JP4583532B2 - Porous membrane - Google Patents
Porous membrane Download PDFInfo
- Publication number
- JP4583532B2 JP4583532B2 JP35586399A JP35586399A JP4583532B2 JP 4583532 B2 JP4583532 B2 JP 4583532B2 JP 35586399 A JP35586399 A JP 35586399A JP 35586399 A JP35586399 A JP 35586399A JP 4583532 B2 JP4583532 B2 JP 4583532B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- film
- weight
- temperature
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れた多孔質膜に関し、さらに詳しくは、電池の正極負極間に配置されてこれらを隔離させる電池用セパレータ等として好適に用いられる多孔質膜に関する。
【0002】
【従来の技術】
種々のタイプの電池が実用に供されているが、近年、電子機器のコードレス化等に対応するため、電池として軽量で、高起電力、高エネルギーを得られ、しかも自己放電が少ないリチウム電池が注目を集めている。これら正極負極の間には正極負極の短絡防止のためのセパレータが介在せしめられるが、このセパレータとしては正極負極間のイオン透過性を確保するため多数の微細孔が形成された多孔質膜が使用される。
【0003】
このような多孔質膜の製造方法として、従来、超高分子量ポリオレフィンや超高分子量ポリオレフィンとその他のポリオレフィン樹脂を溶媒中で加熱溶解させた液からゲル状シートをつくり、延伸前後で脱溶媒処理を行い、延伸処理し、残存溶媒を除去する方法が種々提案されている。
【0004】
このようにして得られた多孔質膜は、電池用セパレータとして好適に用いることができるが、近年、電池の高容量化に伴い、外部短絡や過充電といった電池の異常時などの過酷な状況でも孔が閉塞し、電流遮断を行ういわゆるシャットダウン機能を発現し、かつその状態をより高い温度まで保持し、破膜などによる内部短絡を生じない、耐熱性に優れた多孔質膜が求められている。
【0005】
耐熱性向上の方法として、例えば、ポリエチレンを電子線などで架橋処理した多孔質膜が報告されている。しかしながら、これらの多孔質膜は、繊維状のフィブリルとその周囲に存在するラメラからなる形態を有しており、該多孔質膜の骨格となっているフィブリルは、電子線照射による架橋処理により切断されやすいという欠点がある。従って、ポリエチレン等のポリオレフィン樹脂を含有する多孔質膜を電子線照射によって架橋処理すると、耐熱性は向上するものの、機械的強度が低下し、電池用セパレータとして好適に用いることができない。特に、電池用セパレータとして有用な分子量50万以上の超高分子量のポリエチレンを用いる場合、電子線照射による機械的強度の低下が著しくなる傾向がある。例えば、特開平10−7831号公報には、電子線照射により架橋点間分子量をコントロールしその分子量が20万以下の高強度、高耐熱性のポリエチレン多孔質膜が開示されている。該多孔質膜に使用するポリエチレンの分子量は、10万〜400万と記載されているが、超高分子量ポリエチレンの実施例は示されておらず、実際に超高分子量ポリエチレンを用いた場合、電子線照射による実用的な強度の低下が危惧される。
【0006】
【発明が解決しようとする課題】
本発明の目的は、高い機械的強度を保持しつつ、優れた耐熱性を有する多孔質膜を提供することにある。
【0007】
【課題を解決するための手段】
本発明の要旨は、超高分子量ポリオレフィン及びメルトフローレートが0.03〜10のシラン架橋性ポリオレフィンを用いて得られる多孔質膜であって、前記シラン架橋性ポリオレフィンが80〜110℃、湿度80%以上の雰囲気下で架橋されてなる、ゲル分率が40〜70%であることを特徴とする、電池用セパレータ用の多孔質膜に関する。
【0008】
【発明の実施の形態】
本発明において、超高分子量ポリオレフィンとは、その重量平均分子量が50万以上のポリオレフィンをいう。該重量平均分子量としては、好ましくは100万〜2000万、より好ましくは100万〜1500万である。
【0009】
本発明に用いることができる超高分子量ポリオレフィンとしては、従来より多孔質膜に用いられているものであればよく、特に限定はなく、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどのオレフィンの単独重合体、共重合体及びそれらの混合物などが挙げられ、これらの中では、得られる多孔質膜の高強度化の観点から、超高分子量ポリエチレン等の結晶性高分子樹脂が好ましく用いられる。
【0010】
超高分子量ポリオレフィンの多孔質膜中における含有量は、30〜70重量%が好ましく、40〜60重量%がより好ましい。
【0011】
本発明の多孔質膜は、さらに架橋能を有するポリオレフィンを含有する。本発明においては該架橋能を有するポリオレフィンを用いる点に一つの大きな特徴があり、かかる樹脂を含有する多孔質膜を架橋処理することにより、機械的強度を維持しながら、耐熱性にも優れた多孔質膜を製造することができる。
【0012】
架橋能を有するポリオレフィンとしては、前記超高分子量ポリオレフィンと相溶性の良い樹脂であれば、特に限定はなく、例えば、シラン架橋性ポリオレフィン、スチレン−ブタジエンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴムなどが挙げられる。中でも、電子線照射等による分子量の低下が生じず、水蒸気、温水等の穏やかな条件でも効率良く架橋可能な点から、シラン架橋性ポリエチレンが特に好ましい。該シラン架橋性ポリエチレンのシランからなるシラノール基は、水や水蒸気による脱水反応により、シロキサン結合を生成し架橋される。なお、該シラン架橋性ポリエチレンとしては、そのメルトフローレート(MFR)が0.03〜10のものが好ましい。これらの架橋能を有するポリオレフィンは、単独でまたは2種以上を組み合わせて使用してもよい。
【0013】
前記架橋能を有するポリオレフィンの多孔質膜中における含有量は、30〜70重量%、好ましくは40〜60重量%である。該含有量の下限は、多孔質膜の耐熱性を向上させる観点から、30重量%以上であり、その上限は、針貫通強度などの機械的強度を維持する観点から、70重量%以下が好ましい。
【0014】
以上のような構成を有する本発明の多孔質膜は、そのゲル分率が40〜70%のものである。本発明において、該ゲル分率は多孔質膜の架橋構造の尺度を示し、このゲル分率の値が高いほど高温にさらされた場合の多孔質膜の形状保持能が高いことを示す。本発明においては、該ゲル分率が40〜70%であることで、多孔質膜は高い機械的強度と優れた耐熱性を有するという効果が発現される。該ゲル分率は、好ましくは50〜70%であり、より好ましくは60〜70%である。該ゲル分率は、耐熱性の観点から、40%以上であり、機械的強度の観点から、70%以下である。なお、ここでゲル分率とは、後述の実施例に記載の方法により測定されたものをいう。
【0015】
次に、本発明による多孔質膜の製造方法について説明する。
本発明による多孔質膜の製造には、乾式成膜法、湿式成膜法など公知の方法を利用することができる。例えば、前記超高分子量ポリオレフィン、架橋能を有するポリオレフィン等からなる樹脂組成物を溶媒と混合し、溶解混練りしながら成形した後、圧延し、一軸方向以上に延伸し、溶媒を抽出除去し、架橋処理することにより製造することができる。
【0016】
溶媒としては、前記樹脂組成物の溶解性に優れたものであればよく、例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィンなどの脂肪族または環式の炭化水素、沸点がこれらに対応する鉱油留分などが挙げられ、流動パラフィンなどの脂環式炭化水素を多く含む不揮発性溶媒が好ましい。
【0017】
また、樹脂組成物と溶媒の混合割合は、溶媒の種類、該溶媒への樹脂組成物の溶解性等により一概には限定できないが、例えば、孔構造の微細性の観点から、樹脂組成物の混合割合が混合物の5〜30重量%であることが好ましく、8〜20重量%であることがより好ましい。例えば、多孔質膜としての機械的強度を発現する観点から、樹脂組成物の成分として重量平均分子量50万以上の結晶性超高分子量ポリオレフィンを用いる場合、該化合物の混合割合が混合物の5重量%以上であることが好ましい。また、溶媒の混合割合は、例えば、混合物の70〜95重量%が好ましく、80〜92重量%がより好ましい。
【0018】
樹脂組成物と溶媒の混合物を溶解混練りし、成形する工程は、公知の方法により行うことができ、例えば、ヘンシェルミキサー等で予め均一に分散させ、スラリー状にした混合溶液をバンバリーミキサー、ニーダーなどを用いてバッチ式で溶解混練りし、次いで、Tダイスなどを取り付けた押出機などを用いて成形したり、冷却された金属版に挟み込み急冷して急冷結晶化により成形してもよく、重量式フィーダーや液添ポンプを使用し、直接二軸押出機や連続混練機で溶解混練りを行い、混練機先端につけたTダイスで成形してもよい。なお、混練りは、適当な温度条件下であればよく、特に限定されないが、好ましくは100〜200℃である。
【0019】
このようにして得られる成形物の形としては、シート状、丸棒状、チューブ状等が挙げられる。中でもシート状及びチューブ状成形物の厚みとしては、特に限定されないが、3〜30mmが好ましく、5〜20mmがより好ましい。該厚みは、溶媒を抽出した後の膜(溶媒抽出膜)の強度を維持する観点から3mm以上が好ましく、圧延工程での薄膜化を効率よく行う観点から、30mm以下が好ましい。
【0020】
得られた成形物を圧延する工程は、ダブルベルトプレス機などのプレス法、所定の形状のダイスを使用するダイス内圧延法等により行うことができる。特に、チューブ状成形物にはチューブ状ダイスを適用でき、その際にダイスの引取方向から引っ張り縦横強度比を適宜調整して圧延を行うことが好ましい。
【0021】
このようにして得られる圧延処理したシート(圧延シート)の厚みは、特に限定されないが、例えば、0.2〜3mmが好ましく、0.2〜2mmがより好ましい。該厚みは、圧延処理による薄膜化が容易である観点から、0.2mm以上が好ましく、多孔質膜の生産性の観点から、3mm以下が好ましい。また、圧延処理温度は、特に限定されないが、前記混練物融点の−10〜−30℃が好ましい。圧延温度は、圧延処理による薄膜化を容易にする観点から混練物融点の−30℃以上が好ましく、電池用セパレータとして必要な機械的強度及び均質性を得る観点から、混練物融点の−10℃以下が好ましい。また、プレス法を用いた場合の全加圧時間は、特に限定されないが、1〜5分が好ましい。該時間は、所定の厚みの圧延シートを得る観点から、1分以上が好ましく、生産性に優れる観点から、5分以下が好ましい。
【0022】
前記圧延シートの延伸処理の方式としては、特に限定されるものではなく、通常のテンター法、ロール法、インフレーション法またはこれらの方法の組合せであってもよく、また、一軸延伸、二軸延伸などのいずれの方式をも適用することができる。また、二軸延伸の場合は、縦横同時延伸または逐次延伸のいずれかでもよい。延伸処理の温度は、100〜140℃であることが好ましい。
【0023】
脱溶媒処理は、延伸処理したシート(延伸シート)から溶媒を除去して微多孔構造を形成させる工程であり、例えば、延伸シートを溶剤で洗浄して残留する溶媒を除去することにより行うことができる。溶剤としては、ペンタン、ヘキサン、ヘプタン、デカンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類などの易揮発性溶剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。かかる溶剤を用いた洗浄方法は、特に限定されず、例えば、延伸シートを溶剤中に浸漬して溶媒を抽出する方法、溶剤を延伸シートにシャワーする方法などが挙げられる。
【0024】
次いで、脱溶媒処理した膜(脱溶媒膜)を得た後、該脱溶媒膜を構成する樹脂組成物を架橋処理して、多孔質膜を得ることができる。架橋には、使用している架橋能を有するポリオレフィンの種類に応じて、熱、電子線、放射線、水蒸気、温水等を用いることができる。これらの中では、水蒸気や温水を用いる架橋処理が、超高分子量ポリオレフィンのフィブリルの切断が生じず、高い機械的強度を保持し、耐熱性(高温での耐破膜性)を大きく向上させることができる点で好ましい。水蒸気を用いる架橋処理とは、例えば、恒温恒湿機中、湿度80%以上で行う処理が挙げられる。その条件は、ゲル分率を40〜70%となるよう適宜選択されるが、その温度は、80〜110℃が好ましい。該温度は、架橋が十分に進む観点から80℃以上が好ましく、適度な空孔率を保持する観点から、110℃以下が好ましい。また、温水を用いる架橋処理の温度は、70〜100℃が好ましい。これらの架橋処理の時間は、0.1〜2時間が好ましい。
【0025】
また、前記架橋処理工程に続いて、熱収縮の防止のため一般に多孔質膜をヒートセット(熱固定)してもよい。特に、本発明においては、前記のように熱を用いた架橋処理を行うことで、処理条件によっては実質的にヒートセットも可能となるが、ヒートセットとして不充分な場合には、熱収縮をよりよく防止するために、前記架橋処理後に、さらに加熱してヒートセットを行ってもよい。該ヒートセットする際の温度は、例えば、110〜140℃で0.5〜2時間程度行えばよい。
【0026】
以上のようにして得られる多孔質膜の厚みは、1〜60μmが好ましく、5〜45μmがより好ましい。その空孔率は、20〜80%が好ましく、25〜75%がより好ましい。
【0027】
多孔質膜の機械的強度として、例えば針貫通強度は、300gf/25μm以上が好ましく、400gf/25μm以上がより好ましい。その耐熱性として、耐熱温度は、160℃以上が好ましく、180℃以上がより好ましい。なお、針貫通強度、耐熱温度の測定方法としては、後述の実施例に記載の方法が挙げられる。
【0028】
本発明の多孔質膜は、以上のように機械的強度に優れるとともに高温での耐破膜性にも優れた電池用セパレータとして使用することで、電池の様々な大きさや用途に対してより安全性を向上させることが期待できる。
【0029】
【実施例】
以下、実施例及び比較例を挙げてさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、各種特性については下記要領にて測定を行った。
【0030】
(厚み)
1/10000mmシックネスゲージ及び多孔質膜の断面の1万倍走査電子顕微鏡写真から測定した。
【0031】
(空孔率)
得られた多孔質膜を60mmφのポンチで打抜き、1/1000mmシックネスゲージで厚みを求め、電子天秤にて重量を秤量し、下記の式で空孔率を求めた。尚、樹脂成分の密度は0.940g/mlとした。
空孔率(%)=空孔体積×100/膜全体積
【0032】
(ゲル分率)
得られた多孔質膜をソックスレー抽出器を用い、沸騰パラキシレン中で8時間抽出を行い、以下の式からゲル分率を求めた。
ゲル分率(%)=100×残存重量(g)/試料重量(g)
【0033】
(針貫通強度)
カトーテック(株)製ハンディー圧縮試験機「KES−G5」を用い、針は直径1.0mm、先端形状R0.5mm、ホルダー径11.3mm、押し込み速度2mm/秒にて測定し、膜が破れるまでの最大荷重を針貫通強度とした。値は全て25μmに換算した。
【0034】
(耐熱温度)
正極板(白金製、直径14mm)、負極板(白金製、直径16mm)の間に直径20mmの多孔質膜を挟んだ測定治具を5℃/minにて昇温し、短絡が生じた温度を正極板に接続した熱電対で測定し、該温度を耐熱温度とした。
【0035】
実施例1
重量平均分子量が200万の超高分子量ポリエチレン5重量%と、メルトフローレート0.5、密度0.942のシラン架橋性ポリエチレン(三菱化学(株)製、商品名:リンクロン、以下同じ)10重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)85重量%からなる溶液を、スラリー状に均一混合し、160℃で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)を用い、160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み35μm、空孔率60%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿度95%で4時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み26μmで空孔率42%の多孔質膜を得た。
【0036】
実施例2
重量平均分子量が200万の超高分子量ポリエチレン10重量%と、メルトフローレート0.5、密度0.942のシラン架橋性ポリエチレン20重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)70重量%からなる溶液を、スラリー状に均一混合し、160℃で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)で160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で、3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿度95%で4時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み28μmで空孔率40%の多孔質膜を得た。
【0037】
実施例3
重量平均分子量が200万の超高分子量ポリエチレン10重量%と、メルトフローレート0.5、密度0.942のシラン架橋性ポリエチレン20重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)70重量%からなる溶液を、スラリー状に均一混合し、160℃で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)で160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿度95%で1時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み26μmで空孔率43%の多孔質膜を得た。
【0038】
比較例1
重量平均分子量が200万の超高分子量ポリエチレン5重量%と、メルトフローレート0.6、密度0.964の高密度ポリエチレン10重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)85重量%からなる溶液を、スラリー状に均一混合し、160℃の温度で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)で160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機を用い、115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み35μm、空孔率60%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿度95%で4時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み26μmで空孔率42%の多孔質膜を得た。
【0039】
比較例2
重量平均分子量が200万の超高分子量ポリエチレン10重量%と、メルトフローレート0.5、密度0.942のシラン架橋性ポリエチレン20重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)70重量%からなる溶液を、スラリー状に均一混合し、160℃で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)を用い、160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度80℃、湿度95%で1時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み30μmで空孔率41%の多孔質膜を得た。
【0040】
比較例3
重量平均分子量が200万の超高分子量ポリエチレン2重量%と、メルトフローレート0.5、密度0.942のシラン架橋性ポリエチレン18重量%、さらに溶媒である流動パラフィン(40℃における動粘度が59mm2/sの溶媒)80重量%からなる溶液を、スラリー状に均一混合し、160℃で二軸押出機(シリンダー径40mm、L/D=42)を使用して溶解混練りし、二軸押出機先端のTダイス(リップ厚5mm)を用い、160℃でシート状に成形し、水浴により急冷した。その後得られたシート状成形物を115℃に予備加熱後、成形温度115℃で3分間プレスし、厚み0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて115℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度80℃、湿度95%で4時間架橋処理した。処理した膜を110℃で0.5時間ヒートセットし、厚み27μmで空孔率36%の多孔質膜を得た。
【0041】
実施例1〜3および比較例1〜3で得られた多孔質膜のゲル分率、耐熱温度および針貫通強度を表1に示す。
【0042】
【表1】
【0043】
表1の結果より、実施例1〜3で得られた多孔質膜は、いずれも適度な空孔率を有し、そのゲル分率が40〜70%の範囲内であり、比較例1〜3で得られた多孔質膜に比べ、耐熱温度と針貫通強度のどちらもが高いものであることがわかる。
【0044】
【発明の効果】
本発明の多孔質膜は、常温での針貫通強度を損なうことなく、高い耐熱温度を有するものであり、電池用セパレータとして使用することにより、温度上昇に伴うセパレータの形状維持性能を高めることが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous film excellent in heat resistance, and more particularly to a porous film that is preferably used as a battery separator or the like that is disposed between positive and negative electrodes of a battery to isolate them.
[0002]
[Prior art]
Various types of batteries have been put to practical use. In recent years, lithium batteries that are lightweight, have high electromotive force and high energy, and have few self-discharges have been used in order to cope with cordless electronic devices. It attracts attention. A separator for preventing a short circuit between the positive electrode and the negative electrode is interposed between the positive electrode and the negative electrode. As the separator, a porous film having a large number of micropores is used to ensure ion permeability between the positive electrode and the negative electrode. Is done.
[0003]
As a method for producing such a porous membrane, conventionally, a gel sheet is made from a solution obtained by heating and dissolving ultra high molecular weight polyolefin or ultra high molecular weight polyolefin and other polyolefin resin in a solvent, and solvent removal treatment is performed before and after stretching. Various methods have been proposed for carrying out, stretching, and removing the residual solvent.
[0004]
The porous membrane thus obtained can be suitably used as a battery separator. However, in recent years, with the increase in capacity of batteries, even in harsh situations such as when an abnormal battery such as an external short circuit or overcharge occurs. There is a need for a porous film with excellent heat resistance that has a so-called shutdown function that closes the pores and cuts off the current, maintains that state at a higher temperature, and does not cause an internal short circuit due to a broken film or the like. .
[0005]
As a method for improving heat resistance, for example, a porous film obtained by crosslinking polyethylene with an electron beam or the like has been reported. However, these porous membranes have a form consisting of fibrous fibrils and lamellae present around them, and the fibrils that form the skeleton of the porous membrane are cut by a crosslinking treatment by electron beam irradiation. There is a drawback that it is easy to be done. Therefore, when a porous film containing a polyolefin resin such as polyethylene is crosslinked by electron beam irradiation, the heat resistance is improved, but the mechanical strength is lowered and cannot be suitably used as a battery separator. In particular, when ultra high molecular weight polyethylene having a molecular weight of 500,000 or more useful as a battery separator is used, there is a tendency that the mechanical strength is significantly reduced by electron beam irradiation. For example, Japanese Patent Application Laid-Open No. 10-7831 discloses a high-strength, high-heat-resistant polyethylene porous film having a molecular weight of 200,000 or less controlled by electron beam irradiation. The molecular weight of polyethylene used for the porous membrane is described as 100,000 to 4,000,000, but no examples of ultra high molecular weight polyethylene are shown. When ultra high molecular weight polyethylene is actually used, There is a concern that the practical strength may be reduced by irradiation.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a porous film having excellent heat resistance while maintaining high mechanical strength.
[0007]
[Means for Solving the Problems]
Gist of the present invention is a porous film obtained by using a silane-crosslinkable polyolefin ultra high molecular weight polyolefin and a melt flow rate of from 0.03 to 10, wherein the silane-crosslinked polyolefin is 80 to 110 ° C., humidity 80 It is related with the porous membrane for battery separators characterized by the gel fraction being 40-70% bridge | crosslinked under atmosphere more than% .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the ultrahigh molecular weight polyolefin refers to a polyolefin having a weight average molecular weight of 500,000 or more. The weight average molecular weight is preferably 1 million to 20 million, more preferably 1 million to 15 million.
[0009]
The ultra-high molecular weight polyolefin that can be used in the present invention is not particularly limited as long as it has been conventionally used for porous membranes. For example, ethylene, propylene, 1-butene, 4-methyl-1 -Homopolymers of olefins such as pentene and 1-hexene, copolymers, and mixtures thereof. Among these, from the viewpoint of increasing the strength of the resulting porous film, ultrahigh molecular weight polyethylene, etc. A crystalline polymer resin is preferably used.
[0010]
The content of the ultrahigh molecular weight polyolefin in the porous membrane is preferably 30 to 70% by weight, more preferably 40 to 60% by weight.
[0011]
The porous membrane of the present invention further contains a polyolefin having a crosslinking ability. In the present invention, there is one great feature in that the polyolefin having the crosslinking ability is used, and the porous film containing such a resin is crosslinked to maintain the mechanical strength while being excellent in heat resistance. A porous membrane can be produced.
[0012]
The polyolefin having cross-linking ability is not particularly limited as long as it is a resin compatible with the ultra-high molecular weight polyolefin. For example, silane cross-linkable polyolefin, styrene-butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, ethylene -Propylene rubber etc. are mentioned. Of these, silane-crosslinkable polyethylene is particularly preferred because it does not cause a decrease in molecular weight due to electron beam irradiation or the like and can be efficiently crosslinked even under mild conditions such as water vapor and warm water. The silanol group made of silane of the silane crosslinkable polyethylene is crosslinked by generating a siloxane bond by a dehydration reaction with water or water vapor. The silane crosslinkable polyethylene preferably has a melt flow rate (MFR) of 0.03 to 10. These polyolefins having crosslinking ability may be used alone or in combination of two or more.
[0013]
The content of the polyolefin having the crosslinking ability in the porous membrane is 30 to 70% by weight, preferably 40 to 60% by weight. The lower limit of the content is 30% by weight or more from the viewpoint of improving the heat resistance of the porous membrane, and the upper limit is preferably 70% by weight or less from the viewpoint of maintaining mechanical strength such as needle penetration strength. .
[0014]
The porous membrane of the present invention having the above-described configuration has a gel fraction of 40 to 70%. In the present invention, the gel fraction indicates a measure of the cross-linked structure of the porous membrane, and the higher the gel fraction value, the higher the shape retention ability of the porous membrane when exposed to high temperatures. In the present invention, when the gel fraction is 40 to 70%, the effect that the porous film has high mechanical strength and excellent heat resistance is exhibited. The gel fraction is preferably 50 to 70%, more preferably 60 to 70%. The gel fraction is 40% or more from the viewpoint of heat resistance, and 70% or less from the viewpoint of mechanical strength. In addition, a gel fraction means here what was measured by the method as described in the below-mentioned Example.
[0015]
Next, the manufacturing method of the porous membrane by this invention is demonstrated.
For the production of the porous film according to the present invention, a known method such as a dry film forming method or a wet film forming method can be used. For example, the ultra high molecular weight polyolefin, a resin composition comprising a polyolefin having a crosslinking ability, etc. are mixed with a solvent, molded while being melt-kneaded, rolled, stretched in a uniaxial direction or more, and the solvent is extracted and removed. It can be produced by crosslinking treatment.
[0016]
Any solvent may be used as long as it has excellent solubility in the resin composition. For example, nonane, decane, undecane, dodecane, decalin, liquid paraffin and other aliphatic or cyclic hydrocarbons, and boiling point correspond to these. A non-volatile solvent containing a large amount of alicyclic hydrocarbon such as liquid paraffin is preferable.
[0017]
Further, the mixing ratio of the resin composition and the solvent cannot be generally limited depending on the kind of the solvent, the solubility of the resin composition in the solvent, etc., but for example, from the viewpoint of the fineness of the pore structure, The mixing ratio is preferably 5 to 30% by weight of the mixture, and more preferably 8 to 20% by weight. For example, from the viewpoint of expressing mechanical strength as a porous film, when a crystalline ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more is used as a component of the resin composition, the mixing ratio of the compound is 5% by weight of the mixture. The above is preferable. The mixing ratio of the solvent is, for example, preferably 70 to 95% by weight of the mixture, and more preferably 80 to 92% by weight.
[0018]
The step of dissolving and kneading the mixture of the resin composition and the solvent and molding can be carried out by a known method. For example, the mixed solution that has been uniformly dispersed in advance by a Henschel mixer or the like and made into a slurry is used as a Banbury mixer, Etc. may be melt-kneaded batchwise using, etc., and then molded using an extruder equipped with a T die or the like, or may be sandwiched in a cooled metal plate and rapidly cooled to be molded by rapid crystallization, You may use a weight type feeder and a liquid addition pump, perform melt-kneading directly with a twin screw extruder or a continuous kneader, and shape with a T-die attached to the tip of the kneader. In addition, kneading | mixing should just be on suitable temperature conditions, Although it does not specifically limit, Preferably it is 100-200 degreeC.
[0019]
Examples of the shape of the molded product thus obtained include a sheet shape, a round bar shape, and a tube shape. Especially, as thickness of a sheet form and tube-shaped molding, although not limited, 3-30 mm is preferred and 5-20 mm is more preferred. The thickness is preferably 3 mm or more from the viewpoint of maintaining the strength of the film after extracting the solvent (solvent extraction film), and preferably 30 mm or less from the viewpoint of efficiently reducing the thickness in the rolling step.
[0020]
The step of rolling the obtained molded product can be performed by a pressing method such as a double belt press, an in-die rolling method using a die having a predetermined shape, or the like. In particular, a tube-shaped die can be applied to the tube-shaped molded product, and at that time, it is preferable to perform rolling while appropriately adjusting the tensile / vertical strength ratio from the drawing direction of the die.
[0021]
The thickness of the rolled sheet (rolled sheet) thus obtained is not particularly limited, but is preferably 0.2 to 3 mm, and more preferably 0.2 to 2 mm, for example. The thickness is preferably 0.2 mm or more from the viewpoint of easy thinning by rolling, and is preferably 3 mm or less from the viewpoint of productivity of the porous film. Moreover, although the rolling process temperature is not specifically limited, -10--30 degreeC of the said kneaded material melting | fusing point is preferable. The rolling temperature is preferably −30 ° C. or higher, which is the melting point of the kneaded material, from the viewpoint of facilitating thinning by rolling, and −10 ° C. of the melting point of the kneaded material from the viewpoint of obtaining mechanical strength and homogeneity necessary as a battery separator. The following is preferred. Moreover, the total pressurization time when using the press method is not particularly limited, but is preferably 1 to 5 minutes. The time is preferably 1 minute or more from the viewpoint of obtaining a rolled sheet having a predetermined thickness, and preferably 5 minutes or less from the viewpoint of excellent productivity.
[0022]
The method for stretching the rolled sheet is not particularly limited, and may be a normal tenter method, roll method, inflation method, or a combination of these methods, and uniaxial stretching, biaxial stretching, etc. Any of these methods can be applied. In the case of biaxial stretching, either longitudinal and transverse simultaneous stretching or sequential stretching may be used. It is preferable that the temperature of an extending | stretching process is 100-140 degreeC.
[0023]
The solvent removal treatment is a step of removing the solvent from the stretched sheet (stretched sheet) to form a microporous structure. For example, the removal of the solvent by washing the stretched sheet with a solvent is performed. it can. Solvents include hydrocarbons such as pentane, hexane, heptane and decane, chlorine hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, ethers such as diethyl ether and dioxane, etc. A volatile solvent is mentioned, These can be used individually or in mixture of 2 or more types. The cleaning method using such a solvent is not particularly limited, and examples thereof include a method of extracting the solvent by immersing the stretched sheet in the solvent, and a method of showering the solvent on the stretched sheet.
[0024]
Next, after obtaining a solvent-removed film (desolvent film), the resin composition constituting the solvent-removed film can be crosslinked to obtain a porous film. For crosslinking, heat, electron beam, radiation, water vapor, hot water, or the like can be used depending on the type of polyolefin having crosslinking ability. Among these, the cross-linking treatment using water vapor or hot water does not cause the fibrils of the ultra-high molecular weight polyolefin to be cut, maintains high mechanical strength, and greatly improves heat resistance (film resistance at high temperature). It is preferable at the point which can do. The crosslinking treatment using water vapor includes, for example, a treatment performed at a humidity of 80% or more in a constant temperature and humidity machine. The conditions are appropriately selected so that the gel fraction is 40 to 70%, and the temperature is preferably 80 to 110 ° C. The temperature is preferably 80 ° C. or higher from the viewpoint of sufficient crosslinking, and 110 ° C. or lower is preferable from the viewpoint of maintaining an appropriate porosity. Moreover, as for the temperature of the crosslinking process using warm water, 70-100 degreeC is preferable. The crosslinking treatment time is preferably 0.1 to 2 hours.
[0025]
Further, following the crosslinking treatment step, the porous membrane may generally be heat set (heat-fixed) to prevent thermal shrinkage. In particular, in the present invention, by performing the crosslinking treatment using heat as described above, heat setting is substantially possible depending on the processing conditions, but when the heat setting is insufficient, heat shrinkage is performed. In order to prevent it better, heat setting may be performed by further heating after the crosslinking treatment. What is necessary is just to perform the temperature at the time of this heat setting at about 110 to 140 degreeC for about 0.5 to 2 hours, for example.
[0026]
The thickness of the porous membrane obtained as described above is preferably 1 to 60 μm, and more preferably 5 to 45 μm. The porosity is preferably 20 to 80%, more preferably 25 to 75%.
[0027]
As the mechanical strength of the porous membrane, for example, the needle penetration strength is preferably 300 gf / 25 μm or more, more preferably 400 gf / 25 μm or more. As the heat resistance, the heat resistant temperature is preferably 160 ° C. or higher, and more preferably 180 ° C. or higher. In addition, as a measuring method of needle penetration strength and heat-resistant temperature, the method as described in the below-mentioned Example is mentioned.
[0028]
As described above, the porous membrane of the present invention is safer for various sizes and applications of batteries by using it as a battery separator that has excellent mechanical strength and excellent resistance to tearing at high temperatures. It can be expected to improve the performance.
[0029]
【Example】
Hereinafter, although an example and a comparative example are given and explained in detail, the present invention is not limited at all by these examples. Various characteristics were measured as follows.
[0030]
(Thickness)
It measured from the 10,000 times scanning electron micrograph of the cross section of a 1/10000 mm thickness gauge and a porous membrane.
[0031]
(Porosity)
The obtained porous membrane was punched with a 60 mmφ punch, the thickness was determined with a 1/1000 mm thickness gauge, the weight was weighed with an electronic balance, and the porosity was determined with the following formula. The density of the resin component was 0.940 g / ml.
Porosity (%) = pore volume × 100 / total membrane volume
(Gel fraction)
The obtained porous membrane was extracted for 8 hours in boiling paraxylene using a Soxhlet extractor, and the gel fraction was determined from the following equation.
Gel fraction (%) = 100 × residual weight (g) / sample weight (g)
[0033]
(Needle penetration strength)
Using a handy compression tester “KES-G5” manufactured by Kato Tech Co., Ltd., the needle is measured with a diameter of 1.0 mm, a tip shape R of 0.5 mm, a holder diameter of 11.3 mm, and an indentation speed of 2 mm / sec. The maximum load up to was defined as the needle penetration strength. All values were converted to 25 μm.
[0034]
(Heatproof temperature)
The temperature at which a measuring jig with a 20 mm diameter porous film sandwiched between a positive electrode plate (platinum, diameter 14 mm) and a negative electrode plate (platinum, diameter 16 mm) was heated at 5 ° C./min, and a short circuit occurred Was measured with a thermocouple connected to the positive electrode plate, and the temperature was defined as the heat resistant temperature.
[0035]
Example 1
5% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million, silane crosslinkable polyethylene having a melt flow rate of 0.5 and a density of 0.942 (Mitsubishi Chemical Corporation, trade name: Linklon, the same shall apply hereinafter) 10 A solution consisting of 85% by weight of liquid paraffin (a solvent having a kinematic viscosity of 59 mm 2 / s at 40 ° C.) as a solvent is uniformly mixed in a slurry state, and a twin screw extruder (cylinder diameter 40 mm, L / D = 42) was melt-kneaded, formed into a sheet at 160 ° C. using a T-die (lip thickness 5 mm) at the tip of the twin-screw extruder, and rapidly cooled in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the film was stretched 3.5 × 3.5 times in length and width at 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane to obtain a solvent removal film having a thickness of 35 μm and a porosity of 60%. It was. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 90 ° C. and a humidity of 95% for 4 hours. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 26 μm and a porosity of 42%.
[0036]
Example 2
10% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million, 20% by weight of silane crosslinkable polyethylene having a melt flow rate of 0.5 and a density of 0.942, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. of 59 mm 2 / s solvent) 70% by weight of the solution was uniformly mixed in a slurry state and dissolved and kneaded at 160 ° C. using a twin screw extruder (cylinder diameter 40 mm, L / D = 42). It was formed into a sheet shape at 160 ° C. with a T die (lip thickness 5 mm) at the tip of the extruder, and quenched with a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the film was stretched 3.5 × 3.5 times in length and breadth at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane to form a solvent removal film having a thickness of 42 μm and a porosity of 58%. Obtained. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 90 ° C. and a humidity of 95% for 4 hours. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 28 μm and a porosity of 40%.
[0037]
Example 3
10% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million, 20% by weight of silane crosslinkable polyethylene having a melt flow rate of 0.5 and a density of 0.942, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. of 59 mm 2 / s solvent) 70% by weight of the solution was uniformly mixed in a slurry state and dissolved and kneaded at 160 ° C. using a twin screw extruder (cylinder diameter 40 mm, L / D = 42). It was formed into a sheet shape at 160 ° C. with a T die (lip thickness 5 mm) at the tip of the extruder, and quenched with a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the film was stretched 3.5 × 3.5 times in length and breadth at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane to form a solvent removal film having a thickness of 42 μm and a porosity of 58%. Obtained. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 90 ° C. and a humidity of 95% for 1 hour. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 26 μm and a porosity of 43%.
[0038]
Comparative Example 1
5% by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2 million, 10% by weight of high density polyethylene having a melt flow rate of 0.6 and a density of 0.964, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. of 59 mm 2 A solution consisting of 85% by weight of a solvent of / s) is uniformly mixed in a slurry state, and melt-kneaded at a temperature of 160 ° C. using a twin screw extruder (cylinder diameter 40 mm, L / D = 42). It was formed into a sheet at 160 ° C. with a T-die (lip thickness 5 mm) at the tip of the axial extruder, and rapidly cooled in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Then, using a batch-type simultaneous biaxial stretching machine, the film was stretched 3.5 × 3.5 times in length and width at 115 ° C. and then desolvated with heptane to form a desolvated film having a thickness of 35 μm and a porosity of 60%. Obtained. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 90 ° C. and a humidity of 95% for 4 hours. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 26 μm and a porosity of 42%.
[0039]
Comparative Example 2
10% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million, 20% by weight of silane crosslinkable polyethylene having a melt flow rate of 0.5 and a density of 0.942, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. of 59 mm 2 / s solvent) 70% by weight of the solution was uniformly mixed in a slurry state and dissolved and kneaded at 160 ° C. using a twin screw extruder (cylinder diameter 40 mm, L / D = 42). Using a T-die (lip thickness 5 mm) at the tip of the extruder, it was formed into a sheet at 160 ° C. and rapidly cooled in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the film was stretched 3.5 × 3.5 times in length and breadth at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane to form a solvent removal film having a thickness of 42 μm and a porosity of 58%. Obtained. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 80 ° C. and a humidity of 95% for 1 hour. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 30 μm and a porosity of 41%.
[0040]
Comparative Example 3
2% by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2 million, 18% by weight of silane crosslinkable polyethylene having a melt flow rate of 0.5 and a density of 0.942, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. of 59 mm 2 / s solvent) 80% by weight of solution is uniformly mixed in a slurry state, and melt-kneaded at 160 ° C. using a twin screw extruder (cylinder diameter 40 mm, L / D = 42). Using a T-die (lip thickness 5 mm) at the tip of the extruder, it was formed into a sheet at 160 ° C. and rapidly cooled in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the film was stretched 3.5 × 3.5 times in length and width at 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane to obtain a solvent removal film having a thickness of 42 μm and a porosity of 58%. It was. The obtained film was subjected to a crosslinking treatment in a constant temperature and humidity machine at a temperature of 80 ° C. and a humidity of 95% for 4 hours. The treated membrane was heat set at 110 ° C. for 0.5 hour to obtain a porous membrane having a thickness of 27 μm and a porosity of 36%.
[0041]
Table 1 shows the gel fraction, heat resistant temperature and needle penetration strength of the porous membranes obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
[0042]
[Table 1]
[0043]
From the results of Table 1, the porous membranes obtained in Examples 1 to 3 all have an appropriate porosity, the gel fraction thereof is in the range of 40 to 70%, and Comparative Examples 1 to It can be seen that both the heat-resistant temperature and the needle penetration strength are higher than the porous membrane obtained in 3.
[0044]
【The invention's effect】
The porous membrane of the present invention has a high heat-resistant temperature without impairing the needle penetration strength at room temperature. By using it as a battery separator, the shape maintenance performance of the separator with increasing temperature can be improved. It becomes possible.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35586399A JP4583532B2 (en) | 1999-12-15 | 1999-12-15 | Porous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35586399A JP4583532B2 (en) | 1999-12-15 | 1999-12-15 | Porous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001176484A JP2001176484A (en) | 2001-06-29 |
JP4583532B2 true JP4583532B2 (en) | 2010-11-17 |
Family
ID=18446119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35586399A Expired - Fee Related JP4583532B2 (en) | 1999-12-15 | 1999-12-15 | Porous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4583532B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101955911B1 (en) | 2018-08-23 | 2019-03-12 | 더블유스코프코리아 주식회사 | A separator and a method for manufacturing the same |
KR20200039060A (en) | 2018-10-04 | 2020-04-16 | 더블유스코프코리아 주식회사 | A separator and a method for manufacturing the same |
EP3731305A1 (en) | 2019-04-26 | 2020-10-28 | W-Scope Korea Co., Ltd. | Crosslinked polyolefin separator and method of manufacturing the same |
EP3832770A1 (en) | 2019-12-06 | 2021-06-09 | W-Scope Korea Co., Ltd. | Crosslinked separator and method of manufacturing the same |
WO2023090580A1 (en) | 2021-11-17 | 2023-05-25 | 더블유스코프코리아 주식회사 | Method for manufacturing separator |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5260074B2 (en) * | 2008-02-13 | 2013-08-14 | 日東電工株式会社 | Battery separator and electrode / separator assembly obtained therefrom |
JP5260073B2 (en) * | 2008-02-13 | 2013-08-14 | 日東電工株式会社 | Battery separator and electrode / separator assembly obtained therefrom |
JP5260075B2 (en) * | 2008-02-13 | 2013-08-14 | 日東電工株式会社 | Reactive polymer-supported porous film for battery separator and electrode / separator assembly obtained therefrom |
CN105576172B (en) * | 2014-10-31 | 2018-06-22 | Lg化学株式会社 | cross-linked polyolefin diaphragm and preparation method thereof |
KR101960926B1 (en) * | 2015-06-11 | 2019-03-21 | 주식회사 엘지화학 | Manufacturing method of closslinked polyolefine separator and separator manufactured by the same method |
WO2020046075A1 (en) * | 2018-08-31 | 2020-03-05 | 주식회사 엘지화학 | Cross-linked polyolefin separator and manufacturing method therefor |
KR102466827B1 (en) | 2018-10-11 | 2022-11-14 | 아사히 가세이 가부시키가이샤 | Lithium ion battery using crosslinked separator |
JP7160621B2 (en) * | 2018-10-11 | 2022-10-25 | 旭化成株式会社 | Trace metal cross-linked separator |
WO2020075865A1 (en) * | 2018-10-11 | 2020-04-16 | 旭化成株式会社 | Lithium ion battery separator |
JP7498571B2 (en) | 2019-02-18 | 2024-06-12 | 旭化成株式会社 | Microporous membrane for power storage devices |
KR102280521B1 (en) | 2019-04-15 | 2021-07-26 | 아사히 가세이 가부시키가이샤 | Polyolefin laminated microporous membrane |
CN112332019A (en) * | 2019-07-18 | 2021-02-05 | 今创景新材料科技(上海)有限公司 | Method for applying silane modified polyolefin material to polyolefin resin and method for preparing film material |
JP7546379B2 (en) | 2019-08-26 | 2024-09-06 | 旭化成株式会社 | Cross-linked resin dispersion separator |
JP7540898B2 (en) | 2019-08-26 | 2024-08-27 | 旭化成株式会社 | Separator using silane crosslinked polyolefin mixed resin |
CN114223094A (en) | 2020-04-13 | 2022-03-22 | 旭化成株式会社 | Composite single-layer chemically cross-linked separator |
CN118539089A (en) | 2020-04-13 | 2024-08-23 | 旭化成株式会社 | Composite laminated chemical cross-linked separator |
WO2022092302A1 (en) * | 2020-10-30 | 2022-05-05 | 旭化成株式会社 | Siloxane dispersed crosslinked separator |
KR20240001175A (en) * | 2021-04-30 | 2024-01-03 | 셀가드 엘엘씨 | Membrane with reactive network |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257415A (en) * | 1985-11-30 | 1987-11-10 | Mitsui Petrochem Ind Ltd | Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof |
JPH0221559A (en) * | 1988-07-08 | 1990-01-24 | Nitto Denko Corp | Separator for battery and manufacture thereof |
JPH0364334A (en) * | 1989-08-03 | 1991-03-19 | Tonen Corp | Microporous polyolefin film and its preparation |
WO1997044839A1 (en) * | 1996-05-22 | 1997-11-27 | Kureha Chemical Industry Co., Ltd. | Porous film and separator for batteries comprising porous film |
JPH1067871A (en) * | 1996-08-28 | 1998-03-10 | Asahi Chem Ind Co Ltd | Production of microporous polyethylene film |
JPH1067870A (en) * | 1996-08-28 | 1998-03-10 | Asahi Chem Ind Co Ltd | Microporous polyethylene film and its production |
-
1999
- 1999-12-15 JP JP35586399A patent/JP4583532B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62257415A (en) * | 1985-11-30 | 1987-11-10 | Mitsui Petrochem Ind Ltd | Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof |
JPH0221559A (en) * | 1988-07-08 | 1990-01-24 | Nitto Denko Corp | Separator for battery and manufacture thereof |
JPH0364334A (en) * | 1989-08-03 | 1991-03-19 | Tonen Corp | Microporous polyolefin film and its preparation |
WO1997044839A1 (en) * | 1996-05-22 | 1997-11-27 | Kureha Chemical Industry Co., Ltd. | Porous film and separator for batteries comprising porous film |
JPH1067871A (en) * | 1996-08-28 | 1998-03-10 | Asahi Chem Ind Co Ltd | Production of microporous polyethylene film |
JPH1067870A (en) * | 1996-08-28 | 1998-03-10 | Asahi Chem Ind Co Ltd | Microporous polyethylene film and its production |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101955911B1 (en) | 2018-08-23 | 2019-03-12 | 더블유스코프코리아 주식회사 | A separator and a method for manufacturing the same |
EP3614460A1 (en) | 2018-08-23 | 2020-02-26 | W-Scope Korea Co., Ltd. | Separator and method of manufacturing the same |
US11367925B2 (en) | 2018-08-23 | 2022-06-21 | W-Scope Korea Co., Ltd. | Separator and method of manufacturing the same |
KR20200039060A (en) | 2018-10-04 | 2020-04-16 | 더블유스코프코리아 주식회사 | A separator and a method for manufacturing the same |
EP3731305A1 (en) | 2019-04-26 | 2020-10-28 | W-Scope Korea Co., Ltd. | Crosslinked polyolefin separator and method of manufacturing the same |
US11557814B2 (en) | 2019-04-26 | 2023-01-17 | W-Scope Korea Co., Ltd. | Crosslinked polyolefin separator and method of manufacturing the same |
EP3832770A1 (en) | 2019-12-06 | 2021-06-09 | W-Scope Korea Co., Ltd. | Crosslinked separator and method of manufacturing the same |
WO2023090580A1 (en) | 2021-11-17 | 2023-05-25 | 더블유스코프코리아 주식회사 | Method for manufacturing separator |
Also Published As
Publication number | Publication date |
---|---|
JP2001176484A (en) | 2001-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4583532B2 (en) | Porous membrane | |
JP3525390B2 (en) | Polyethylene microporous membrane and manufacturing method | |
KR100257360B1 (en) | Short circuit-resistant polyethylene microporous film | |
CN101331178B (en) | Polyolefin microporous membrane | |
JP5630827B2 (en) | POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE | |
JP4195810B2 (en) | Polyolefin microporous membrane and production method and use thereof | |
WO2018188249A1 (en) | Method for use in preparing lithium-ion battery separator film | |
JP4677663B2 (en) | Polyolefin microporous membrane | |
JP4177929B2 (en) | Porous film and method for producing the same | |
JP2020031047A (en) | Separation membrane and manufacturing method thereof | |
JPWO2008069216A1 (en) | Polyolefin microporous membrane | |
JP6886839B2 (en) | Polyolefin microporous membrane | |
US6168858B1 (en) | Microporous polyethylene membranes having low fusing temperatures | |
JP4606532B2 (en) | Polyolefin microporous membrane | |
JPH07268118A (en) | Microporous biaxially oriented film comprising composition of high-molecular weight polyethylene and high-molecular weight polypropylene, its production and use | |
JP6548430B2 (en) | METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY | |
JP4206182B2 (en) | Microporous film | |
CN110382605A (en) | Polyolefin micro porous polyolefin membrane and the battery for having used the polyolefin micro porous polyolefin membrane | |
JP4752000B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP3699561B2 (en) | Polyolefin microporous membrane and method for producing the same | |
JP3747963B2 (en) | High heat-resistant polyethylene microporous membrane | |
JPH11269290A (en) | Polyoelfin fine porous membrane | |
JPH11268118A (en) | Polyolefin porous film, production thereof, and separator film for battery | |
JPH0899382A (en) | Laminated microporous film of olefinic polymer and production and use thereof | |
JP2002047372A (en) | Porous film and method of preparing the same and battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4583532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160910 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |