15.
5dv11 )の粉末=100重量部に対してビニルト
リエトキシシラン(信越化学製):3重量部及び2.5
−ジメチル−2,5−ジ(tert−ブチルノぐ一オキ
シ)ヘキサン(日本油脂製:商品名、パーへキサ25B
):0.1重量部を均一に配合した後、超高分子量ポリ
エチレン100重量部に対して、ノにラフインワックス
の粉末(日本S蝋製:商品名、ルバックス1266、融
点=69℃):400重量部を添加混合し混合物を得た
。次いで該混合物をスクリュ一式押出機(スクリュー径
=20鰭φ、L/D=25)を用いて、設定温度250
℃で溶融混練及びグラフト化を行ない、引き続いて実施
例1記載の方法に準じて紡糸、延伸、架橋を行ない、シ
ラン架橋延伸超高分子量ポリエチレン繊維を得た。この
様にして得られた繊維の物性な衣12に示す。
Example 3 Ultra-high molecular weight polyethylene (limiting viscosity [η) = 15.
5dv11) powder = 100 parts by weight, vinyltriethoxysilane (manufactured by Shin-Etsu Chemical): 3 parts by weight and 2.5 parts by weight
-Dimethyl-2,5-di(tert-butyloxy)hexane (manufactured by NOF: trade name, Perhexa 25B
): After uniformly blending 0.1 part by weight with 100 parts by weight of ultra-high molecular weight polyethylene, powder of noni rough-in wax (manufactured by Nippon Suro: trade name, Luvax 1266, melting point = 69°C): 400 parts by weight were added and mixed to obtain a mixture. Next, the mixture was heated to a set temperature of 250 using a screw extruder (screw diameter = 20 fins φ, L/D = 25).
Melt-kneading and grafting were carried out at 0.degree. C., followed by spinning, drawing and crosslinking according to the method described in Example 1 to obtain silane crosslinked drawn ultra-high molecular weight polyethylene fibers. The physical properties of the fiber thus obtained are shown in Figure 12.

表12 試料−617,6デ=−#16.0倍   2.00 
GP &弾性率  伸 び 50.88GPa   5.02 % 又、二回目昇温時の主融解ピークとして求められる超高
分子*ysvエチレン本米の結晶融解温度Tmは133
.7℃でろD Tpに基づく融解熱量の全結晶融解熱量
に対する割合およびTpsに基づく融解熱量の全結晶融
解熱量に対する割合はそれぞれ、64,7%、と12.
4%であった。このときT?は152.2℃であり、T
p□の主たるものは181.4℃であった。また第1回
目昇温時のDSC融解特性曲線を第14図に示す。実施
例1に記載された方法で測定したシランゲラスト量(S
t重量%)、グル分率、及び引張特性保持率を表13゜
14に示す。
Table 12 Sample -617.6 de=-#16.0 times 2.00
GP & elastic modulus elongation 50.88 GPa 5.02 % In addition, the crystal melting temperature Tm of ultrapolymer*ysv ethylene rice, which is determined as the main melting peak during the second temperature rise, is 133
.. The ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on Tps to the total heat of fusion of the crystals are 64 and 12%, respectively.
It was 4%. T at this time? is 152.2°C, and T
The main value of p□ was 181.4°C. Further, the DSC melting characteristic curve during the first temperature increase is shown in FIG. The amount of silanelast (S) measured by the method described in Example 1
Tables 13 and 14 show the t weight %), the glue fraction, and the tensile property retention rate.

表13 試 料   シランゲラスト量   グル分率試料−6
0,068%     71.6チ表14 (保持率%)   (保持率チ) 24.18       6.66 (48,0チ)    (133チ) また実施例1と同様、雰囲気温度70℃において室温で
の破断荷重の50%に相当する荷重でクリープ試験を行
なった。荷重直後から1分、2分、および3分後の伸び
を表15に示した。
Table 13 Sample silanelast amount Glue fraction sample-6
0,068% 71.6chi Table 14 (Retention rate %) (Retention rate Chi) 24.18 6.66 (48.0chi) (133chi) Also, as in Example 1, at room temperature at an ambient temperature of 70°C A creep test was conducted at a load equivalent to 50% of the breaking load. Table 15 shows the elongation 1 minute, 2 minutes, and 3 minutes after loading.

表15 試料−219,8 211,0 312,0 実施例1の方法で求めた配向度は0.964であった。Table 15 Sample-219,8 211,0 312,0 The degree of orientation determined by the method of Example 1 was 0.964.

実施例4゜ 超高分子量ポリエチレン(極限粘度〔η〕= 8.20
di/i )の粉末:100重量部に対してビニル) 
IJエトキシシラン(+i越化学製):5重xh及びジ
クミルノゼーオキサイド(日本油脂裂:商品名、パーク
ミルp):o、os重蓋部を均一に配合した後、超高分
子量ポリエチレン100重量部に対して、・ぞラフイン
ワックスの粉末(日本稍蝋製:商品名、ルバックス12
66、融点=69℃):400重を部を添加混合して混
合物を得た。次いで該混合物をスクリュ一式押出機(ス
クリュー径= 20 mφ、L/[)= 25 )を用
いて、設定温度230℃で溶融混練及びグラフト化を行
ない、引き続いて実施例1記載の方法に準じて紡糸、延
伸、架橋を行ない、シラン架橋延伸超高分子量ポリエチ
レン繊維を得た。この様にして得られた繊維の物性を表
16に示す。
Example 4 Ultra-high molecular weight polyethylene (intrinsic viscosity [η] = 8.20
di/i) powder: 100 parts by weight of vinyl)
After uniformly blending IJ ethoxysilane (+i Etsu Kagaku): 5-weight xh and dicumyl nose oxide (NOF Hibi: trade name, Permil P): o, os heavy lid part, 100 parts by weight of ultra-high molecular weight polyethylene. Against this, ・Zorafuin Wax powder (manufactured by Nippon Kenwa: product name, Luvax 12
66, melting point = 69°C): 400 parts by weight were added and mixed to obtain a mixture. Next, the mixture was melt-kneaded and grafted using a single-screw extruder (screw diameter = 20 mφ, L/[) = 25] at a set temperature of 230°C, and subsequently, according to the method described in Example 1. Spinning, drawing, and crosslinking were performed to obtain silane crosslinked drawn ultra-high molecular weight polyethylene fibers. Table 16 shows the physical properties of the fibers obtained in this way.

表16 試 料  繊 度  延伸倍率  強 度デニール  
   倍     GPa試料−79,111,192
,14 弾性率  伸 び GPa     チ 43.14  5.85 又、示差走査熱量計にて二回目昇温時の王融解ピークと
して求められる超高分子量ポリエチレン本来の結晶融解
温度Tmは、133.2℃でめりTpに基づく融解熱量
の全結晶融解熱量に対する割合、およびTPtに基づく
融解熱量の全結晶融解熱量に対する割合はそれぞれ71
.5%と19.0%でめった。このと@Tp*は150
.3℃であり、TPtの主たるものは234.7℃であ
った。また第1回目昇温時のDSC融解特性曲線を第1
5図に示す。実施例1に記載された方法で測定したシラ
ングラフト量(Si重量%)、グル分率、及び引張特性
保持率を表17.18に示す。
Table 16 Sample Fineness Stretching ratio Strength denier
times GPa sample-79,111,192
, 14 Elastic modulus Elongation GPa 43.14 5.85 Furthermore, the original crystal melting temperature Tm of ultra-high molecular weight polyethylene, which is determined as the King's melting peak during the second temperature rise using a differential scanning calorimeter, is 133.2°C. The ratio of the heat of fusion based on Demeri Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on TPt to the total heat of fusion of the crystals are each 71
.. 5% and 19.0% were rare. This and @Tp* are 150
.. 3°C, and the main TPt was 234.7°C. In addition, the DSC melting characteristic curve during the first temperature increase was
It is shown in Figure 5. The silane graft amount (Si weight %), the glue fraction, and the tensile property retention rate measured by the method described in Example 1 are shown in Table 17.18.

表17 試 料   シラングラフト量   グル分8試料−7
0,044%    94.9%−表 18 試 料   オーブン温度   放置時間’Cmin 試料−7180℃     10 160℃        10 (保持率チノ(保持″4%)  (保持″4%)1.4
4      24.14     7.301.53
         28.81       6.90
また実施例1と同様雰囲気温閾70℃に於いて室温での
破断荷重の50チに相当する荷重でクリープ試験を行な
った。荷重直後から1分、2分および3分後の伸びを表
19に示した。
Table 17 Sample Silang graft amount Glue portion 8 sample-7
0,044% 94.9% - Table 18 Sample Oven temperature Standing time 'Cmin Sample - 7180℃ 10 160℃ 10 (Retention rate Chino (Retention ``4%) (Retention ``4%) 1.4
4 24.14 7.301.53
28.81 6.90
Further, as in Example 1, a creep test was conducted at an ambient temperature threshold of 70° C. and a load equivalent to 50 inches of the breaking load at room temperature. Table 19 shows the elongation 1 minute, 2 minutes and 3 minutes after loading.

試 料   時間(分)   伸び(%)試料−711
1,0チ 2      12.0% 3      13.0チ また実施例1の方法で求めた配向度は0.954であっ
た。
Sample Time (min) Elongation (%) Sample-711
The degree of orientation determined by the method of Example 1 was 0.954.

実施例5゜ 超高分子量ポリエチレン(極限粘度〔η)=8.20d
i/i )の粉末:100重量部に対してビニルトリエ
トキシシラン(信越化学製)=5重量部及び2.5−ツ
メチル−2,5−ジ(tart−ブチルパーオキシ)ヘ
キシン−3(日本油脂製:商品名。
Example 5 Ultra-high molecular weight polyethylene (intrinsic viscosity [η) = 8.20d
i/i) powder: 100 parts by weight, vinyltriethoxysilane (manufactured by Shin-Etsu Chemical) = 5 parts by weight and 2.5-methyl-2,5-di(tart-butylperoxy)hexyne-3 (Japan) Made of oil: Product name.

パーペキン725B):0.05重量部を均一に配合し
た後、超高分子量ポリエチレン100重量部に対して、
ノにラフインワックスの粉末(日本a蝋製:商品名、ル
バックス1266、融点=69℃〕:400重量部を添
加混合し混合物を得た。次いで該混合物をスクリュ一式
押出機(スク’Lx−径−20waφ、L/D=25)
を用いて設定温度200℃で溶融混練及びグラフト化を
行ない、引き続いて実施例1記載の方法に準じて紡糸、
延伸、架橋を行ない、シラ/架橋延伸超高分子量ポリエ
チレン繊維を得た。この様にして得られた繊維の物性を
表20に示す。
Perpekin 725B): After uniformly blending 0.05 parts by weight, with respect to 100 parts by weight of ultra-high molecular weight polyethylene,
400 parts by weight of rough-in wax powder (manufactured by Nippon A-Ro Co., Ltd.: trade name, Luvax 1266, melting point = 69°C) was added and mixed to obtain a mixture.Then, the mixture was passed through a screw extruder (Screw Lx- Diameter -20waφ, L/D=25)
Melt kneading and grafting were carried out at a set temperature of 200°C using a
Stretching and crosslinking were performed to obtain a silica/crosslinked stretched ultra-high molecular weight polyethylene fiber. Table 20 shows the physical properties of the fiber thus obtained.

表 20 試 料  稙 度  延伸倍率  強 度デニール  
   倍      GPa試料−86,416,74
3,34 弾性軍  伸 び GPa    % 74.32  5.87 又、二回目昇温時の主融解ピークとして求められる超高
分子量ポリエチレン本来の結晶融解温度Tmは、133
.6℃でhり、Tpに基づく融解熱量の全結晶融解熱量
に対する割合およびTplに基づく融解熱量の全結晶融
解熱量に対する割合はそれぞれ76.2%と6.2%で
あった。このときT?は153.1℃であった。またT
ptの主たるピークは認められなかったがTm + 3
5℃から高温側に渡ったTPzのショルダーピークが認
められた。−回目昇温時の吸熱特性曲線を第16図に示
す。
Table 20 Sample Consistency Stretching ratio Strength denier
times GPa sample-86,416,74
3,34 Elastic elongation GPa % 74.32 5.87 In addition, the original crystal melting temperature Tm of ultra-high molecular weight polyethylene, which is determined as the main melting peak during the second heating, is 133
.. The ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on Tpl to the total heat of fusion of the crystals were 76.2% and 6.2%, respectively. T at this time? was 153.1°C. Also T
Although no main peak of pt was observed, Tm + 3
A shoulder peak of TPz extending from 5°C to the high temperature side was observed. The endothermic characteristic curve at the -th temperature increase is shown in FIG.

実施例1に記載された方法で測定したシラングラフト量
、グル分率、及び引張特性保持率を表21.22に示す
The silane graft amount, glu fraction, and tensile property retention measured by the method described in Example 1 are shown in Table 21.22.

表21 試 料    シラングラフト量    グル分率試料
−80,013%     42.5チ表 22 温度 ℃m i n   (保持率%)弾性率GPa 
   伸びチ (保持率%)   (保持率チ) 49.11     5.82 また実施例1と同様、雰囲気温度70℃に於いて室温で
の破断荷重の50%に相当する荷重でクリーブ試験を行
なった。荷重直後から1分、2分及び3分後の伸びを表
23に示した。
Table 21 Sample Silang graft amount Glue fraction sample -80,013% 42.5chi Table 22 Temperature °C min (retention rate %) Elastic modulus GPa
Elongation Chi (retention rate %) (retention rate Chi) 49.11 5.82 Similarly to Example 1, a cleave test was conducted at an ambient temperature of 70°C with a load equivalent to 50% of the breaking load at room temperature. . Table 23 shows the elongation 1 minute, 2 minutes, and 3 minutes after loading.

表 23 試料    時間(分) 伸び(%) 試料−818,4 210,4 312,8 また実施例1の方法で求めた配向度は0.980であっ
た。
Table 23 Sample Time (min) Elongation (%) Sample -818,4 210,4 312,8 Also, the degree of orientation determined by the method of Example 1 was 0.980.

実施例6゜ 超高分子量ポリエチレン(極限粘度〔η〕=8.20d
l/i)の粉末:100重量部に対してビニルl−IJ
エトキシシラ/(信越化学製)=1重量部及び2.5−
ジメチル−2,5ジ(tart−プチルノぐ一オキシ)
ヘキシン−3(日本油脂製:商品名、パーヘキシン25
B):0.05重量部を均一に配合した後、超高分子量
ポリエチレン100重量部に対して、パラフィンワック
スの粉末(日木精蝋製:商品名、ルバックス1266、
融点=69℃)=400重量部を添加混合し混合物を得
た。次いで該混合物をスクリュ一式押出機(スクリュー
径=20wφ、し’D=25)を用いて設定温度230
℃で溶融混練及びグラフト化を行ない、引き続いて実施
例1記載の方法に準じて紡糸、延伸、架橋を行ない、シ
ラン架橋延伸超高分子量ポリエチレン繊維を得た。この
様にして得られた繊維の物性を表24に示す。
Example 6゜Ultra high molecular weight polyethylene (intrinsic viscosity [η]=8.20d
l/i) powder: 100 parts by weight of vinyl l-IJ
Ethoxysila/(manufactured by Shin-Etsu Chemical) = 1 part by weight and 2.5-
Dimethyl-2,5-di(tart-butyloxy)
Hexine-3 (Nippon Oil & Fats Co., Ltd.: trade name, Perhexine 25)
B): After uniformly blending 0.05 parts by weight, paraffin wax powder (manufactured by Hiki Seiro Co., Ltd., trade name, Luvax 1266,
Melting point = 69°C) = 400 parts by weight were added and mixed to obtain a mixture. Then, the mixture was heated to a set temperature of 230 using a screw extruder (screw diameter = 20 wφ, diameter = 25).
Melt-kneading and grafting were carried out at 0.degree. C., followed by spinning, drawing and crosslinking according to the method described in Example 1 to obtain silane crosslinked drawn ultra-high molecular weight polyethylene fibers. Table 24 shows the physical properties of the fiber thus obtained.

懺 24 試料−95,623,503,22 弾性率    伸 び GPa      % 80.26    4.75 又、示差走査熱量計にて二回目昇温時の主融解ピークと
して求められる超高分子量ポリエチレン本来の結晶融解
温度Tmは134.4℃であシTpに基づく融解熱量の
全融解熱量に対する割合、およびTplに基づく融解熱
量の全結晶融解熱量に対する割合はそれぞれ75.4%
と8,3%であった。
24 Sample-95,623,503,22 Elastic modulus Elongation GPa % 80.26 4.75 In addition, the original crystals of ultra-high molecular weight polyethylene determined as the main melting peak during the second temperature rise using a differential scanning calorimeter The melting temperature Tm is 134.4°C, and the ratio of the heat of fusion based on Tp to the total heat of fusion and the ratio of the heat of fusion based on Tpl to the total heat of fusion of the crystals are each 75.4%.
and 8.3%.

このときTp2は154.0℃であった。At this time, Tp2 was 154.0°C.

またTplの主たるピークは認められなかったがTm+
35℃から、高温側へ渡ってのTp2のショルダーピー
クが認められた。
Also, no main peak of Tpl was observed, but Tm+
A shoulder peak of Tp2 was observed from 35°C to the high temperature side.

実施例1に記載された方法で測定したシランクラフト量
(81重量%)、グル分率、及び引張特性保持率を表2
5.26に示す。
Table 2 shows the amount of silane craft (81% by weight), glue fraction, and tensile property retention measured by the method described in Example 1.
5.26.

表25 試料−90,015%      77.6%表26 弾性率GPa   伸びチ (保持率チ)  (保持率%) また、実施例1と同様、雰囲気温度ニア0℃に於いて室
温での破断荷重の50%に相当する荷重でクリープ試験
を行なった。荷重直後から1分、2分、および3分後の
伸びを表27に示した。
Table 25 Sample -90,015% 77.6%Table 26 Elastic modulus GPa Elongation Chi (Retention rate Chi) (Retention rate %) Also, as in Example 1, breaking load at room temperature at ambient temperature near 0°C A creep test was conducted under a load equivalent to 50% of the above. Table 27 shows the elongation 1 minute, 2 minutes, and 3 minutes after loading.

表27 試料−917,4 211,0 比較例4 超高分子量ポリエチレン(極限粘度〔η〕=8、20 
di/9 )の粉末=100重量部に対してパラフィン
ワックスの粉末(日本精蝋製:商品名ルバックス126
6、融点=69℃):235重量部を添加、混合して混
合物を得た。次いで該混合物をスクリュ一式押出機= 
20 mφ、VD=25)を用いて設定温度200℃で
溶融混練し、紡糸した。
Table 27 Sample-917.4 211.0 Comparative Example 4 Ultra-high molecular weight polyethylene (intrinsic viscosity [η] = 8,20
di/9) powder = 100 parts by weight, paraffin wax powder (manufactured by Nippon Seiro Co., Ltd., trade name Luvax 126)
6, melting point = 69° C.): 235 parts by weight were added and mixed to obtain a mixture. Then, the mixture was passed through a single screw extruder =
20 mφ, VD=25), the mixture was melt-kneaded and spun at a set temperature of 200°C.

紡糸時のドラフト比率は31倍で巻き取り速度は15m
/min、p製された未延伸糸は、約1000デニール
であった。引き続き該未延伸糸を置台のゴデツトロール
を用いてn−デカンを熱媒とした延伸槽で二段延伸を行
ない、さらにトリエチレングリコールを用いて合計三段
の延伸を行なった。
The draft ratio during spinning is 31 times and the winding speed is 15 m.
The undrawn yarn produced at /min, p had a denier of about 1000. Subsequently, the undrawn yarn was drawn in two stages in a drawing tank using n-decane as a heat medium using a godet roll on a stand, and further drawn in three stages in total using triethylene glycol.

このとき、第一延伸槽温度は110℃、第二延伸槽温度
は120℃、第三延伸温度は140℃であシそれぞれの
檜の有効長は50cW1であった。延伸に際しては、第
一ゴデツトロールの回転速度を0、5 m/min  
とし第四ゴデツトロールの回転速度を変更することによ
り、′所望の延伸比の繊維を得た。又、第二、第三がプ
ツトロールの回転速度は安定延伸可能な範囲で適宜選択
した。但し、延伸比ハ第一がプツトロールと第三ゴデツ
トロールとの回転比よシ計算して求めた。この様にして
得られた繊維の物性を表28に示す。
At this time, the first drawing tank temperature was 110°C, the second drawing tank temperature was 120°C, and the third drawing temperature was 140°C, and the effective length of each cypress was 50cW1. During stretching, the rotational speed of the first godet roll was set at 0.5 m/min.
By changing the rotational speed of the fourth godet roll, fibers with the desired draw ratio were obtained. Further, the rotational speeds of the second and third puttrols were appropriately selected within a range that allowed stable stretching. However, the first drawing ratio was calculated based on the rotation ratio of the puttrol and the third godetroll. Table 28 shows the physical properties of the fiber thus obtained.

表28 試料 繊度 延伸倍率 強度 デニール    倍     GPa 試料−108,025,02,29 弾性率   伸 び GPa     チ 82.0   4.1に 回目昇温時の主融解ピークをして求められる超高分子量
ポリエチレン本来の結晶融解温度Tmは133.1℃で
あシ、Tpに基づく融解熱量の全融解熱量に対する割合
およびTpIに基づく融解熱量の全結晶融解熱量に対す
る割合はそれぞれ72.0チと2.2S″11s6zた
。コ(7)ときTp2は155.0℃であった@実施例
1に記載され元方法で測定した引張特性保持y4を表2
9に示す。
Table 28 Sample Fineness Stretching ratio Strength denier times GPa Sample-108,025,02,29 Elasticity modulus Elongation GPa 82.0 Original ultra-high molecular weight polyethylene determined from the main melting peak at the second temperature increase in 4.1 The crystal melting temperature Tm is 133.1°C, and the ratio of the heat of fusion based on Tp to the total heat of fusion and the ratio of the heat of fusion based on TpI to the total heat of fusion of the crystals are 72.0 and 2.2S''11s6z, respectively. (7) Tp2 was 155.0°C @ Table 2 shows the tensile property retention y4 measured by the original method described in Example 1.
9.

表29 弾性率GPa     伸びチ (保持率%)   (保持率L) また、実施例1と同様な方法でクリープ試験(雰囲気温
度=70℃、荷重=室温での破断荷重の50%に相当す
る荷重)を行なったところ、荷重後50秒後に49%ま
で伸びて破断した。
Table 29 Elastic modulus GPa Elongation (retention rate %) (retention rate L) In addition, a creep test was performed in the same manner as in Example 1 (atmosphere temperature = 70°C, load = load equivalent to 50% of the breaking load at room temperature). ), and 50 seconds after loading, it elongated to 49% and broke.

比較例5 比較例2で用いたポリエチレンの粉末=100重量部と
実施例1に記載されたビニルトリメトキシシラン、とツ
クミルパーオキサイド(三片石油化学工業製、商品名三
片DCP)をそれぞれ1.0重量部および0.03重量
部を均一に混合し、この後20躍押出機によI)設定温
度185℃で造粒を行ないグラフト化ペレットを得た。
Comparative Example 5 100 parts by weight of the polyethylene powder used in Comparative Example 2, 1 part each of vinyltrimethoxysilane described in Example 1, and Tsucumyl peroxide (manufactured by Mikata Petrochemical Industries, trade name Mikata DCP) 0.0 part by weight and 0.03 part by weight were uniformly mixed, and then granulated using a 20-kilometer extruder at a set temperature of 185° C. to obtain grafted pellets.

次いで同様に比較例2で用いた。d リエチレン粉末=
100重量部にノブチル錫ノラウレート1.0重量部を
均一に混合し、上述の方法によシ設定温度190℃で造
粒を行ない、架橋触媒マスターパッチを得た。このあと
、グラフト化ペレット95貞量部と架橋触媒マスタ−パ
ッチ51jLt部とを均一に混合し、25瓢のスクリュ
ーを備えた紡糸機にて設定温度270℃にて紡糸を試み
た。しかしながらポリエチレンは紡糸機の中で固化し、
紡糸することはできなかった。
Then, it was used in Comparative Example 2 in the same manner. d Liethylene powder =
1.0 parts by weight of butyltinnolaurate was uniformly mixed with 100 parts by weight, and granulation was performed at a temperature of 190° C. according to the method described above to obtain a crosslinked catalyst master patch. Thereafter, 95 parts of the grafted pellets and 51 parts of the cross-linked catalyst master patch were uniformly mixed, and spinning was attempted at a set temperature of 270 DEG C. using a spinning machine equipped with a 25-inch screw. However, polyethylene solidifies in the spinning machine,
It could not be spun.

比較例6 比較例5で調製したシラングラフト化ペレットを用い、
メルトテンションテスター(東洋組機社製)にて紡糸し
グラフト化未延伸糸を得た。このときノズル径は2mで
設定温度は250℃でめった。このめと次の条件で延伸
し配向延伸pJ、維を得た。一対のコゝプツトロールを
用いてトリエチレングリコールを熱媒とした延伸槽にて
延伸を行なった。このとき延伸槽内温度は102℃で槽
の有効長は50cPnであった。送り出しゴデツトロー
ルの回転速度は0.5 m/minであり延伸倍率は実
施例1に記載の方法にて求めた。得られた延伸繊維は温
水にて洗浄し室温にて乾燥した。
Comparative Example 6 Using the silane grafted pellets prepared in Comparative Example 5,
A grafted undrawn yarn was obtained by spinning using a melt tension tester (manufactured by Toyo Kumiki Co., Ltd.). At this time, the nozzle diameter was 2 m and the set temperature was 250°C. The film was then stretched under the following conditions to obtain oriented and stretched pJ fibers. Stretching was carried out using a pair of cop rolls in a stretching tank using triethylene glycol as a heating medium. At this time, the temperature inside the drawing tank was 102°C, and the effective length of the tank was 50 cPn. The rotational speed of the delivery godet roll was 0.5 m/min, and the stretching ratio was determined by the method described in Example 1. The obtained drawn fibers were washed with warm water and dried at room temperature.

次に該延伸糸は70−gの減圧下で3011%のジプチ
ル錫ジラウレートのnデカン溶液の中に浸漬し水架橋触
媒を含浸させた。得られた水架橋触媒言浸グラフト化延
伸繊維はこのあと製水中で一昼夜放置して水架橋を完了
した。この様にして得られたシラ/架橋延伸ポリエチレ
ン繊維の物性な衣30に示す。
The drawn yarn was then immersed in a 3011% diptyltin dilaurate n-decane solution under a 70-g vacuum to impregnate the water crosslinking catalyst. The resulting water-crosslinked, catalytically immersed, grafted drawn fibers were then left in water for one day to complete water-crosslinking. The physical properties of the silica/crosslinked drawn polyethylene fiber thus obtained are shown in Cloth 30.

表30 又、示差走査熱量計にて二回目昇温時の王融解ピークと
して求められるポリエチレン本来の結晶融解温度Tmは
、131.5℃でろシ、Tpに基づく融解熱量の全結晶
融解熱量に対する割合およびTPtに基づく融解熱量の
全結晶融解熱量に対する割合いはそれぞれ6.4チと0
チであった。ポリエチレン本来の結晶融解温度Tmは、
架橋延伸配向の結果にもかかわらず高融点化することが
できずTPtの領域に主たるピークを持つことができな
かった。また’rplの領域には融解にともなうピーク
、ショルダーなどの痕跡を認めることはできなかった。
Table 30 In addition, the original crystal melting temperature Tm of polyethylene, which is determined as the king melting peak during the second temperature rise using a differential scanning calorimeter, is filtered at 131.5°C, and the ratio of the heat of fusion based on Tp to the total heat of fusion of the crystals and the ratio of the heat of fusion based on TPt to the total heat of fusion of the crystals is 6.4 and 0, respectively.
It was Chi. The original crystalline melting temperature Tm of polyethylene is
Despite the results of cross-linking and stretching, the melting point could not be increased and a main peak could not be obtained in the TPt region. Furthermore, no traces of peaks or shoulders due to melting could be observed in the 'rpl region.

また、二回目昇温に移るための再結晶化時の発熱特性曲
線、二回目昇温時の吸熱特性曲線(セカンドラン)にお
いて不発明成形体特有のサブピークは認められなかった
Furthermore, no subpeaks peculiar to the uninvented molded product were observed in the exothermic characteristic curve during recrystallization for the second temperature increase and the endothermic characteristic curve (second run) during the second temperature increase.

一回自昇温時の吸熱特性曲線、二回目昇温に移る過程で
の発熱特性曲線、そして二回目昇温時の吸熱特性曲線を
それぞれ第17図〜第19図に示す。第17図〜第19
図から明らかなように、本発明の延伸成形体に認められ
る主ピークに対する高温側の特徴あるピークもしくはシ
ョルダー等は本比較例の延伸成形体では全く認められな
かった。
The endothermic characteristic curve during the first self-heating, the exothermic characteristic curve during the process of moving to the second temperature increase, and the endothermic characteristic curve during the second temperature increase are shown in FIGS. 17 to 19, respectively. Figures 17 to 19
As is clear from the figure, the characteristic peak or shoulder on the high temperature side with respect to the main peak observed in the stretched molded product of the present invention was not observed at all in the stretched molded product of this comparative example.

実施例1の方法で求めたグル分率は3,5%でめった。The glu fraction determined by the method of Example 1 was 3.5%.

また該繊維は140℃で溶融し高温での引張特性の保持
現象を示さなかった。
Further, the fiber melted at 140° C. and did not exhibit retention of tensile properties at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料超高分子量ポリエチレンの融解特性曲線を
示す線図、 第2図は第1図の超高分子量ポリエチレ/の菰伸フィラ
メントの融解特性曲線を示す1図、第3図は第1図の超
高分子量ポリエチレンにシラングラフトを行った延伸フ
ィラメントの融解特性曲線を示す線図、 第4図は第1図の超高分子量ポリエチレンのシラングラ
フト及び延伸を行った後、架橋したフィラメントの融解
特性曲線を示す線図。 第5図は第3図の試料を2回目の昇温測定に付したとき
の融解特性曲線を示す線図、 第6図は第3図の試料を1回目の降温測定に付したとき
の結晶化特性曲線を示す線図、第7図は実施例1の試料
1及び試料2についての接着性試験において、埋込み長
さと引き抜き力との関係を示す線図、 第8図及び第9図は実施例1の試料1及び試料2につい
てのクリープ特性の測定結果を示す線図(第8図は荷重
500 MPa、第9図は室温で測定した破断荷重の3
0%の荷重で測定した結果である。)、 第10図は本発明(実施例1)の分子配向及びシラン架
橋超高分子量ポリエチレンフィラメントについて200
℃における結晶構造の存在を示す偏光顕微鏡写真、 第11図は比較例1の超高分子量ポリエチレンフィラメ
ントについて150℃における結晶構造の存在を示す偏
光顕微鏡写真、 第12図は比較例2の分子配向及びシラン架橋ポリエチ
レンフィラメントの融解特性面it示す線図、 第13図は実施例2の分子配向及びシラン架橋超高分子
量ポリエチレンフィラメントの融解特性曲線を示す線図
、 第14図は、実施例3の分子配向及びシラン架橋超高分
子量ポリエチレンフィラメントの融解特性曲線金示す線
図、 第15図は実施例4の分子配向及びシラン架橋[分子量
ポリエチレンフィラメントの融解特性曲線を示す線図、 第16図は実施例5の分子配向及びシラン架橋超高分子
1iyj?lJエチレンフイラメントの融解特性曲線を
示す線図、 第17図は比較例6の分子配向及びシラン架橋ポリエチ
レンフィラメントの融解特性曲線を示す線図、 第18図は第17図の試料の結晶化特性曲線を示す線図
、 第19図は第17図の試料を2回目の昇温測定に付した
ときの融解特性曲線を示す線図である。
Figure 1 is a diagram showing the melting characteristic curve of the raw material ultra-high molecular weight polyethylene, Figure 2 is a diagram showing the melting characteristic curve of the ultra-high molecular weight polyethylene drawn filament of Figure 1, and Figure 3 is a diagram showing the melting characteristic curve of the ultra-high molecular weight polyethylene of Figure 1. Figure 4 is a diagram showing the melting characteristic curve of the drawn filament obtained by grafting silane to the ultra-high molecular weight polyethylene shown in Fig. Diagram showing a characteristic curve. Figure 5 is a diagram showing the melting characteristic curve when the sample in Figure 3 is subjected to the second heating measurement. Figure 6 is a graph showing the crystallization characteristic curve when the sample in Figure 3 is subjected to the first temperature cooling measurement. Figure 7 is a diagram showing the relationship between embedding length and pull-out force in the adhesion test for Sample 1 and Sample 2 of Example 1. Diagrams showing the measurement results of creep properties for Sample 1 and Sample 2 of Example 1 (Figure 8 shows the load at 500 MPa, Figure 9 shows the breaking load at 300 MPa measured at room temperature).
These are the results measured with a load of 0%. ), Figure 10 shows the molecular orientation and silane cross-linked ultra-high molecular weight polyethylene filament of the present invention (Example 1).
11 is a polarized light micrograph showing the presence of a crystal structure at 150°C for the ultra-high molecular weight polyethylene filament of Comparative Example 1, and FIG. 12 is a polarized light micrograph showing the presence of a crystal structure in Comparative Example 2 Figure 13 is a diagram showing the melting characteristic curve of the silane-crosslinked polyethylene filament; Figure 13 is a diagram showing the molecular orientation of Example 2 and the melting characteristic curve of the silane-crosslinked ultra-high molecular weight polyethylene filament; Figure 14 is the molecule diagram of Example 3. Figure 15 is a diagram showing the melting characteristic curve of the molecular orientation and silane crosslinked ultra-high molecular weight polyethylene filament of Example 4. Figure 16 is a diagram showing the melting characteristic curve of the molecular orientation and silane crosslinked ultra-high molecular weight polyethylene filament of Example 4. 5 molecular orientation and silane crosslinked ultrapolymer 1iyj? Figure 17 is a diagram showing the melting characteristic curve of the lJ ethylene filament, Figure 17 is a diagram showing the melting characteristic curve of the molecular orientation and silane crosslinked polyethylene filament of Comparative Example 6, Figure 18 is the crystallization characteristic curve of the sample in Figure 17. FIG. 19 is a diagram showing the melting characteristic curve when the sample shown in FIG. 17 is subjected to a second heating measurement.

Claims (2)

【特許請求の範囲】[Claims] (1)分子配向及びシラン架橋された超高分子量ポリエ
チレンの成形体であって、 該成形体は拘束状態で示差走査熱量計で測定したとき、 二回目昇温時の主融解ピークとして求められる超高分子
量ポリエチレン本来の結晶融解温度(Tm)よりも少な
くとも10℃高い温度に少なくとも2個の結晶融解ピー
ク(Tp)を有すると共に、全融解熱量当りのこの結晶
融解ピーク(Tp)に基ずく融解熱量が50%以上及び
温度範囲Tm+35℃〜Tm+120℃における高温側
融解ピーク(Tp_1)に基づく融解熱量の総和が全融
解熱量当り5%以上であることを特徴とする成形体。
(1) A molded body of ultra-high molecular weight polyethylene that is molecularly oriented and cross-linked with silane, and the molded body has an ultra-high melting peak determined as the main melting peak at the second temperature increase when measured with a differential scanning calorimeter in a restrained state. It has at least two crystalline melting peaks (Tp) at a temperature at least 10°C higher than the original crystalline melting temperature (Tm) of high molecular weight polyethylene, and the heat of fusion based on these crystalline melting peaks (Tp) per total heat of fusion. is 50% or more and the sum of the heat of fusion based on the high temperature side melting peak (Tp_1) in the temperature range Tm+35°C to Tm+120°C is 5% or more based on the total heat of fusion.
(2)極限粘度〔η〕が5dl/g以上の超高分子量ポ
リエチレン、シラン化合物、ラジカル開始剤及び稀釈剤
を含む組成物を熱成形し、シラン化合物がグラフトされ
た超高分子量ポリエチレンの成形物を延伸し、延伸中又
は延伸後に該成形物中にシラノール縮合触媒を含浸させ
、次いで該延伸成形体を水分と接触させて架橋すること
を特徴とする分子配向及びシラン架橋超高分子量ポリエ
チレン成形体の製法。
(2) A molded product of ultra-high molecular weight polyethylene grafted with a silane compound by thermoforming a composition containing ultra-high molecular weight polyethylene with an intrinsic viscosity [η] of 5 dl/g or more, a silane compound, a radical initiator, and a diluent. A molecularly oriented and silane cross-linked ultra-high molecular weight polyethylene molded article, characterized in that the molded article is stretched, a silanol condensation catalyst is impregnated into the molded article during or after stretching, and the stretched molded article is then crosslinked by contacting with moisture. manufacturing method.
JP61237887A 1985-11-30 1986-10-08 Molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene molded article and method for producing the same Expired - Fee Related JP2618866B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US06/934,701 US4870136A (en) 1985-11-30 1986-11-25 Molecular oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof
CA000523712A CA1279167C (en) 1985-11-30 1986-11-25 Molecularly oriented, silane-crosslinked ultra-high- molecular-weight polyethylene molded article and process for preparation thereof
DE3650215T DE3650215T2 (en) 1985-11-30 1986-11-28 Oriented, ultra high molecular weight, silane crosslinked polyethylene product and process for its manufacture.
EP86309331A EP0229477B1 (en) 1985-11-30 1986-11-28 Molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof
KR1019870004126A KR950013728B1 (en) 1985-11-30 1987-04-27 Molecularly oriented, silane-cross linked ultra-high-molecular-weight polyethylene molded articla and process for preparation thereof
CN 87103889 CN1033048C (en) 1986-10-08 1987-05-29 Molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof
US07/181,698 US4902460A (en) 1985-11-30 1988-04-14 Process for preparation of molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26835685 1985-11-30
JP60-268356 1985-11-30

Publications (2)

Publication Number Publication Date
JPS62257415A true JPS62257415A (en) 1987-11-10
JP2618866B2 JP2618866B2 (en) 1997-06-11

Family

ID=17457386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237887A Expired - Fee Related JP2618866B2 (en) 1985-11-30 1986-10-08 Molecularly oriented and silane-crosslinked ultra-high molecular weight polyethylene molded article and method for producing the same

Country Status (2)

Country Link
JP (1) JP2618866B2 (en)
KR (1) KR950013728B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894281A (en) * 1987-05-29 1990-01-16 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced polymer molded body
JP2000117831A (en) * 1998-10-13 2000-04-25 Sekisui Chem Co Ltd Biaxially oriented polyolefin tube
JP2001176484A (en) * 1999-12-15 2001-06-29 Nitto Denko Corp Porous film
JP2002538327A (en) * 1999-03-04 2002-11-12 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel cord with polymer core
JP2014122202A (en) * 2012-11-20 2014-07-03 Mitsui Chemicals Inc Cosmetic composition
WO2019177089A1 (en) * 2018-03-15 2019-09-19 東洋紡株式会社 Polyethylene fibers, and product using same
WO2022092303A1 (en) * 2020-10-30 2022-05-05 三菱ケミカル株式会社 Molded article having reversible thermal stretchability, fiber product, actuator, and assist suit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982073B1 (en) * 2006-11-14 2010-09-13 주식회사 엘지화학 A novel silane compound, a method for the preparation thereof, a high density polyethylene having bridges derived from the novel silane compound, and a method for the preparation of the high density polyethylene
KR101857156B1 (en) * 2014-10-31 2018-05-11 주식회사 엘지화학 Crosslinked polyolefin separator and the method of preparing the same
CN105576172B (en) 2014-10-31 2018-06-22 Lg化学株式会社 cross-linked polyolefin diaphragm and preparation method thereof
KR101960926B1 (en) * 2015-06-11 2019-03-21 주식회사 엘지화학 Manufacturing method of closslinked polyolefine separator and separator manufactured by the same method
CN111108628B (en) 2018-06-12 2022-03-18 株式会社Lg化学 Crosslinked polyolefin separator and method for producing same
JP7271558B2 (en) 2018-09-11 2023-05-11 エルジー・ケム・リミテッド Crosslinked polyolefin separation membrane and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154872A (en) * 1976-06-18 1977-12-22 Furukawa Electric Co Ltd Method of manufacturing poly olefin orientated plastics with improved characteristics
JPS5520004A (en) * 1978-07-28 1980-02-13 Marukou Kogyo Kk Non-adjusting synchronous pulse regeneration circuit
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS575913A (en) * 1980-05-27 1982-01-12 Showa Electric Wire & Cable Co Ltd Crosslinked polyolefin fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154872A (en) * 1976-06-18 1977-12-22 Furukawa Electric Co Ltd Method of manufacturing poly olefin orientated plastics with improved characteristics
JPS5520004A (en) * 1978-07-28 1980-02-13 Marukou Kogyo Kk Non-adjusting synchronous pulse regeneration circuit
JPS5615408A (en) * 1979-06-27 1981-02-14 Stamicarbon Filament with high modulus and strength and production
JPS575913A (en) * 1980-05-27 1982-01-12 Showa Electric Wire & Cable Co Ltd Crosslinked polyolefin fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894281A (en) * 1987-05-29 1990-01-16 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced polymer molded body
JP2000117831A (en) * 1998-10-13 2000-04-25 Sekisui Chem Co Ltd Biaxially oriented polyolefin tube
JP4511646B2 (en) * 1998-10-13 2010-07-28 積水化学工業株式会社 Method for producing biaxially oriented polyolefin tube
JP2002538327A (en) * 1999-03-04 2002-11-12 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel cord with polymer core
JP4748856B2 (en) * 1999-03-04 2011-08-17 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel cord with polymer core
JP2001176484A (en) * 1999-12-15 2001-06-29 Nitto Denko Corp Porous film
JP4583532B2 (en) * 1999-12-15 2010-11-17 日東電工株式会社 Porous membrane
JP2014122202A (en) * 2012-11-20 2014-07-03 Mitsui Chemicals Inc Cosmetic composition
WO2019177089A1 (en) * 2018-03-15 2019-09-19 東洋紡株式会社 Polyethylene fibers, and product using same
JPWO2019177089A1 (en) * 2018-03-15 2021-02-25 東洋紡株式会社 Polyethylene fiber and products using it
WO2022092303A1 (en) * 2020-10-30 2022-05-05 三菱ケミカル株式会社 Molded article having reversible thermal stretchability, fiber product, actuator, and assist suit

Also Published As

Publication number Publication date
KR950013728B1 (en) 1995-11-15
JP2618866B2 (en) 1997-06-11
KR880005158A (en) 1988-06-28

Similar Documents

Publication Publication Date Title
US4902460A (en) Process for preparation of molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article
JP2541567B2 (en) Fiber material for reinforcement
EP0173572B1 (en) Graft-modified ultrahigh-molecular-weight polyethylene and process for producing same
JPS62257415A (en) Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof
JPH089804B2 (en) Polyolefin fiber with improved initial elongation and method for producing the same
US5115067A (en) Molecularly oriented molded body of ultra-high-molecular weight ethylene/α-olefin copolymer
JP2863644B2 (en) Method for producing stretched molded article of ultra-high molecular weight polypropylene
JPH0657055A (en) Ultra-high-molecular-weight polypropylene composition
JPS6395234A (en) Molded article of silane-crosslinked polyethylene having molecular orientation and production thereof
JPH086205B2 (en) Molecularly oriented molded product of ultra-high molecular weight ethylene / propylene copolymer
JPH0784034B2 (en) Fiber-reinforced resin molding and manufacturing method thereof
JPH089802B2 (en) Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer
JPH089803B2 (en) Molecularly oriented molded product of ultra high molecular weight ethylene-α-olefin copolymer
JPH05230732A (en) Multistage drawing method and drawing device for high molecular weight polyolefin
JPH086206B2 (en) Molecularly oriented molded product of ultra-high molecular weight ethylene / butene-1 copolymer
JP2865435B2 (en) Ultra-high molecular weight polypropylene stretch molded article and its use
JP3082955B2 (en) Flying object resistant material
JPH01256335A (en) Fishing line
JPH01162814A (en) Production of novel polyethylene fiber
JPH0251539A (en) Laminate with low dielectric characteristics
JPS63296928A (en) Fiber-reinforced resin molded body and its manufacture
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPH0253840A (en) Composition having low permittivity
JPH05140816A (en) Production of drawn high-molecular weight polyolefin
JPH01156508A (en) Novel polyethylene fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees