JPS63274654A - Production of superconductive material - Google Patents

Production of superconductive material

Info

Publication number
JPS63274654A
JPS63274654A JP62109134A JP10913487A JPS63274654A JP S63274654 A JPS63274654 A JP S63274654A JP 62109134 A JP62109134 A JP 62109134A JP 10913487 A JP10913487 A JP 10913487A JP S63274654 A JPS63274654 A JP S63274654A
Authority
JP
Japan
Prior art keywords
temperature
oxygen
salt
inorg
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62109134A
Other languages
Japanese (ja)
Inventor
Kazuo Fueki
笛木 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP62109134A priority Critical patent/JPS63274654A/en
Publication of JPS63274654A publication Critical patent/JPS63274654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prepare effectively a superconductive material having oxygen vacancy in perovskite crystal structure in a short time by grinding down a powder mixture consisting of an inorg. salt of Ba, CuO, and an inorg. salt or a rare earth element admixed with an org. solvent, calcining the ground product under specified conditions, then carrying out final calcination and oxygen treatment. CONSTITUTION:Each specified amt. of an inorg. salt of Ba, CuO, and an inorg. salt of a rare earth element is weighed and mixed. The mixture is ground down after adding an org. solvent and the ground product is calcined at >=800 deg.C. After crushing again, the product is compression-molded. The compression- molded product is calcined finally at >= the first calcination temp., it is then treated at >= the final calcination temp. for 1-8hr in O2 atmosphere. By this process, a superconductive material consisting of a compsn. expressed by the formula (wherein M is Y, Sc, La, Lu, Yb, Tm, Er, Ho, Dy, Gd, Pr, Nd, Eu, Tb, or Sm; x is 1-3; y is 0.01-1.5; z is 0-3) and having oxygen vacancy in perovskite type crystal structure is provided.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、超伝導性材料の製造方法に関し、特に、酸素
欠損ペロブスカイト型結晶構造を有する超伝導性材料の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a superconducting material, and particularly to a method for manufacturing a superconducting material having an oxygen-deficient perovskite crystal structure.

(従来の技術) これまでに知られている超伝導体は、橿低温の液体ヘリ
ウム(沸点4.2K)による冷却が不可欠であり、この
ため冷却コストが膨大になり、ひいては、作り出す超伝
導状態の規模も小さくなるという欠点があった。又、ヘ
リウムの資源的偏在が超伝導体の広範な普及を阻害して
いた。
(Prior art) Superconductors known so far require cooling with low-temperature liquid helium (boiling point 4.2K), which increases cooling costs and ultimately creates a superconducting state. The disadvantage was that the scale of the system was also smaller. Furthermore, the uneven distribution of helium as a resource has hindered the widespread use of superconductors.

しかしながら極(最近、超伝導の臨界温度Tc(転移開
始温度)が液体窒素温度(沸点77K)を越える超伝導
体が報告された。例えば、米国ヒユーストン大学CJ、
Chuらのグループは、臨界温度が94にのバリウム−
イツトリウム−銅−酸素系の酸化物を見い出したことを
報告している(Phys、 Rev、 Letter、
 vol、 5B、 P90B−909,1987)。
However, superconductors whose critical temperature Tc (transition initiation temperature) exceeds the liquid nitrogen temperature (boiling point 77 K) have recently been reported.
Chu et al.'s group reported that barium with a critical temperature of 94
reported the discovery of yttrium-copper-oxygen oxides (Phys, Rev, Letter,
vol, 5B, P90B-909, 1987).

又、東京大学の北沢らのグループはバリウム−イッテル
ビウム−銅−酸素系の酸化物において、臨界温度が95
にのものを報告しており、同じく東京大学の高木らのグ
ループはバリウム−エルビウム−銅−酸素系の酸化物に
おいて、95にの臨界温度を報告している(いずれも、
Jap、 Journalof Appl、 Phys
、、  vol、 26.4月号、1987)  。
Furthermore, Kitazawa et al.'s group at the University of Tokyo has found that the critical temperature is 95% for barium-ytterbium-copper-oxygen oxides.
The group of Takagi et al., also at the University of Tokyo, reported a critical temperature of 95 for barium-erbium-copper-oxygen oxides (in both cases,
Jap, Journal of Appl, Phys
,, vol. 26. April issue, 1987).

更に、上記3種の酸化物の第2成分をスカンジウム、ル
テニウム、ツリウム、ホルミウム、ディスプロシウム、
ガドリニウム等で置換した酸化物においても、90に程
度の臨界温度が報告されている。
Furthermore, the second component of the above three types of oxides is scandium, ruthenium, thulium, holmium, dysprosium,
Even in the case of oxides substituted with gadolinium or the like, a critical temperature of about 90°C has been reported.

これらの各種超伝導体はすべて一般式;%式% 但し、式中、MはYSSc、La、Lu、Yb。These various superconductors all have the general formula;% formula% However, in the formula, M is YSSc, La, Lu, Yb.

Tm、Er、Ho、、Dy5Gd及びSmの群から選択
された少なくともIftの希土類元素であり、Xは1〜
3、yは0.01〜1.5、zはθ〜3である。
is a rare earth element of at least Ift selected from the group of Tm, Er, Ho, Dy5Gd and Sm, and X is 1 to
3, y is 0.01 to 1.5, and z is θ to 3.

この場合、理由は明らかではないが、欠ti酸素が極め
て重要であり、その欠損の仕方や欠損密度が超伝導材料
の臨界温度(Tc)や転移幅温度ΔTc(電気抵抗率が
、Tc近傍の通常の値からゼロ抵抗迄変化する時の変化
率が90%及び10%になる時の温度間隔)に直接的に
影響すると推定され、焼成後の超伝導材料を高温で酸素
処理することの重要性が認識されるに至った。
In this case, although the reason is not clear, the deficient Ti oxygen is extremely important, and the manner of its vacancies and the vacancy density are determined by the critical temperature (Tc) of the superconducting material and the transition width temperature ΔTc (the electrical resistivity is near Tc). It is estimated that it directly affects the temperature interval at which the rate of change is 90% and 10% when changing from normal value to zero resistance, and it is important to treat the superconducting material after firing with oxygen at high temperature. gender has come to be recognized.

(発明が解決しようとする問題点) しかしながら、焼成は通常、仮焼成及び本焼成が行なわ
れるので、さらに酸素処理を行うことは試料作製に手間
どることから、この製造工程時間を短縮することが望ま
れていた。
(Problems to be Solved by the Invention) However, since calcination usually involves preliminary calcination and main calcination, further oxygen treatment requires time and effort in sample preparation, so it is not possible to shorten this manufacturing process time. It was wanted.

従って、本発明の第1の目的は、製造工程時間を短縮し
た、rII素欠損ペロブスカイト型結晶構造を有する超
伝導性材料の製造方法を提供することにある。
Therefore, a first object of the present invention is to provide a method for manufacturing a superconducting material having an rII element-deficient perovskite crystal structure, which reduces the manufacturing process time.

本発明の第2の目的は、酸素欠損ペロブスカイト型超伝
導性材料の@素欠損の程度を調節するに通した調整方法
を提供することにある。
A second object of the present invention is to provide a method for controlling the degree of @ element defects in an oxygen-deficient perovskite superconducting material.

(問題点を解決するための手段) 本発明の上記の諸口的は、一般式BaxMyCu3O9
−−zの組成物から成り、酸素欠損ペロブスカイト型結
晶構造を有する超伝導性材料の製造方法において、バリ
ウムの無機塩、酸化銅及び希土類元素の無機塩の混合粉
末に有機溶媒を加えて擦りつぶした後、これを800℃
以上で仮焼成し、再び粉砕した後圧縮成形し、前記仮焼
成温度より低くない温度で本焼成し、次いで、該本焼成
温度より低くない温度で1〜8時間、酸素雰囲気中で処
理することを特徴とする超伝導性材料の製造方法によっ
て達成された。
(Means for Solving the Problems) The above aspects of the present invention have the general formula BaxMyCu3O9
- A method for producing a superconducting material having an oxygen-deficient perovskite crystal structure consisting of a composition of After that, heat it to 800℃
The above is pre-calcined, crushed again, compression molded, main-fired at a temperature not lower than the main-calcination temperature, and then treated in an oxygen atmosphere for 1 to 8 hours at a temperature not lower than the main-calcination temperature. This was achieved by a method for producing superconducting materials characterized by:

上記一般式において、MはY、Sc、La5Lu 1Y
 b 、、T m SE r s Ho s D y 
1G d SP r 1Nd、Eu%Tb及びSmの群
から選択された少なくとも1Mの希土類元素であり、X
は1〜3、yは0.01〜[5,2は0〜3である。
In the above general formula, M is Y, Sc, La5Lu 1Y
b ,, T m SE r s Ho s D y
1G d SP r 1M of a rare earth element selected from the group of 1Nd, Eu%Tb and Sm;
is 1-3, y is 0.01-[5,2 is 0-3.

このような組成の超伝導体を製造するに際し、バリウム
の無機塩と酸化銅については高純度のものを比較的容易
に得ることができることもあり、できるだけ高純度のも
のを使用することが好ましいが、希土類元素については
、各元素について純品を得ることが極めて煩雑である上
、希土類元素の混合品を使用することによる悪影響が特
に認められないことから、希土類元素の混合品を原料と
して使用することが好ましい。
When manufacturing a superconductor with such a composition, it is preferable to use the highest possible purity of barium inorganic salt and copper oxide, as they can be obtained relatively easily. Regarding rare earth elements, it is extremely complicated to obtain pure products for each element, and there are no particular adverse effects from using mixtures of rare earth elements, so mixtures of rare earth elements are used as raw materials. It is preferable.

これらの各原料の混合物は、公知の粉末法又は共沈法に
よって調整することができる。
A mixture of these raw materials can be prepared by a known powder method or coprecipitation method.

得られた混合物は、本焼成の前に仮焼成を行うのが通常
である0本発明においては、仮焼成を約800℃−90
0℃で3−10時間行うことが好ましく、次いで仮焼成
後の混合物を再度粉砕して圧縮成形し、本焼成を100
0℃以下であって仮焼成よりも低くない温度で3−12
時間行う、圧縮成形は超伝導体がその形を維持できる程
度に行えば良いが、通常は約1000Kg/cm2程度
の圧力を加える0本発明においては、上記の如くして得
た本焼成後の成形体を、更に、酸素雰囲気下において本
焼成よりもo−too℃高い温度で、1−8時間、好ま
しくは2−6時間酸素処理を行った後、温度を徐々に低
下せしめて室温に戻す。
The obtained mixture is usually pre-calcined before the main firing. In the present invention, the pre-calcination is carried out at approximately 800°C-90°C.
It is preferable to carry out the firing at 0°C for 3 to 10 hours.Then, the mixture after preliminary firing is crushed again and compression molded, and the main firing is carried out at 100°C.
3-12 at a temperature below 0℃ and not lower than the pre-calcination.
Compression molding, which is carried out for a long time, can be carried out to the extent that the superconductor can maintain its shape, but usually a pressure of about 1000 kg/cm2 is applied. The molded body is further subjected to oxygen treatment in an oxygen atmosphere at a temperature o-too °C higher than the main firing for 1-8 hours, preferably 2-6 hours, and then the temperature is gradually lowered to return to room temperature. .

この場合のr11棄処理の時間は、処理温度が高い程短
く、処理温度が低い程長くするが、何れにしてもその処
理時間は、前記1−8時間の範囲である。
In this case, the time for the r11 discard treatment is shorter as the treatment temperature is higher, and longer as the treatment temperature is lower, but in any case, the treatment time is in the range of 1 to 8 hours.

酸素処理が、結晶のアニーリグと同時に酸素を結晶内に
拡散せしめて欠損酸素の量を調整すると仮定した場合に
は、M素処理の時間が長過ぎてはいけないということは
理解に苦しむが、従来、アニーリングとしての意味合い
から、rI!素処理を本焼成の温度より低温で行ってい
たために、十分に長い酸素処理によって必要以上に酸素
が再度供給されていたものと推定することも可能である
It is difficult to understand that the M elementary treatment time should not be too long, assuming that oxygen treatment diffuses oxygen into the crystal at the same time as crystal annealing and adjusts the amount of deficient oxygen, but conventional , from the meaning of annealing, rI! It is also possible to assume that because the elementary treatment was performed at a lower temperature than the main firing temperature, oxygen was supplied again more than necessary due to the sufficiently long oxygen treatment.

従来の酸素処理時間は通常10時間以上で有ったことか
ら、本発明によれば、少なくとも2−3時間、製造工程
に費やす時間を節約することができる。
Since the conventional oxygen treatment time was usually 10 hours or more, the present invention can save at least 2 to 3 hours of time spent on the manufacturing process.

(発明の効果) 以上詳述した如く、本発明によれば少なくともMi処理
の時間を従来より短縮することができ、その分製造工程
に費やす時間を短縮することができるが、更に、本発明
の酸素処理温度が仮焼成及び本焼成の何れの温度よりも
高いので、仮焼成及び本焼成の時間をも短縮することも
可能であり、従って、製造時間全体として大幅に時間を
短縮することができるのみならず、得られる超伝導体の
性能を改善することもできる。
(Effects of the Invention) As described in detail above, according to the present invention, at least the time for Mi treatment can be reduced compared to the conventional method, and the time spent on the manufacturing process can be reduced accordingly. Since the oxygen treatment temperature is higher than both the preliminary firing and final firing temperatures, it is also possible to shorten the preliminary firing and final firing times, and therefore the overall manufacturing time can be significantly shortened. Not only that, but the performance of the resulting superconductor can also be improved.

以下、本発明を実施例によって更に詳述するが、本発明
はこれによって限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例。Example.

複合金属酸化物超伝導体として、Ba2Ln (md)
Cu309  >’を以下の如くして炸裂した。
Ba2Ln (md) as a composite metal oxide superconductor
Cu309>' was exploded as follows.

但し、ここで、Ln (md)は下記の組成を有する中
希土類元素混合品を意味する。
However, here, Ln (md) means a medium rare earth element mixture having the following composition.

Y:10.3原子% Pr:1.8 Nd:11.3 Sm:33.4 Eu:4.0 Gd:23.1 Tb:1.7 その他:13.8 目的物を0.015モル得られるように、Baco3 
 (99,9%) 、Y2  (CO3) 3 (99
゜9%) 、CuO(99,99%) 、Ln (md
)炭酸塩を秤量した。
Y: 10.3 atomic% Pr: 1.8 Nd: 11.3 Sm: 33.4 Eu: 4.0 Gd: 23.1 Tb: 1.7 Others: 13.8 0.015 mol of target product obtained Baco3
(99,9%) , Y2 (CO3) 3 (99
゜9%), CuO (99,99%), Ln (md
) The carbonate was weighed.

混合した粉末にエタノールを加えて乳鉢中で湿式混合し
、ルツボに入れて900℃で5時間仮焼成を行った後、
再度粉砕して約1000Kg/cm2の圧力でプレスし
てベレットを2個1〜製し、各ペレットを更に900℃
で3時間本焼成した。
Ethanol was added to the mixed powder, wet-mixed in a mortar, placed in a crucible, and calcined at 900°C for 5 hours.
Grind again and press at a pressure of about 1000 kg/cm2 to make 2 pellets, and each pellet is further heated to 900°C.
The final firing was carried out for 3 hours.

次に、得られたベレットの内一方を950℃で1−2時
間、他方を5時間酸素処理して、各ベレットについて臨
界温度を測定した。
Next, one of the resulting pellets was treated with oxygen at 950° C. for 1 to 2 hours, and the other was treated with oxygen for 5 hours, and the critical temperature of each pellet was measured.

得られた結果は表1に示した通りである。The results obtained are shown in Table 1.

表  1 試料    酸素処理       Tc表1の結果か
ら明らかな如(、酸素処理を仮焼成及び本焼成の温度よ
りも高い温度で、従来より短時間処理することによって
Tcが改善されることが実証された。
Table 1 Sample Oxygen Treatment Tc As is clear from the results in Table 1 (it was demonstrated that Tc was improved by oxygen treatment at a higher temperature than the pre-firing and main firing temperatures and for a shorter time than before). .

Claims (1)

【特許請求の範囲】[Claims] 1)一般式BaxMyCu_3O_9^−zの組成物か
ら成り、酸素欠損ペロブスカイト型結晶構造を有する超
伝導性材料の製造方法において、バリウムの無機塩、酸
化銅及び希土類元素の無機塩の混合粉末に有機溶媒を加
えて擦りつぶした後、これを800℃以上で仮焼成し、
再び粉砕した後圧縮成形し、前記仮焼成温度より低くな
い温度で本焼成し、次いで、該本焼成温度より低くない
温度で1〜8時間、酸素雰囲気中で処理することを特徴
とする超伝導性材料の製造方法(式中MはY、Sc、L
a、Lu、Yb、Tm、Er、Ho、Dy、Gd、Pr
、Nd、Eu、Tb及びSmの群から選択された少なく
とも1種の希土類元素であり、xは1〜3、yは0.0
1〜1.5、zは0〜3である)。
1) In a method for producing a superconducting material having a composition of the general formula BaxMyCu_3O_9^-z and having an oxygen-deficient perovskite crystal structure, an organic solvent is added to a mixed powder of an inorganic salt of barium, copper oxide, and an inorganic salt of a rare earth element. After adding and grinding, this is calcined at 800℃ or higher,
A superconductor characterized in that it is crushed again, compression molded, main fired at a temperature not lower than the pre-calcination temperature, and then treated in an oxygen atmosphere at a temperature not lower than the main firing temperature for 1 to 8 hours. method for producing a magnetic material (in the formula, M is Y, Sc, L
a, Lu, Yb, Tm, Er, Ho, Dy, Gd, Pr
, Nd, Eu, Tb, and Sm, x is 1 to 3, and y is 0.0.
1-1.5, z is 0-3).
JP62109134A 1987-05-01 1987-05-01 Production of superconductive material Pending JPS63274654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109134A JPS63274654A (en) 1987-05-01 1987-05-01 Production of superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109134A JPS63274654A (en) 1987-05-01 1987-05-01 Production of superconductive material

Publications (1)

Publication Number Publication Date
JPS63274654A true JPS63274654A (en) 1988-11-11

Family

ID=14502442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109134A Pending JPS63274654A (en) 1987-05-01 1987-05-01 Production of superconductive material

Country Status (1)

Country Link
JP (1) JPS63274654A (en)

Similar Documents

Publication Publication Date Title
JPH10101336A (en) Production of superconductor
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
JPS63274654A (en) Production of superconductive material
JPS63274655A (en) Production of superconductive material
US5270292A (en) Method for the formation of high temperature semiconductors
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPS63310764A (en) Oriented oxide superconductor and its production
KR970001258B1 (en) Super conducting material
JP2597578B2 (en) Superconductor manufacturing method
Amamoto et al. (RE1− xSrx) 8Cu8O20 (RE= Pr, Nd) Synthesized under a High Pressure of Oxygen, PO2= 20 MPa
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPS6476946A (en) Production of superconductor
JPH0288456A (en) Production of bi superconductor
JPH01301555A (en) Production of molded article of oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01111768A (en) Production of high temperature superconducting oxide
JPH0796448B2 (en) Method for producing Y-Ba-Cu-O-based superconductor powder
JPH02157154A (en) Ceramics electrical conductive material
JPH01157451A (en) Production of oxide superconducting sintered body
JPH01157453A (en) Production of oxide superconductor
JPH02258665A (en) Production of superconductive material
JPH01126259A (en) Production of oxide superconductor
Abd-Shukor et al. Superconducting properties of Ce-substituted TaSr2 (Gd, Ce) 2
JPH0222129A (en) Production of oxide superconducting substance
JPH01157452A (en) Fiber reinforced superconductor