JPS63274438A - Liquid weighing and mixing apparatus - Google Patents

Liquid weighing and mixing apparatus

Info

Publication number
JPS63274438A
JPS63274438A JP62106414A JP10641487A JPS63274438A JP S63274438 A JPS63274438 A JP S63274438A JP 62106414 A JP62106414 A JP 62106414A JP 10641487 A JP10641487 A JP 10641487A JP S63274438 A JPS63274438 A JP S63274438A
Authority
JP
Japan
Prior art keywords
liquid
control
metering
weighing
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106414A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Shigeru Yamaguchi
滋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62106414A priority Critical patent/JPS63274438A/en
Priority to DE3852716T priority patent/DE3852716T2/en
Priority to EP19880106918 priority patent/EP0289048B1/en
Priority to CN88103591A priority patent/CN1042267C/en
Priority to US07/189,099 priority patent/US4830508A/en
Publication of JPS63274438A publication Critical patent/JPS63274438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/565Mixing liquids with solids by introducing liquids in solid material, e.g. to obtain slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2204Controlling the mixing process by fuzzy control, i.e. a prescribed fuzzy rule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/881Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise by weighing, e.g. with automatic discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Dispersion Chemistry (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To perform a wide range of weighing within a short time with high accuracy, by a method wherein opening degree control valves are respectively provided to a plurality of supply containers while a liquid amount detector is provided to a liquid receiving container to control the opening degree control valves on the basis of an actually weighed value and a weighing set value. CONSTITUTION:For example, in a system for weighing and mixing two kinds of liquids, when a manufacturing condition is indicated to a weighing control apparatus 3, a weighing set value is set and valves 9, 19, 10 are changed over to a weighing system line. When a stopper valve 8 is opened and an opening degree control valve 7 is adjusted to a predetermined opening degree, the raw material of a tank 1 is transferred to a tank 2 and the wt. of the transferred raw material is detected by the load cell 4 of the tank 2 and the value thereof is fed back to the weighing control apparatus 3 through a load cell amplifier 5. The control apparatus 3 operates the deviation between the actual wt. value and the set value and the timewise change quantity of the deviation to issue a new opening degree order to the next control cycle. A tank 11 is also controlled in the same way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多種類の原料液をそれぞれ計量後、混合して
新たな混合液を調製する液体計量混合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a liquid measuring and mixing device that prepares a new mixed liquid by measuring and mixing various types of raw material liquids.

(従来技術) 従来、液体計量混合装置に適用される計量装置として、
高精度な計量を達成するために、流速可変に設けたもの
はなく、流速を制限した計量装置が用いられている。
(Prior art) Conventionally, as a measuring device applied to a liquid measuring and mixing device,
In order to achieve highly accurate metering, a metering device with a limited flow rate is used instead of one with a variable flow rate.

また、従来タイプの液体計量混合装置においては、複数
の供給容器から1つの容器に液を供給する場合、それぞ
れの供給容器に付属して計量装置を具備している。
Furthermore, in conventional liquid measuring and mixing apparatuses, when liquid is supplied from a plurality of supply containers to one container, a measuring device is provided attached to each supply container.

例えば、容積計量式を用いた場合、第6図に図示する様
に、2液体に対しては2個の計量装置を使用し、流れ込
み量の予測制御のため、2ループの制御機能を特徴とす
る 特開昭56−74715号及び特開昭5111−163
426号公報ではそれぞれ「調液装置」及び「液体の供
給方法」が開示されており、これら公報では各法の流量
が共通の計量装置により順次計測されているものの、各
容器に付属して液を流出する液供給手段はそれぞれ独立
の制御ループにより制御されている。
For example, when using a volumetric measuring system, two measuring devices are used for two liquids, and a two-loop control function is used to predict and control the inflow amount, as shown in Figure 6. JP-A-56-74715 and JP-A-5111-163
Publication No. 426 discloses a "liquid preparation device" and a "liquid supply method," and although these publications sequentially measure the flow rate of each method using a common measuring device, a liquid preparation device is attached to each container. The liquid supply means for discharging the liquid are controlled by independent control loops.

すなわち、液の流量は、供給容器内の液量、バルブ流量
特性、液物性等により異なるため、同一の制御機能では
高精度な計量が期待できないことによった。
That is, since the flow rate of the liquid varies depending on the amount of liquid in the supply container, the valve flow rate characteristics, the physical properties of the liquid, etc., highly accurate metering cannot be expected with the same control function.

このことは、タンク計量方式においても同様であり、各
基に付属するアクチュエータの閉止弁はそれぞれ独立ル
ープの制御系で制御される必要がある。
This also applies to the tank metering system, and the shutoff valves of the actuators attached to each unit need to be controlled by independent loop control systems.

また、高精度な計量を実現するため、流速の異なるパル
プを並列に設置して、所定の計量偏差にて切替る方法が
あるが、この場合でも制御機能として、2ループの制御
が必要である。
In addition, in order to achieve high-accuracy metering, there is a method of installing pulps with different flow rates in parallel and switching at a predetermined metering deviation, but even in this case, two-loop control is required as a control function. .

ここで、2ループの制御機能と言う表現を使用している
のは、例えば、分散型制御装置等を使用した場合、計量
は1つの制御装置内で処理可能であり、制御装置が2個
必要であるとは言えないからである。しかし、入出力点
数、ソフトウェアからみた場合、2個の制御装置と言え
る。
Here, we use the expression 2-loop control function because, for example, when using a distributed control device, weighing can be processed within one control device, and two control devices are required. This is because it cannot be said that it is. However, in terms of the number of input/output points and software, it can be said that there are two control devices.

(発明が解決しようとする問題点) 従来の液体計量混合装置では、流速一定を前提とした計
量制御のため、以下の欠点を有する。
(Problems to be Solved by the Invention) Conventional liquid metering and mixing devices have the following drawbacks because the metering control is based on a constant flow rate.

■ 計量精度:外乱や液物性の変化による流速変動によ
り、精度が保証されない事態を生じる。
■ Weighing accuracy: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances or changes in liquid physical properties.

すなわち、重力移送の場合、例えば供給側容器の液残存
量により、流出する液の流速は変動するが、残存量の変
化が大きいと流速がある条件範囲をはみ出すため、精度
を悪(した。
In other words, in the case of gravity transfer, the flow rate of the outflowing liquid varies depending on, for example, the amount of liquid remaining in the supply side container, but if the change in the remaining amount is large, the flow rate goes outside a certain condition range, resulting in poor accuracy.

また、このことは、供給側容器の液量をある中白で制限
し、液量を常にある一定量以上に確保する必要があり、
液のロスを生じてランニングコストを増加させた。
In addition, this means that it is necessary to limit the amount of liquid in the supply side container to a certain level and ensure that the amount of liquid is always above a certain level.
This caused liquid loss and increased running costs.

■ 計量範囲二計量範囲が狭い。■ Weighing range 2 The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み量があり、この量が流速により決定されるため、流
速一定のもとでは、計量範囲を狭めることにより、許容
できる流れ込み量を保証している。従って、同−液の計
量であっても、おのおの適性な計量範囲の計量装置が必
要であり、装置数が増加する。
The reason for this is that even if the metering is stopped, there is still some inflow due to the response delay of the system, and this amount is determined by the flow velocity. Therefore, when the flow rate is constant, an acceptable inflow can be guaranteed by narrowing the measurement range. are doing. Therefore, even when measuring the same liquid, measuring devices each having an appropriate measuring range are required, and the number of devices increases.

■ 計量時間:計量設定値により計量時間が左右される
■Measuring time: Measuring time is affected by the measurement settings.

計量設定値が小さい場合は、計量時間は短く、大きい場
合は長くなる。従って、製造サイクル上適性な計量装置
が計量値に応じて必要であり、装置数が増加する。
If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long. Therefore, a measuring device suitable for the manufacturing cycle is required depending on the measured value, and the number of devices increases.

また、従来の液体計量混合装置は、前述した理由により
、独立に制御される計量装置を、供給容器毎に多数台設
置し、かつ製造能力の制限による最適計量時間毎に設置
しているため、システムを複雑にすると共に、非常に多
くの計量装置が設備化された。
Furthermore, in conventional liquid measuring and mixing apparatuses, for the reasons mentioned above, a large number of independently controlled measuring devices are installed for each supply container, and are installed at each optimum measuring time due to manufacturing capacity limitations. The system became complicated and a large number of measuring devices were installed.

本発明の目的は、上記事情に基づいてなされたもので、
外乱や液物性の変化による流速変動に影響されない高精
度な計量を実現すると共に、ワイドレンジの計量範囲を
確保し、かつ計量設定値の大小に左右されないで短時間
計量を実現する計量制御装置を用い、これによりシステ
ムを構成し、設備の簡素化並びに製造能力の増強と、原
材料ロスの低減を計り、 ■ 装置台数の低減によるイニシャルコスト低減■ 装
置台数の低減によるメンテナンス工数低減■ !7E置
装数の低減による信頼性向上による故障低減 ■ 原材料ロスの低減によるランニングコスト低減 の経済効果の高い液体計量混合装置を提供することにあ
る。
The object of the present invention was achieved based on the above circumstances, and
A measurement control device that achieves high-precision measurement that is unaffected by flow rate fluctuations due to disturbances or changes in liquid physical properties, secures a wide measurement range, and realizes short-time measurement without being affected by the size of the measurement setting value. Using this, we can configure the system to simplify equipment, increase manufacturing capacity, and reduce raw material loss. ■ Reduce initial cost by reducing the number of devices ■ Reduce maintenance man-hours by reducing the number of devices ■! 7E Reducing failures by improving reliability by reducing the number of devices■ Our objective is to provide a liquid measuring and mixing device that is economically effective in reducing running costs by reducing raw material loss.

(問題点を解決するための手段) 本発明の上記目的は、被計量液の計量時に、クローズド
ループ制御にて流速を時々刻々可変にする計量制御装置
を適用すると共に、前記計量制御装置の設備台数が低減
化できる液体計量混合装置により達成される。そのため
、下記の構成要素により、本発明の液体計量混合装置は
構成される。
(Means for Solving the Problems) The above object of the present invention is to apply a metering control device that changes the flow rate from time to time by closed loop control when measuring a liquid to be measured, and to provide equipment for the metering control device. This is achieved by using liquid measuring and mixing devices that can reduce the number of devices. Therefore, the liquid measuring and mixing device of the present invention is constituted by the following components.

l)供給容器:計量される液を貯蔵する容器。l) Supply container: container that stores the liquid to be metered.

容器の容量は、製造に適したスケ ールを要する。The capacity of the container is determined by the scale suitable for manufacturing. Requires a tool.

本発明にて、容器の残量の制限は なく、理論的には残量0まで計量 できる、又、液の物性値(例えば、 粘度等)に影響されず、流出可能 な液物性値を有していれば、どん な液でも残量Oまで計量可能であ る。In the present invention, the limit on the remaining amount of the container is Theoretically, the remaining amount can be weighed to 0. Also, the physical property values of the liquid (e.g. Possible to flow out without being affected by viscosity, etc.) If it has liquid physical property values, It is possible to measure even liquids up to the remaining amount O. Ru.

2)開度調整弁:供給容器数に対応した個数分の開度調
整弁を有し、弁の開度を変 化させる事で流速を変化させる流 速制御弁である。
2) Opening adjustment valve: This is a flow rate control valve that has opening adjustment valves corresponding to the number of supply containers, and changes the flow rate by changing the opening of the valve.

駆動としては、例えばACサーボ モータ等がある。As a drive, for example, AC servo There are motors etc.

3)切替装置:複数の開度調整弁を、1台の駆動制御装
置にて制御するための装置 である、開度調整弁毎に駆動制御 装置を有する場合は必要ないが、 コスト低減のために設置する場合 がある。
3) Switching device: This is a device for controlling multiple opening adjustment valves with one drive control device. Although it is not necessary if each opening adjustment valve has a drive control device, it is used to reduce costs. It may be installed in

4)計量制御装置!=流速を変化させるクローズドルー
プ制御の精密計量制御装置で あり、1台の計量装置にて、各法 の計量を行う。
4) Metering control device! = It is a closed-loop controlled precision metering control device that changes the flow rate, and one metering device performs each method of metering.

複数の液を同一容器にて1台の計 量装置にて計量が可能であり、装 置数が低減出来る。One unit can handle multiple liquids in the same container. It can be measured with a weighing device, and The number of locations can be reduced.

5)受液容器:製造スケールに通した容量の容器。5) Receiving container: A container with the capacity to pass through the manufacturing scale.

混合可能な液については、累積計 量にて計量する。For miscible liquids, cumulative Measure by volume.

計量移液毎の洗浄を行えば、混合 不可の場合でも単独に同一容器に て計量できる。Mixing is possible by cleaning after each measured liquid transfer. Even if this is not possible, place them separately in the same container. It can be weighed by

攪拌混合を本容器にて行うことも 可能である。Stirring and mixing can also be done in this container. It is possible.

本発明の基本構成要素は、上記の通りであるが、流速を
可変するクローズドループの計量制御装置を用いる事が
基本となり、他に種々の付帯装置を設置する場合がある
The basic components of the present invention are as described above, but the basic component is the use of a closed-loop metering control device that varies the flow rate, and various auxiliary devices may be installed.

例えば、洗浄のため、各容器にスプレーボール等を設置
し、配管途中に切替弁を設置する。又、各容器に混合等
のため攪拌機を設置する。更に、保温のため恒温槽等か
らの温水循環等を行う。
For example, a spray ball or the like is installed in each container for cleaning, and a switching valve is installed in the middle of the piping. Also, install a stirrer in each container for mixing. Additionally, hot water from a constant temperature bath, etc. will be circulated to maintain heat.

(実施態様) 以下、図面により本発明の実施態様を詳説する。(Embodiment) Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.

第1図の1実施態様は、2種液計量混合システムを示し
ている。すなわち、このシステムは、上流側に配置した
供給容器としての2つのタンクから原料液を移送し、下
流側に配置した受液容器としての1つのタンクに供給す
ることにより、この受液容器にて2液体を累積計量して
混合するものである。
One embodiment of FIG. 1 shows a two-liquid metering and mixing system. In other words, this system transfers raw material liquid from two tanks serving as supply containers placed on the upstream side and supplies it to one tank serving as a liquid receiving container placed on the downstream side. Two liquids are cumulatively measured and mixed.

上流側の2つのタンク1.11にはドレインバルブ(D
RV)9.19と、ス)−/プハルブ(S P V)8
.18を配置した配管路12.13がそれぞれ接続され
ており、前記DRV9,19にはそれぞれ開度調整弁(
FCV)?、ITが付属して設けられている。
The two upstream tanks 1.11 are equipped with drain valves (D
RV) 9.19 and S)-/Phalbu (SPV) 8
.. 18 are connected to the piping lines 12 and 13, respectively, and the DRVs 9 and 19 each have an opening adjustment valve (
FCV)? , IT is attached and provided.

前記配管路12.13は端部に配置した共通の連結管コ
Oに連設されており、洗浄・廃液パルプ(CVD)10
を介して下流側のタンク2にそれぞれ液を移送可能に設
けている。また、前記連結管20の上流側には洗浄開始
弁(CIV)14及びエア抜き弁(ADV)15が配置
されており、洗浄液が前記CIV14を通して連結管J
O内に導入可能に設けられている。
The piping lines 12 and 13 are connected to a common connecting pipe O placed at the end, and are connected to a cleaning/waste pulp (CVD) 10.
The liquids can be transferred to the tanks 2 on the downstream side via the respective tanks. Further, a cleaning start valve (CIV) 14 and an air vent valve (ADV) 15 are arranged on the upstream side of the connecting pipe 20, and the cleaning liquid passes through the CIV 14 to the connecting pipe J.
It is provided so that it can be introduced into O.

前記下流側のタンク2には、被計量液の重量を計測する
検出器としてのロードセル4が配置されている。ロード
セル4はロードセルアンプ5を通して計量制御装置3と
接続されている。
A load cell 4 as a detector for measuring the weight of the liquid to be measured is arranged in the tank 2 on the downstream side. The load cell 4 is connected to the weighing control device 3 through a load cell amplifier 5.

前記計量制御装置3はサーボドライバ6を介して切替装
置16と接続されている。
The metering control device 3 is connected to a switching device 16 via a servo driver 6.

前記切替装置16は前記2つの液供給系に配置した開度
調整弁7.17及びストッパバルブ8.18にそれぞれ
接続しており、計量制御装置3の指令に基づいて前記2
つの系を選択可能に切替える。
The switching device 16 is connected to an opening adjustment valve 7.17 and a stopper valve 8.18 arranged in the two liquid supply systems, respectively, and is connected to the opening adjustment valve 7.17 and the stopper valve 8.18 arranged in the two liquid supply systems.
Switch between two systems.

このように構成された液体計量混合装置の動作プロセス
について説明する。
The operation process of the liquid measuring and mixing device configured in this way will be explained.

計量制御装置3に製造条件(タンク1の液の計量、続い
てタンク11の液の計量等々の条件)が指定される。
Manufacturing conditions (conditions for measuring the liquid in tank 1, then measuring the liquid in tank 11, etc.) are specified to the metering control device 3.

計量制御装置3に計量設定値が設定され、DRV9.1
9、CDVIOが計量系ラインに切り喚えられる。計量
開始が指示されると、5PV8が開となり、FCV7が
、予め定められた開度となるように、計量制御装置3か
らサーボドライバ6に位置指令が伝送され、サーボモー
タを駆動して指示された位置にFCV7の弁ポートを設
定して、開度を調整し、原材料の流れを引き起こす、こ
れにより、タンク1の原材料は、タンク2に移送され始
める。
The measurement setting value is set in the measurement control device 3, and DRV9.1
9. CDVIO is called out to the measurement system line. When the start of metering is instructed, PV 8 is opened, and a position command is transmitted from the metering control device 3 to the servo driver 6 so that the FCV 7 has a predetermined opening degree, and the servo motor is driven to receive the instruction. The valve port of FCV7 is set to the position shown in FIG.

タンク2のロードセルは、移送された原材料の重量を検
知し、その値をロードセルアンプ5を通じて計量制御装
′t、3にフィードバックする。
The load cell of the tank 2 detects the weight of the transferred raw material and feeds back the value to the weighing control device 3 through the load cell amplifier 5.

計量制御装置3は、このフィードバックされた実重量値
から、設定値との偏差、偏差の時間変化量を演算し、フ
ァジィ制御、最適制御、学習制御の何れかの制御方式に
基づき、次の制御周期において適切な流速となる開度指
令(位置指令)を演算にて求める。そして、次の制御周
期において、FCV7に新たな開度指令(位置指令)を
指示し、流速を変更する。
The weighing control device 3 calculates the deviation from the set value and the time change amount of the deviation from this fed-back actual weight value, and performs the next control based on one of the control methods of fuzzy control, optimal control, and learning control. Calculate the opening command (position command) that will give an appropriate flow velocity in the cycle. Then, in the next control cycle, a new opening degree command (position command) is given to the FCV 7 to change the flow velocity.

以上の様に、ロードセル4の観測量を基に、定められた
制御周期にてFCV7の開度をクローズドループにて制
御し、結果として流速を制御する。
As described above, based on the observed amount of the load cell 4, the opening degree of the FCV 7 is controlled in a closed loop at a predetermined control cycle, and as a result, the flow velocity is controlled.

計量偏差が小さくなると、FCV7は開度を絞り、微小
流速となる。計量偏差、計量偏差の時間変化量が小さく
なり、計量偏差がある値以下となると、計量停止し、5
PV8は閉となり、FCV7は全閉方向に移動する。こ
のとき、流速は微小であり、流れ込み量は微小である。
When the metering deviation becomes smaller, the FCV 7 narrows its opening and becomes a minute flow velocity. When the weighing deviation and the amount of time change in the weighing deviation become smaller and the weighing deviation becomes less than a certain value, the weighing stops and the
PV8 is closed, and FCV7 moves in the fully closed direction. At this time, the flow velocity is minute and the amount of inflow is minute.

よって、計量低下後の流れ込み量は小さくなり、計量精
度は、流速変動に依存せず向上する。更に、計量範囲に
おいて、計量設定値とかプロセスの系によりFCv7の
動作が変わり、計量設定値の大小を問わず同一計量装置
にて計量ができ、計量範囲が拡大する。但し、検出端の
静的精度内である。又、計量時間においても、FCV7
の動作パターンが変化し、計量設定値の大小を問わず、
はぼ同一の短時間の計量ができる。
Therefore, the amount of flow after the metering decreases becomes smaller, and the metering accuracy improves regardless of flow velocity fluctuations. Furthermore, in the measurement range, the operation of the FCv7 changes depending on the measurement setting value and the process system, and the same measurement device can perform measurement regardless of the size of the measurement setting value, expanding the measurement range. However, it is within the static accuracy of the detection end. Also, during the measurement time, FCV7
The operation pattern changes, regardless of the size of the weighing set value.
It is possible to perform the same measurement in a short time.

次に、タンク11の液の計量に切りかわる。切替装置1
6をタンク11側のFCV17に切替える。計量設定値
は予め設定されており、計量開始指令に従い上記と同様
な制御を行い計量する。制御装置内の制御機能は同一で
あり、操作端のFCV17及び5PV18に出力信号が
切替装置16にて切替られるのみである。
Next, the process switches to measuring the liquid in the tank 11. Switching device 1
6 to FCV 17 on the tank 11 side. The measurement setting value is set in advance, and the same control as above is performed in accordance with the measurement start command to perform measurement. The control functions within the control device are the same, and only the output signals to the FCV 17 and 5PV 18 of the operating end are switched by the switching device 16.

液は、連結管りQを共存して、タンク2に移液される。The liquid is transferred to the tank 2 through the connecting pipe Q.

この連結管の意味は、配管口径を大きくして、配管中の
残液を自然落下させる。従って、計量精度を向上させる
ために、本連結管の配管長は極力短いことが必要である
。しかし、本連結管を使用せずに、タンク2に各々単独
配管して接続する方法もある。この場合、タンク2の大
きさが有限であるため混合される液量が制限され、加え
て複数の液を受液する場合、配管構成が困難となる設備
上の問題があるが、反面、連結管中の残量が問題となる
超高精度な計量には有利である。
The meaning of this connecting pipe is to increase the diameter of the pipe and allow the remaining liquid in the pipe to fall naturally. Therefore, in order to improve measurement accuracy, it is necessary that the length of this connecting pipe be as short as possible. However, there is also a method of connecting to the tank 2 by piping each separately without using the main connecting pipe. In this case, since the size of the tank 2 is finite, the amount of liquid to be mixed is limited, and in addition, when receiving multiple liquids, there are equipment problems such as difficulty in piping configuration. This is advantageous for ultra-high precision metering where the amount remaining in the tube is a problem.

本発明は、液体における加算式計量(計量タンクに貯め
て計量する方式)の−例であり、図中のDRV9,19
、CDVIOlCI V14 (洗浄開始弁)、ADV
15(エア抜き弁)は、付随的な洗浄、廃液等のための
弁である。
The present invention is an example of additive metering (method of storing and measuring liquid in a metering tank), and DRV9, 19 in the figure.
, CDVIOlCI V14 (cleaning start valve), ADV
15 (air bleed valve) is a valve for incidental cleaning, waste liquid, etc.

従って、例えばタンク1の液を計量し、その後洗浄を行
い、次にタンク11の液を計量する場合について、タン
ク1の液の計量終了後、連結管のみの洗浄であれば、C
DVIOを廃液側に切替で、CIV14を開として洗浄
する。この時、ADV15は閉、5pvsと5PV1B
も閉とする。ある所定の時間洗浄すると、CIV14は
閉となり、ADV15は開となる。その後、ADV15
は閉となり、次のタンク11の計量に入る。
Therefore, for example, when measuring the liquid in tank 1, cleaning after that, and then measuring the liquid in tank 11, if only the connecting pipe is cleaned after measuring the liquid in tank 1, C.
Switch the DVIO to the waste liquid side and open the CIV14 for cleaning. At this time, ADV15 is closed, 5pvs and 5PV1B
Also closed. After cleaning for a certain predetermined time, CIV 14 is closed and ADV 15 is opened. After that, ADV15
is closed and the next tank 11 is weighed.

次に、第1図に図示した装置を用い、前述したプロセス
に基づいて行った計量結果を示す。
Next, the results of measurements carried out using the apparatus shown in FIG. 1 and based on the process described above will be shown.

本結果の計量装置は、最大10kgの計量ができ、ロー
ドセルの精度は5ooo分の1である。FCV(開度調
整弁)はサーボモータにて位置制御され、計量制御装置
から位置指令が出力される。
The resulting weighing device can weigh up to 10 kg, and the accuracy of the load cell is 1/500. The position of the FCV (opening adjustment valve) is controlled by a servo motor, and a position command is output from a metering control device.

第4図は、2種類の開度調整弁の流量特性を示す、この
2種類の開度調整弁を第1図の構成系に設置して制御方
式等全く変更せずに計量を行った。
FIG. 4 shows the flow rate characteristics of two types of opening adjustment valves.These two types of opening adjustment valves were installed in the system shown in FIG. 1, and measurement was performed without changing the control method or the like.

第5図は、その時の1000 g計量結果を示す0図5
−aは図4−aの流量特性を持つ開度調整弁の結果であ
り、図5−bは図4−bの結果である。
Figure 5 shows the 1000 g weighing result at that time.
-a is the result of the opening adjustment valve having the flow rate characteristic of FIG. 4-a, and FIG. 5-b is the result of FIG. 4-b.

第5図から明らかなように、当然開度調整弁の弁開度の
動作パターンは変わるが、はぼ同じ計量時間で、高精度
の計量が得られた。
As is clear from FIG. 5, although the operation pattern of the opening degree of the opening adjustment valve changes, highly accurate measurement was obtained in approximately the same measurement time.

本系での実験では、同一の液体について行い、開度調整
弁の流量特性を異ならせて、液物性の違いによる効果を
評価した。更には、上流タンクの液量を異ならせての実
験も行った。その結果、同一の制御装置にて、所定の開
度調整弁やストップ弁に切替えるのみで、高精度、広範
囲、短時間計量が確認できた。
In experiments using this system, the same liquid was used, and the flow characteristics of the opening adjustment valve were varied to evaluate the effects of differences in liquid physical properties. Furthermore, experiments were also conducted with different liquid volumes in the upstream tank. As a result, we were able to confirm high accuracy, wide range, and short time metering by simply switching to the predetermined opening adjustment valve and stop valve using the same control device.

また、本計量系では、第4図に示したように、液の残存
量により同−開度であっても流量、すなわち流速は異な
る。しかし、液の残存量を各水準にて測定したが、当然
弁開度の動作パターンは異なるもの、計量′時間、計量
精度共に同一の結果を得た。又、計量範囲についても、
1:lOOの範囲にて、±1.Og以内の精度が保証さ
れた。
Furthermore, in this measuring system, as shown in FIG. 4, the flow rate, that is, the flow rate, differs depending on the remaining amount of liquid even if the opening is the same. However, although the remaining amount of liquid was measured at each level, although the operation pattern of the valve opening was different, the same results were obtained in terms of measuring time and measuring accuracy. Also, regarding the measurement range,
In the range of 1:1OO, ±1. Accuracy within 0g was guaranteed.

前記実施態様では、2液体を計量、混合する場合につい
て述べたが、本発明は、同一受液容器にて計量する液種
の数が多数あってもよい。しかし、システム上、同一計
量装置にて制御される開度調整弁の数としては、約8個
程度が望ましい。
In the embodiment described above, a case was described in which two liquids were measured and mixed, but in the present invention, a large number of liquid types may be measured in the same liquid receiving container. However, in terms of the system, it is desirable that the number of opening adjustment valves controlled by the same metering device be about eight.

次に、本発明の最も一般的な態様について説明する。Next, the most general aspect of the invention will be described.

第2図は、多種液累積計量に適用される装置の制御ブロ
ック図であり、この装置は、N個の供給容器に付属して
N個の開度調整弁及びN個の閉止弁を有しており、切替
装置によって選択される某のそれぞれの弁が、計量制御
部及び駆動制御部の指令によって駆動される駆動モータ
により開閉される。そして、累積計量される各法は、ロ
ードセルにより実重量値が計測されて、この値が計量制
御部にフィードバックされる。
FIG. 2 is a control block diagram of a device applied to cumulative metering of multiple liquids, and this device has N opening adjustment valves and N shutoff valves attached to N supply containers. Each of the valves selected by the switching device is opened and closed by a drive motor driven by commands from the metering control section and the drive control section. For each cumulative weighing method, the actual weight value is measured by a load cell, and this value is fed back to the weighing control section.

本発明の変更例として、受液容器に検出器を設置して計
量する加算計量方式と、供給容器に検出器を設置して流
出する液の量を計量する減算計量方式とを組み合わせる
ことも出来る。
As a modification of the present invention, it is also possible to combine the addition measurement method in which a detector is installed in the liquid receiving container to measure the liquid, and the subtraction measurement method in which a detector is installed in the supply container to measure the amount of liquid flowing out. .

第3図は上記変更例の制御ブロック図を示している。す
なわち、図中、計量タンクNは供給容器を示しており、
この容器に充填された液は流出量がロードセルNにより
計量されると共に、計量タンクAで示す受液容器に移液
されてロードセルAにより累積計量される。減算計量及
び累積計量により得られた2値は、それぞれの計量制御
部にフィードバックされる。計量制御部は、それぞれ設
定された計量設定値との間で偏差及び偏差時間変化量を
算出し、ファジィ制御等に基づいた開度指令を出力する
。2つの計量制御部の出力は制御方式切替装置により切
替えられて駆動制御部を制御する。
FIG. 3 shows a control block diagram of the above modification. That is, in the figure, the measuring tank N indicates the supply container,
The outflow amount of the liquid filled in this container is measured by a load cell N, and the liquid is transferred to a liquid receiving container indicated by a measuring tank A, and cumulatively measured by a load cell A. The binary values obtained by the subtraction metric and cumulative metric are fed back to the respective metric control sections. The metering control section calculates a deviation and a time change amount of the deviation between the set metering setting values, and outputs an opening command based on fuzzy control or the like. The outputs of the two metering control sections are switched by a control method switching device to control the drive control section.

上述のような構成とすることにより、例えば、減算計量
にて微小計量を行い、加算式計量にて計量設定値の大き
なものを計量することで、更に広い計量範囲の計量が出
来る。
With the above configuration, for example, by performing minute measurements using subtraction weighing and weighing items with large measurement settings using additive weighing, it is possible to perform measurements over a wider measurement range.

更に、溶液のみの製造システムでは、計量タンクに攪拌
機、温水循環装置等を付帯設備として設置して、調製タ
ンクとして位置付けると、計量、混合、反応等が同一容
器にて行う事が出来る。
Furthermore, in a solution-only manufacturing system, if a measuring tank is equipped with an agitator, a hot water circulation device, etc. as incidental equipment and positioned as a preparation tank, measuring, mixing, reaction, etc. can be performed in the same container.

また、前記実施態様では、計量のための検出装置として
、ロードセルを例として学げたが、他の検出器にても可
能である0例えば、差圧伝送器等の圧力検出器、各種レ
ベル計等がある。なお、ここで、計量範囲は、その検出
器の静的精度により異なる。
In addition, in the above embodiment, a load cell was used as an example of a detection device for measurement, but other detectors can also be used.For example, pressure detectors such as differential pressure transmitters, various level meters, etc. There is. Note that here, the measurement range differs depending on the static accuracy of the detector.

更に、開度調整弁の駆動装置としてサーボモータを例と
して述べたが、位置制御出来る装置であれば、いずれの
機器でもよい。
Further, although a servo motor has been described as an example of a drive device for the opening adjustment valve, any device that can control the position may be used.

(発明の効果) 以上記載したとおり、本発明の液体計量混合装置によれ
ば、計量設定値、残存液量、液物性等に左右されない計
量装置の適用により、 ■ 計量装置台数の低減 ■ 原材料のロスの低減 ができるため、下記の経済的効果を得ることができる。
(Effects of the Invention) As described above, according to the liquid measuring and mixing device of the present invention, by applying a measuring device that is not affected by the measurement setting value, residual liquid amount, liquid physical properties, etc., ■ Reduction in the number of measuring devices ■ Since loss can be reduced, the following economic effects can be obtained.

■ 装置台数の低減によるイニシャルコスト低減 ■ 装置台数の低減によるメンテナンスエ敗低減 ■ 装置台数の低減による信軌性向上による故障低減 ■ 流速制御のため原材料残存量(ヘッド差)等に影響
されず、原材料ロスの低減によるランニングコスト低減
■ Reducing initial costs by reducing the number of devices ■ Reducing maintenance errors by reducing the number of devices ■ Reducing failures by improving reliability by reducing the number of devices ■ Because of flow rate control, it is not affected by the remaining amount of raw material (head difference), etc. Reducing running costs by reducing raw material loss

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様による2種液計装置の構成
図、第2図は本発明による多種成畦混合装置を説明する
制御ブロック図、第3図は発明の変更例による制御ブロ
ック図、第4図は発明に基づいて、第1図に示した装置
を用いてうた計量実験において適用した開度調整弁の流
特性図であり、(a)は流速大のタイプ、O1+)は流
速のタイプ、をそれぞれ示しており、第5図は実による
計量結果を示す図であり、(a)及び山)は第1に示す
(al及び(blにそれぞれ対応した図、第6は従来装
置を示す構成図である。 1.11・・・上流側タンク(供給容器)、2・・・下
流タンク(受液容器)、3・・・計量制御装置、4・・
・−ドセル、5・・・ロードセルアンプ、6・・・サー
ボモータ、7.17・・・開度調整弁(FCV) 、8
゜・・・ストツパバルブ、9.19・・・ドレインバル
ブ(RV ’) 、10・・・洗浄・廃液バルブ(CD
v)、1213・・・配管路、14・・・洗浄開始弁(
CIV)、15・・・ア抜き弁(ADV>、16・・・
切替装置、コO・・・連結第4図 (a) (b) ?M攬(mm) 第5図 1τt II h+ Cstg ttf al U (sec)
FIG. 1 is a configuration diagram of a two-liquid meter device according to an embodiment of the present invention, FIG. 2 is a control block diagram illustrating a multi-type ridge mixing device according to the present invention, and FIG. 3 is a control block diagram according to a modification of the invention. 4 are flow characteristic diagrams of the opening adjustment valve applied in the song metering experiment using the device shown in FIG. 1 based on the invention, (a) is the high flow velocity type, Figure 5 is a diagram showing the actual measurement results, and (a) and (mountain) are shown in the first diagram (corresponding to al and (bl), respectively, and the sixth diagram is the conventional one). It is a configuration diagram showing the device. 1.11... Upstream tank (supply container), 2... Downstream tank (liquid receiving container), 3... Metering control device, 4...
-Docell, 5... Load cell amplifier, 6... Servo motor, 7.17... Opening adjustment valve (FCV), 8
゜...Stopper valve, 9.19...Drain valve (RV'), 10...Washing/waste valve (CD)
v), 1213... Piping line, 14... Cleaning start valve (
CIV), 15...A release valve (ADV>, 16...
Switching device, CO...Connection Figure 4 (a) (b)? M (mm) Fig. 5 1τt II h+ Cstg ttf al U (sec)

Claims (1)

【特許請求の範囲】 1)流速を変化させるクローズドループの液体計量方法
を用いて複数液を累積計量して混合する液体計量混合装
置であって、少なくとも2個以上の供給容器と、各供給
容器からの移液を混合する受液容器と、前記供給容器と
受液容器との間に配置され、各供給容器に付属して流速
を制御する開度調整弁と、少なくとも前記受液容器に付
属して液量を計測する検出器と、前記検出器により計量
された実計量値と計量設定値とに基づいて流速制御量を
算出する計量制御装置と、計量制御装置の出力を前記開
度調整弁にそれぞれ切替えて出力する切替装置と、から
成ることを特徴とする液体計量混合装置。 2)計量制御装置は任意に設定される計量設定値と実計
量値との偏差及び偏差時間変化量からファジィ制御、学
習制御、最適制御の何れかの制御方法にて流速変化量を
算出することを特徴とする特許請求の範囲第1項に記載
の液体計量混合装置。 3)受液容器に調製用付帯設備を設置して調製容器を兼
用することにより、計量から反応に至るプロセスが同一
容器にて行われることを特徴とする特許請求の範囲第1
項に記載の液体計量混合装置。
[Claims] 1) A liquid measuring and mixing device that cumulatively measures and mixes multiple liquids using a closed-loop liquid measuring method that changes the flow rate, comprising at least two or more supply containers and each supply container. a liquid receiving container for mixing the liquid transferred from the liquid receiving container; an opening adjustment valve disposed between the supply container and the liquid receiving container and attached to each supply container to control the flow rate; and an opening adjustment valve attached to at least the liquid receiving container. a detector that measures the amount of liquid; a metering control device that calculates a flow rate control amount based on the actual measured value measured by the detector and the metering setting value; and a metering control device that adjusts the output of the metering control device to the opening degree. A liquid measuring and mixing device characterized by comprising: a switching device that switches to each valve and outputs the output. 2) The metering control device shall calculate the amount of change in flow velocity using one of the following control methods: fuzzy control, learning control, or optimal control from the deviation between the arbitrarily set metering value and the actual metering value and the amount of deviation time change. A liquid measuring and mixing device according to claim 1, characterized in that: 3) The first claim is characterized in that the process from measurement to reaction is performed in the same container by installing ancillary equipment for preparation in the liquid receiving container so that it can also be used as a preparation container.
The liquid metering and mixing device described in Section.
JP62106414A 1987-05-01 1987-05-01 Liquid weighing and mixing apparatus Pending JPS63274438A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62106414A JPS63274438A (en) 1987-05-01 1987-05-01 Liquid weighing and mixing apparatus
DE3852716T DE3852716T2 (en) 1987-05-01 1988-04-29 Measuring mixing device for liquids and powders.
EP19880106918 EP0289048B1 (en) 1987-05-01 1988-04-29 Measuring mixer for liquids and powders
CN88103591A CN1042267C (en) 1987-05-01 1988-04-30 Controlling method and measuring mixer for liquids and powders
US07/189,099 US4830508A (en) 1987-05-01 1988-05-02 Controlling method and a measuring mixer for liquids and powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106414A JPS63274438A (en) 1987-05-01 1987-05-01 Liquid weighing and mixing apparatus

Publications (1)

Publication Number Publication Date
JPS63274438A true JPS63274438A (en) 1988-11-11

Family

ID=14433010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106414A Pending JPS63274438A (en) 1987-05-01 1987-05-01 Liquid weighing and mixing apparatus

Country Status (1)

Country Link
JP (1) JPS63274438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181942A (en) * 2006-01-05 2007-07-19 Hitachi Industrial Equipment Systems Co Ltd Two-pack type resin casting method and casting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181942A (en) * 2006-01-05 2007-07-19 Hitachi Industrial Equipment Systems Co Ltd Two-pack type resin casting method and casting apparatus

Similar Documents

Publication Publication Date Title
EP0290889B1 (en) Method of and apparatus for measuring liquid
US4976377A (en) Liquid and powder measuring apparatus
US4830508A (en) Controlling method and a measuring mixer for liquids and powders
US11768099B2 (en) Calibration method for liquid flowmeter
JP3882148B2 (en) Continuous automatic manufacturing system for automobiles and other paints
JPS62502422A (en) Device for automatic measurement of fluid material passing amount using continuous balance
KR20010043856A (en) Loss-in-weight feeder control
JPS6348550B2 (en)
JPS63283731A (en) Liquid and powder metering and mixing apparatus
US6782327B2 (en) Method and apparatus for measuring material
JPS63274438A (en) Liquid weighing and mixing apparatus
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
EP0398708A1 (en) Flowmeter
US20060116835A1 (en) Measurement of batch properties
JPS63278540A (en) Liquid weighing and mixing device
JP3174656B2 (en) Liquid dispensing equipment
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
JPH01100612A (en) Liquid measuring and mixing device
JPH01159040A (en) Method and apparatus for measuring, mixing and distributing liquid
JPS63283732A (en) Liquid-powder metering and mixing apparatus
JPS63274441A (en) Powder weighing and mixing apparatus
JPS63274440A (en) Liquid and powder weighing and mixing apparatus
JPS63273013A (en) Measurement of liquid
JPH0543408B2 (en)
JPS63283730A (en) Liquid metering and mixing apparatus