JPH01111768A - Production of high temperature superconducting oxide - Google Patents

Production of high temperature superconducting oxide

Info

Publication number
JPH01111768A
JPH01111768A JP62271270A JP27127087A JPH01111768A JP H01111768 A JPH01111768 A JP H01111768A JP 62271270 A JP62271270 A JP 62271270A JP 27127087 A JP27127087 A JP 27127087A JP H01111768 A JPH01111768 A JP H01111768A
Authority
JP
Japan
Prior art keywords
provisionally
calcined
production
oxide
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62271270A
Other languages
Japanese (ja)
Inventor
Kazue Obayashi
和重 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP62271270A priority Critical patent/JPH01111768A/en
Publication of JPH01111768A publication Critical patent/JPH01111768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a stable and dense high temp. superconducting oxide with high reproducibility by mixing, pulverizing, and provisionally calcining Ba(OH)2.8H2O, specified metal oxide, CuO and/or Cu2O. CONSTITUTION:Three kinds of starting material comprising Ba(OH)2.8H2O, A2O3 (A is a lanthanide except Y, Ce, Pr, Pm, and Tb), CuO or Cu2O, are mixed, and pulverized. An oxide expressed by the formula is obtd. by calcining the pulverized product. Since no carbonate is used as starting material in the stage of production in this method, carbon is not contained in a provisionally calcined product, so it is not necessary to repeat pulverization, provisional pulverization, and provisional calcination. Moreover, since the material is calcined provisionally at low temp., the hardness of the provisionally calcined product is low and easily pulverizable, permitting easy production. Since the obtd. oxide expressed by the formula has been calcined provisionally at low temp., the relative density is high, so a dense material is formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高温で超伝導現象を示す高温超伝導酸化物の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a high-temperature superconducting oxide that exhibits a superconducting phenomenon at high temperatures.

・ 〈従来技術〉 高温超伝導材料はバルク材として送電ケーブル、リニア
モーターカー、磁気浮上船、電力貯蔵等に、または、薄
膜としてジョセフソン素子、スクイラド、磁気センサ等
の広い用途に期待されている。
・ <Prior art> High-temperature superconducting materials are expected to be used as bulk materials in power transmission cables, linear motor cars, magnetically levitated ships, power storage, etc., and as thin films for a wide range of applications such as Josephson devices, Squirads, magnetic sensors, etc. .

この高温超伝導材料として、Ba2 At Cu307
−y[ただしAは、Y又はCe、Pr、Pm。
As this high temperature superconducting material, Ba2 At Cu307
-y [where A is Y, Ce, Pr, or Pm.

Tbを除くランタンド元素のうちいずれか一種]は、I
BM研究所等から提案され、高温で超伝導現象を示す酸
化物として脚光を浴びている。
Any one of the lanthanide elements except Tb] is I
It was proposed by BM Research Institute and others, and has been attracting attention as an oxide that exhibits superconductivity at high temperatures.

例えば一般式B a2 YICu307−yで表示され
る高温超伝導材料の製造にあっては、従来、出発原料と
して、BaCO3、Y2O3、CuOを用い、これを混
同し、仮焼、粉砕及び焼成することにより生成していた
For example, in the production of a high-temperature superconducting material represented by the general formula B a2 YICu307-y, BaCO3, Y2O3, and CuO are conventionally used as starting materials, mixed together, and then calcined, pulverized, and fired. It was generated by

詳しくは、第2図に示すように、前記各材料を混合して
、900℃で10〜24時間仮焼し、さらに粉砕してか
ら再び仮焼し、この粉砕と仮焼を数回祿換えしてBaC
O3中の炭素を除去し、粉砕後900℃〜1000℃で
数時間焼成し、その後、アニールを施し、400℃〜5
00℃で急冷することによりおこなっていた。
Specifically, as shown in Figure 2, the above-mentioned materials are mixed, calcined at 900°C for 10 to 24 hours, further crushed and calcined again, and this crushing and calcining are repeated several times. And BaC
Carbon in O3 is removed, and after pulverization, it is fired at 900°C to 1000°C for several hours, then annealed and heated at 400°C to 50°C.
This was done by rapid cooling at 00°C.

〈発明が解決しようとする問題点〉 前記製造方法にあっては、出発原料として、BaCO3
を用いているため、粉砕と仮焼を成度繰返して炭素Cを
除去する必要があり、しかも、仮焼温度が高いため、仮
焼したものは極めて固く、粉砕が困難であり、製造が面
倒であった。また、粉砕に用いる乳鉢、ポットのアルミ
ナ等が粉砕中に混入する恐れがあり、かつ仮焼反応が不
充分であると、BaCO3が焼成物中に残留するため、
安定した酸化物を得ることができず再現性を阻害する一
因となっていた。さらには、焼結性が悪く、相対密度(
理論密度を6.4とする)が70%〜85%のものが製
造され、その緻密化が課題となっていた。
<Problems to be solved by the invention> In the above production method, BaCO3 is used as a starting material.
Because of this, it is necessary to repeat grinding and calcination to remove carbon C. Furthermore, because the calcination temperature is high, the calcined product is extremely hard and difficult to grind, making manufacturing cumbersome. Met. In addition, there is a risk that alumina from the mortar and pot used for pulverization may be mixed in during pulverization, and if the calcination reaction is insufficient, BaCO3 will remain in the fired product.
It was not possible to obtain a stable oxide, which was one of the reasons for inhibiting reproducibility. Furthermore, the sinterability is poor and the relative density (
Products with a theoretical density of 6.4) of 70% to 85% have been manufactured, and densification has been an issue.

本発明はBa2At Cu307−y [ただしAは、
Y又はCe + P r 、 P m 、 T bを除
くランク、ンド元素のうちいずれか一種]の製造にあっ
て、前記従来方法の問題点を解決することを目的とする
ものである。
The present invention is based on Ba2AtCu307-y [where A is
The purpose of the present invention is to solve the problems of the conventional methods in the production of Y or any one of the rank and index elements excluding Ce + P r , P m , and T b.

く問題点を解決する手段〉 本発明は、 Ba  (OH)2  *  8H20゜A203[た
だしAは、Y又はCe、Pr。
Means for Solving Problems〉 The present invention provides Ba(OH)2*8H20°A203 [where A is Y, Ce, or Pr.

Pm、Tbを除くランタンド元素の うちいずれか一種] CuO又はCu2O 以上三種の材料を出発原料として混合し、仮焼、粉砕及
び焼成してBa2 A+ Cu307−yを生成するよ
うにしたことを特徴とするものである。
Any one of the lanthanide elements excluding Pm and Tb] CuO or Cu2O The above three materials are mixed as starting materials, and are calcined, pulverized and fired to produce Ba2 A+ Cu307-y. It is something to do.

〈実施例〉 第1図に示すように、出発原料として、Ba(OH)2
 * 8H20、Y203 、Cuoを所定量秤量し、
エチルアルコールを添加して混合粉砕し、500℃〜7
00℃で10時間仮焼し、これにエチルアルコールを添
加して粉砕した。そして、これを900℃〜1000℃
で5時間焼成し、その後、25℃/時間の割合で徐冷し
、400℃〜450℃で急冷しテBa2 YI Cu3
07−yを得た。
<Example> As shown in Fig. 1, Ba(OH)2 was used as a starting material.
*Weigh a predetermined amount of 8H20, Y203, and Cuo,
Add ethyl alcohol and mix and grind at 500℃~7
The mixture was calcined at 00° C. for 10 hours, and ethyl alcohol was added thereto and pulverized. Then, heat this to 900℃~1000℃
After that, it was slowly cooled at a rate of 25°C/hour, and then rapidly cooled at 400°C to 450°C.
07-y was obtained.

前記工程において、CuOに換えて、Cu2Oを用いる
ようにしてもよい。
In the step, Cu2O may be used instead of CuO.

かかる工程によって生じたBa2 yt Cu307−
yは、相対密度が90%〜96%であり、緻密なものを
得ることができた。
Ba2 yt Cu307- produced by this process
y had a relative density of 90% to 96%, and a dense product could be obtained.

また常伝導域での比抵抗も大幅に低下した。Moreover, the specific resistance in the normal conduction range was also significantly reduced.

尚、本発明はBa−Y−Cu−0系を例にとって説明し
たが、Ba−M−Cu−0系″[ただしMは、Ce 、
 P r 、 P m 、 T bを除くランタンド元
素のうちいずれか一種]の場合でも同様の効果を呈する
ことを確認した。
The present invention has been explained using the Ba-Y-Cu-0 system as an example, but the Ba-M-Cu-0 system'' [where M is Ce,
It was confirmed that the same effect is exhibited even when using any one of the lanthanide elements excluding P r , P m , and T b.

く効果〉 本発明の製造方法にあって、その製造過程で出発原料と
して炭酸塩を用いないから、仮焼物中に炭素Cが混在せ
ず、このため、粉砕と仮焼を繰返す必要がなく、さらに
は低温で仮焼するため仮焼物の硬度が低く、易粉砕性が
あって、製造が容易である。
Effects> Since the manufacturing method of the present invention does not use carbonate as a starting material in the manufacturing process, carbon C is not mixed in the calcined product, so there is no need to repeat crushing and calcining. Furthermore, since the calcined product is calcined at a low temperature, the calcined product has low hardness and is easily crushed, making it easy to manufacture.

またこの製造方法の結果生成されたBa2AICu30
7−y[ただしAは、Y又はCe 、 Pr 。
Also, Ba2AICu30 produced as a result of this manufacturing method
7-y [where A is Y or Ce, Pr.

Pm、Tbを除くランタンド元素のうちいずれか一種]
は、低温で仮焼したために、相対密度が高く、緻密な材
料を形成し得る。この緻密化は、Ba2 A+ Cu3
07−yの臨界温度Jcの向上には必要であり、より高
い臨界温度Jcの達成が期待される。
Any one of the lanthanide elements excluding Pm and Tb]
can form dense materials with high relative density due to low temperature calcination. This densification is Ba2 A+ Cu3
This is necessary to improve the critical temperature Jc of 07-y, and it is expected to achieve a higher critical temperature Jc.

さらにまた材料が水、二酸化炭素に対する特性の劣化が
少なく、対環境性が向上する。
Furthermore, the material has less deterioration in its properties against water and carbon dioxide, and its environmental resistance is improved.

その他、常伝導域での比抵抗も大幅に低下する。In addition, the specific resistance in the normal conduction range is also significantly reduced.

而て、本発明は極めて有益な製造方法である。Therefore, the present invention is an extremely useful manufacturing method.

【図面の簡単な説明】 第1図は本発明による製造工程を示す説明図、第2図は
従来の製造方法による製造工程を示す説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a manufacturing process according to the present invention, and FIG. 2 is an explanatory diagram showing a manufacturing process according to a conventional manufacturing method.

Claims (1)

【特許請求の範囲】 Ba(OH)_2・8H_2O, A_2O_3[ただしAは、Y又はCe,Pr,Pm,
Tbを除くランタンド元素の うちいずれか一種] CuO又はCu_2O 以上三種の材料を出発原料として混合し、仮焼、粉砕及
び焼成してBa_2AlCu_3O_7_−_yを生成
するようにしたことを特徴とする高温超伝導酸化物の製
造方法。
[Claims] Ba(OH)_2・8H_2O, A_2O_3 [However, A is Y or Ce, Pr, Pm,
Any one of the lanthanide elements excluding Tb] CuO or Cu_2O A high-temperature superconductor characterized in that the above three materials are mixed as starting materials, and calcined, crushed and fired to produce Ba_2AlCu_3O_7_-_y. Method for producing oxides.
JP62271270A 1987-10-26 1987-10-26 Production of high temperature superconducting oxide Pending JPH01111768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271270A JPH01111768A (en) 1987-10-26 1987-10-26 Production of high temperature superconducting oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271270A JPH01111768A (en) 1987-10-26 1987-10-26 Production of high temperature superconducting oxide

Publications (1)

Publication Number Publication Date
JPH01111768A true JPH01111768A (en) 1989-04-28

Family

ID=17497744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271270A Pending JPH01111768A (en) 1987-10-26 1987-10-26 Production of high temperature superconducting oxide

Country Status (1)

Country Link
JP (1) JPH01111768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264057A (en) * 1988-08-29 1990-03-05 Toshiba Corp Oxide superconducting member
JPWO2015019992A1 (en) * 2013-08-05 2017-03-02 学校法人同志社 Boron carbide ceramics and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310764A (en) * 1987-06-12 1988-12-19 Mamoru Omori Oriented oxide superconductor and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310764A (en) * 1987-06-12 1988-12-19 Mamoru Omori Oriented oxide superconductor and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264057A (en) * 1988-08-29 1990-03-05 Toshiba Corp Oxide superconducting member
JPWO2015019992A1 (en) * 2013-08-05 2017-03-02 学校法人同志社 Boron carbide ceramics and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH02502903A (en) Superconductivity in rectangular planar compound systems
JPH01188456A (en) Oxide high temperature superconductor
JPH062583B2 (en) High temperature superconductor and manufacturing method thereof
JPH0259465A (en) Production of oxide high temperature superconductor
JPH01111768A (en) Production of high temperature superconducting oxide
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
US5273956A (en) Textured, polycrystalline, superconducting ceramic compositions and method of preparation
JPH02133305A (en) R-tl-sr-ca-cu-o super conducting composition and its manufacture
JPH013061A (en) Method for manufacturing superconducting materials
US4906608A (en) Method for preparing superconductors ceramic composition
JPH0214871A (en) Production of copper oxide superconductor
JPS63260853A (en) Superconductive material
Lee et al. Preparation and properties of Pb‐doped Bi‐Sr‐Ca‐Cu‐O superconductors
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JPH02217316A (en) High-temperature superconductive material and its manufacture
JPH02204358A (en) Oxide superconductor and production thereof
JPH02204328A (en) Superconducting material composition
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPS63310764A (en) Oriented oxide superconductor and its production
Zhong et al. Synthesis and the magnetoresistance effect of layered-perovskite La 2.5-x K 0.5+ x Mn 2 O 7+ δ (0< x< 0.5) polycrystals
JPS63274654A (en) Production of superconductive material
JPS63274655A (en) Production of superconductive material
JPH01286918A (en) Oxide superconductor and production thereof