JPS63274441A - Powder weighing and mixing apparatus - Google Patents

Powder weighing and mixing apparatus

Info

Publication number
JPS63274441A
JPS63274441A JP62106415A JP10641587A JPS63274441A JP S63274441 A JPS63274441 A JP S63274441A JP 62106415 A JP62106415 A JP 62106415A JP 10641587 A JP10641587 A JP 10641587A JP S63274441 A JPS63274441 A JP S63274441A
Authority
JP
Japan
Prior art keywords
powder
weighing
flow rate
control
metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106415A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Hiroshi Onishi
弘志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62106415A priority Critical patent/JPS63274441A/en
Priority to EP19880106918 priority patent/EP0289048B1/en
Priority to DE19883852716 priority patent/DE3852716T2/en
Priority to CN88103591A priority patent/CN1042267C/en
Priority to US07/189,099 priority patent/US4830508A/en
Publication of JPS63274441A publication Critical patent/JPS63274441A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/565Mixing liquids with solids by introducing liquids in solid material, e.g. to obtain slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2204Controlling the mixing process by fuzzy control, i.e. a prescribed fuzzy rule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/881Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise by weighing, e.g. with automatic discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/242Component parts, details or accessories; Auxiliary operations for feeding in measured doses
    • B29B7/244Component parts, details or accessories; Auxiliary operations for feeding in measured doses of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To perform the weighing and mixing of a powder always with high accuracy, by respectively providing flow speed controllers to a plurality of supply containers and providing a powder amount detector on the side of a receiving container to control the flow speed controllers on the basis of a detected actually weighed value and a weighing set value. CONSTITUTION:The indication of a storage hopper becoming a mixing object, weighing order, a mixing condition or the like are indicated to a weighing control apparatus 17 and a weighing set value is subsequently set. When weighing start is indicated, for example, the screw feeder 12 of a storage hopper 1 selected by a change-over apparatus 19 is rotate in the set number of rotations to transfer a powder to a weighing hopper 14. The load cell 15 of the weighing hopper 14 detects the wt. of the transferred powder and the value thereof is fed back to a weighing control part. In the weighing control part, the deviation between an actual wt. value and the set value is calculated and the proper number of rotations are indicated to the screw feeder 12 at the next control cycle. In the same way, the amount of the powder from each storage hopper is subjected to weighing control.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多種類の粉体をそれぞれ計量後、混合して新
たな材料を製造する粉体計量混合装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a powder measuring and mixing device that manufactures new materials by weighing and mixing various types of powder.

(従来技術) 従来、粉体計量混合装置に適用される計量装置として、
高精度な計量を達成するために、流速可変に設けたもの
はなく、流速を制限した計量装置が用いられている。
(Prior art) Conventionally, as a measuring device applied to a powder measuring and mixing device,
In order to achieve highly accurate metering, a metering device with a limited flow rate is used instead of one with a variable flow rate.

また、従来タイプの粉体計量混合装置においては、複数
の供給容器から1つの容器に粉体を供給する場合、それ
ぞれの供給容器に付属して計量装置を具備している。
Furthermore, in conventional powder measuring and mixing apparatuses, when powder is supplied from a plurality of supply containers to one container, a measuring device is provided attached to each supply container.

例えば、重量計量式を用いた場合、第5図に図示する様
に、2粉体に対しては2個の計量装置を使用し、流れ込
み量の予測制御のため、2ループの制御機能を特徴とす
る 特開昭56−148019号及び特開昭56−1554
12号公報には、過去所定数の計量サイクルにおける被
計量体の総排出重量と所要時間から平均流量を算出し、
この平均流量をもとに設定計量値との偏差を求めて、次
回の計量サイクルにおける流量又は所定時間を調整する
制御方法が開示されている。
For example, when using a gravimetric method, two weighing devices are used for two powders, and a two-loop control function is used to predict and control the amount of inflow, as shown in Figure 5. JP-A-56-148019 and JP-A-56-1554
Publication No. 12 states that the average flow rate is calculated from the total discharge weight of the object to be measured and the required time in a predetermined number of past measurement cycles,
A control method is disclosed in which the deviation from the set measurement value is determined based on this average flow rate, and the flow rate or predetermined time in the next metering cycle is adjusted.

すなわち、粉体の流、tは、供給容器内の粉体残存量、
計量設定値、粉体物性値等により異なるため、同一の制
御機能では高精度な計量が期待できないことによつな。
That is, the powder flow, t, is the remaining amount of powder in the supply container,
Since the values differ depending on the measurement setting value, powder physical property value, etc., highly accurate measurement cannot be expected with the same control function.

また、高精度な計量を実現するため、流速を2種類の固
定条件に切り換えられる機能を有した装置を設置し、所
定の計量偏差にて切替る方法(特開昭57−72015
号公報)があるが、この場合でも制御機能として、2ル
ーズの制御が必要である。
In addition, in order to achieve highly accurate measurement, we have installed a device that has the function of switching the flow rate between two types of fixed conditions, and a method of switching at a predetermined measurement deviation (Japanese Patent Laid-Open No. 57-72015
However, even in this case, two-loose control is required as a control function.

ここで、2ループの制御擾能と言う表現を使用している
のけ、例えば、分散型制御装置等を使用した場合、計量
は1つの制御装置内で処理可能であシ、制御装置が2個
必要であるとけ言えないからである。しかし、入出力点
数、ソフトウェアがらみ念場合、2個の制御装置と言え
る。
Here, we are using the expression 2-loop control capability; for example, if a distributed control device is used, metering can be processed within one control device; This is because it cannot be said that each is necessary. However, when considering the number of input/output points and software, it can be said that there are two control devices.

(発明が解決しようとする問題点) 従来の液体計量混合装置では、流速一定を前提とした計
量制御のため、以下の欠点を有する。
(Problems to be Solved by the Invention) Conventional liquid metering and mixing devices have the following drawbacks because the metering control is based on a constant flow rate.

■計量精度:外乱や粉体物性値の変化による流速変動に
より、精度が保証されない事 態を生じる。
■Measuring accuracy: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances or changes in powder physical properties.

特に1吸湿性のある粉体とかブリッジを起ζし易い粉体
では、その保存環境条件によってその粉体の流動性は異
なる。従って、供給容器に保存しながら使用するシステ
ムでは、環境条件の変化(例えば、温度、湿度とか粉体
の流動性促進のための付帯設備・・・バイブレータやエ
アーノツカー等・−による振動)Kより、その粉体の流
動性は変化する。このため、流速の条件が異なり計量精
度を悪化させてしまう。その対策として、保存量の制限
やその装置の設置環境条件の制限が、計量精度維持に必
要であり、その結果設備的にイニシャルコストやランニ
ングコストを増加させる。
Particularly in the case of hygroscopic powders or powders that tend to cause bridging, the fluidity of the powders differs depending on the storage environment conditions. Therefore, in a system that is used while being stored in a supply container, changes in environmental conditions (e.g., vibrations due to temperature, humidity, ancillary equipment for promoting powder fluidity, such as vibrators, air knockers, etc.) The fluidity of the powder changes. For this reason, the flow velocity conditions differ and the measurement accuracy deteriorates. As a countermeasure, it is necessary to limit the storage amount and the installation environment conditions of the device in order to maintain measurement accuracy, which results in increased initial cost and running cost of equipment.

■計量範囲:計量範囲が狭い。■Measuring range: The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み景があシ、この貴が流速により決定されるため、流
速一定のもとでは、計量範囲を狭めることKよシ、許容
できる流れ込み量を保証している。従って、同一粉体の
計量であっても、おのおの適性な計量範囲の計量装置が
必要であり、装置数が増加する。
The reason for this is that even if the metering is stopped, the inflow will still be visible due to the response delay of the system, and this flow rate is determined by the flow velocity. Quantity is guaranteed. Therefore, even if the same powder is to be weighed, weighing devices each having an appropriate measuring range are required, which increases the number of devices.

■計量時間二計量設定値により計量時間が左右される。■Measuring time 2.Measuring time is affected by the measurement setting value.

計量設定値が小さい場合は、計量時間は短かく、大きい
場合は長くなる。従って、製造サイクル上適性な計量装
置が計量値に応じて必要であシ、装置数が増加する。
If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long. Therefore, a measuring device suitable for the manufacturing cycle is required depending on the measured value, and the number of devices increases.

また、従来の粉体計量混合装置は、前述した理由により
、独立に制御される計量装置を、供給容器毎に多数台設
置し、かつ製造能力の制限による最適計量時間毎に設置
しているため、システムを複雑にすると共に1非常に多
くの計量装置が設備化された。
In addition, for the reasons mentioned above, conventional powder measuring and mixing equipment requires a large number of independently controlled measuring devices to be installed for each supply container, and also for each optimal measuring time due to manufacturing capacity limitations. 1, a large number of weighing devices were installed, complicating the system.

本発明の目的は、上記事情に基づいてなされたもので、
外乱や粉体物性の変化による流速変動に影響されない高
精度な計量を実現すると共に、ワイドレンジの計量範囲
を確保し、かつ計量設定値の大小に左右されないで短時
間計量を実現する計量制御装置を用い、これによりシス
テムを構成し、設備の簡素化並びに製造能力の増強と、
原材料ロスの低減を計り、 ■装置台数の低減によるイニシャルコスト低減■装置台
数の低減によるメンテナンス工数低減■装置台数の低減
による信頼性向上による故障低減 ■原材料ロスの低減によるランニンダコスト低減の経済
効果の高い粉体計量混合装置を提供することKある。
The object of the present invention was achieved based on the above circumstances, and
A weighing control device that achieves high-precision weighing that is unaffected by flow velocity fluctuations due to disturbances or changes in powder physical properties, secures a wide weighing range, and realizes short-time weighing without being affected by the size of the weighing set value. By using this, we can configure the system, simplify the equipment, increase the manufacturing capacity,
In order to reduce raw material loss, ■ Initial cost reduction by reducing the number of equipment ■ Reducing maintenance man-hours by reducing the number of equipment ■ Reducing failures by improving reliability by reducing the number of equipment ■ Economic effect of reducing running costs by reducing raw material loss It is an object of the present invention to provide a powder metering and mixing device with high performance.

(問題点を解決するための手段) 本発明の上記目的は、被計量粉体の計量時に、クローズ
ドループ制御にて流速を時々刻々可変にする計量制御装
置を適用すると共に1前記計量制御装置の設備台数が低
減化できる粉体計量混合装置によル達成される。そのた
め、下記の構成要素により、本発明の粉体計量混合装置
は構成される。
(Means for Solving the Problems) The above object of the present invention is to apply a metering control device that changes the flow rate from time to time by closed loop control when measuring powder to be measured, and to 1. This is achieved by using a powder measuring and mixing device that can reduce the number of equipment. Therefore, the powder measuring and mixing device of the present invention is configured by the following components.

1)供給容器:計量される粉を貯蔵する容器。1) Supply container: A container that stores the powder to be measured.

容器の容量は、製造に適したスケールを要する。The capacity of the container requires a scale suitable for manufacturing.

本発明にて、容器の残量の制限はなく、理論的には残t
oまで計量できる。又、粉の物性値(例えば、粒状等)
!/C影響されず、流出可能な粉物性値を有していれば
、どんな粉でも残量Ofで計量可能である。
In the present invention, there is no limit to the amount remaining in the container, and theoretically the amount remaining in the container is not limited.
Can measure up to o. Also, the physical properties of the powder (e.g. granularity, etc.)
! /C Any powder can be measured with the remaining amount Of as long as it has physical property values that allow it to flow out without being affected.

2)流速制御装置:供給容器数に対応した個数分の流速
制御機を有し、例えば、スクリューフィーダでは、回転
数を指令することで流れを制御する。
2) Flow rate control device: It has a number of flow rate control devices corresponding to the number of supply containers. For example, in a screw feeder, the flow is controlled by commanding the rotation speed.

ダンパーでは開度を変化させることで流れを変化させる
流速制御装置である。
A damper is a flow velocity control device that changes the flow by changing the opening degree.

駆動としては、例えばACCサーモータ等がある0 3)切替装Wt:複数の流速制御機を、1台の駆動制御
装置にて制御するための装置である。流速制御装置に駆
動制御装置を有する場合は必要ないが、コスト低減のた
めに設置する場合がある。
As a drive, there is an ACC thermomotor, etc., for example. 3) Switching device Wt: A device for controlling a plurality of flow rate controllers with one drive control device. Although it is not necessary if the flow rate control device includes a drive control device, it may be installed to reduce costs.

4)計量制御装置:流速を変化させるクローズドループ
制御の精密計量制御であり、1台の計量装置にて、各粉
体の計量を行う。
4) Metering control device: Closed-loop precision metering control that changes the flow rate, and each powder is weighed with one metering device.

複数の粉を同一容器にて1台の計量装置1ilCて計量
が可能であり、装賛数が低減出来る。
It is possible to measure a plurality of powders in the same container using one measuring device 1ilC, and the number of devices to be used can be reduced.

5)受粉容器:製造スケールに適した容量の容器。5) Pollination container: A container with a capacity suitable for the manufacturing scale.

混合可能な粉忙ついては、累積計量にて計量するO 本発明の基本構成要素は、上記の通シであるが、流速を
可変する流速制御機は、各種タイプがある。
Mixable powders are measured by cumulative metering.The basic components of the present invention are as described above, but there are various types of flow rate controllers that vary the flow rate.

回転数の指令にて流れを可変させるスクリューフィーダ
、ロータリ式があり、流動性のよい粉体であれば、開度
タンクぐKて位置指令にて開度を可変して流れを変化さ
せるものがある。又、流れを停止させるものとしてシャ
ッターダート等がある。
There are screw feeders and rotary types that vary the flow by commanding the rotation speed, and if the powder has good fluidity, there are feeders that change the flow by varying the opening by position commands using the opening tank. be. Additionally, there are shutter darts and the like that stop the flow.

(実施態様) 以下、図面により本発明の実施態様を説明する。(Embodiment) Embodiments of the present invention will be described below with reference to the drawings.

第1図の1実施態様は、Nf1!の粉体の計量混合装置
を示している。すなわち、この実施態様では、上流側に
配置したN個の供給容器としての貯蔵ホラI4に原材料
を充填し、このホッパから下流側に配置した1個の受粉
容器としての計量水タンクに粉体を供給し、N種の粉体
の電食を累積計量した後、調製タンクに粉体を移送して
調製を行う場合を述ぺる。
One embodiment of FIG. 1 is Nf1! This figure shows a metering and mixing device for powders. That is, in this embodiment, raw materials are filled into N storage hoppers I4 as supply containers arranged on the upstream side, and powder is poured into a metering water tank as one pollination container arranged on the downstream side from this hopper. A case will be described in which the powder is fed and the electrolytic corrosion of the N type powder is cumulatively measured, and then the powder is transferred to a preparation tank for preparation.

貯蔵ホツ/ダ1 、2、−、 Nは、それぞれサーがモ
ータ11,21.・−、NIKよシ駆動されるスクリュ
ーフィーダ12.22.−、N2を介して。
Storage cylinders 1, 2, -, N are connected to motors 11, 21, .・-, screw feeder driven by NIK 12.22. -, via N2.

出口がシャッタゲート13,23.−、N3と接続され
ておシ、それぞれのダート出力は配管により計量ホッパ
14に案内されている。
The exits are shutter gates 13, 23. - and N3, and the respective dart outputs are guided to the weighing hopper 14 by piping.

前記計量水ツノや14には、各貯蔵タンクから移送され
る粉の重量を計測するために、検出器としてのロードセ
ル15が配置されている。ロードセル15はロードセル
アンプ16を通して計量制御装fjt17と接続されて
おシ、計量制御装置17はサーゲドライバ18を介して
切替装置19と接続されている。
A load cell 15 as a detector is arranged in the measuring water horn 14 in order to measure the weight of powder transferred from each storage tank. The load cell 15 is connected to a weighing control device fjt17 through a load cell amplifier 16, and the weighing control device 17 is connected to a switching device 19 via a serge driver 18.

前記切替装置19は、計量制御装置17の指令に基づい
て切替わ9、前記粉体供給系の1つを選択すると共に、
計量制御装置から対応するシャッターダートへの開閉指
令と、サーがドライバ18からの駆動指令を所定のモー
タに伝えるように設けている。
The switching device 19 switches 9 based on a command from the metering control device 17 to select one of the powder supply systems, and
It is provided so that opening/closing commands from the metering control device to the corresponding shutter darts and drive commands from the driver 18 are transmitted to predetermined motors.

また、計量ホッパ#14は排出f−)を介して調製タン
ク50に接続されており、計量ホッパー内に残存する粉
体をなくすため、パイブレータヤエアーノツカなどの付
帯設備が具備されている。調製タンク50は攪拌機51
を配置し、出口に底弁52を備えている。
In addition, the weighing hopper #14 is connected to the preparation tank 50 via the discharge f-), and is equipped with incidental equipment such as a pibrator and air knocker in order to eliminate powder remaining in the weighing hopper. The preparation tank 50 is a stirrer 51
, and is equipped with a bottom valve 52 at the outlet.

次に、このように構成された粉体計量混合装置の粉体計
量混合プロセスについて、第2図の制御ブロック図を併
用して説明する。
Next, the powder measuring and mixing process of the powder measuring and mixing apparatus configured as described above will be explained with reference to the control block diagram shown in FIG. 2.

まず、計量制御装置17内の計量制御部17aに、混合
の対象となる貯蔵ホッパの指定、対象貯蔵ホッパの計、
tJlj序等の計量及び混合条件が指定される。
First, the metering control unit 17a in the metering control device 17 specifies the storage hopper to be mixed, the total of the target storage hopper,
Measurement and mixing conditions such as tJlj order are specified.

計量制御装置17に計量設定値が設定され、計量開始が
指示されると、最初に切替装置19により選択された供
給系、ここでは貯蔵ホッパflのシャッターゲート13
が開とな夛、スクリューフィーダ12が予め定められた
回転数で粉体を移送するように、計量制御装置17の駆
動制御部17bからサーがドライバ18に回転数指令が
伝送され、サーブモータ11を駆動して指示された回転
数にスクリューフィーダを回転させ、原材料の流れを引
き起こす。これにより、貯蔵ホッパ41の原材料は、計
量ホッパ#14に移送され始める。
When the metering setting value is set in the metering control device 17 and the start of metering is instructed, the supply system selected by the switching device 19, here the shutter gate 13 of the storage hopper fl, is first
When the screw feeder 12 is opened, a rotation speed command is transmitted from the drive control unit 17b of the metering control device 17 to the serve driver 18 so that the screw feeder 12 transfers the powder at a predetermined rotation speed, and the serve motor 11 to rotate the screw feeder to the specified rotation speed and cause the raw material to flow. As a result, the raw material in storage hopper 41 begins to be transferred to weighing hopper #14.

計量ホツノクのロードセル15Fi、移送された原材料
の重量を検知し、その値をロードセルアンプ16を通じ
て計量制御部17mにフィードバックする。
The load cell 15Fi of the weighing unit detects the weight of the transferred raw material, and feeds back the value to the weighing control unit 17m through the load cell amplifier 16.

計量制御部17aは、このフィードバックされた実重量
値から、設定値との偏差、偏差の時間変化量を演算し、
ファジィ制御、最適制御、学習制御の制御方式に基づき
、次の適切な流速となる開度指令(位置指令)を演算に
て求める。そして、次の制御周期において、駆動制御部
17bけスクリューフィーダに適切な回転数指令を指示
し、流速を変更する。
The weighing control unit 17a calculates the deviation from the set value and the time change amount of the deviation from the fed-back actual weight value,
Based on the control methods of fuzzy control, optimal control, and learning control, the opening command (position command) that provides the next appropriate flow velocity is calculated. Then, in the next control cycle, the drive control unit 17b instructs the screw feeder with an appropriate rotational speed command to change the flow velocity.

以上の様に10−ドセル15の観測量を基に、定められ
た制御周期にてスクリューフィーダの回転数をクローズ
ドループにて制御し、結果として流速を制御する。
As described above, the rotation speed of the screw feeder is controlled in a closed loop at a predetermined control period based on the observed amount of the 10-dossel 15, and as a result, the flow velocity is controlled.

計量偏差が小さくなると、スクリューフィーダ12の回
転数は小さくなシ、流速は微小となる。
When the metering deviation becomes small, the rotation speed of the screw feeder 12 becomes small and the flow velocity becomes very small.

計量偏差、計量偏差時間の時間変化量が小さくなり、計
量偏差がある値以下となると、計量停止し、シャッタゲ
ート13は閉となり、スクリューフィーダ12の回転数
は0とな)、回転を停止する。
When the amount of time change in the weighing deviation and the weighing deviation time becomes smaller and the weighing deviation becomes less than a certain value, the weighing is stopped, the shutter gate 13 is closed, and the rotation speed of the screw feeder 12 is 0), and the rotation is stopped. .

このとき、流速は微小であり、流れ込み量は微小である
。よって、計量停止後の流れ込み量は小さセスの系によ
りスクリユーフィーダの動作が変わシ、計量設定値の大
小を問わず同一計量装置にて計量ができ、計量範囲が拡
大する。但し、検出端の静的精度内である。
At this time, the flow velocity is minute and the amount of inflow is minute. Therefore, the operation of the screw feeder changes depending on the small recess system for the inflow amount after the metering is stopped, and the same metering device can measure the amount regardless of the size of the metering setting value, expanding the metering range. However, it is within the static accuracy of the detection end.

又、計量時間においても、シャッタゲートの動作パター
ンが変化し、計量設定値の大小を問わず、はぼ同一の短
時間の計量ができる。
Also, the operating pattern of the shutter gate changes during the metering time, and regardless of the magnitude of the metering setting value, almost the same short-time metering can be performed.

次に1同じく選択されたホッパ2の粉の計量に切シかわ
る。切替装置19はホッパ2側のスクリュフィーダ22
に切替る。計量設定値は予め設定されており、計量開始
指令に従い上記と同様な制御を行い計量する。すなわち
制御装置内の制御機能は同一であ夛、操作端のスクリュ
ーフィーダ22及びシャッタゲート23への出力信号が
切替装置19にて切や替えられるのみである。
Next, the process switches to measuring the flour in hopper 2, which was also selected. The switching device 19 is connected to the screw feeder 22 on the hopper 2 side.
Switch to. The measurement setting value is set in advance, and the same control as above is performed in accordance with the measurement start command to perform measurement. That is, the control functions within the control device are the same, and only the output signals to the screw feeder 22 and shutter gate 23 at the operating end are switched by the switching device 19.

計量ホッパ14により複数種の粉体の累積計量が終了す
ると、計量ホッパ14の排出ダートが開き、粉体を調製
タンク50へ導入する。なお、計量ホッパからの排出に
際しては、付帯設備であるパイプレークなどKより全量
排出される。調製タンク50では、所定の薬液が添加さ
れると共に1攪拌機51が駆動して混合が行われる。攪
拌の終了と共に1混合粉体は底弁52が開いて排出され
る。
When the cumulative weighing of a plurality of types of powder is completed by the weighing hopper 14, the discharge dart of the weighing hopper 14 is opened and the powder is introduced into the preparation tank 50. In addition, when discharging from the weighing hopper, the entire amount is discharged from K, which is ancillary equipment such as a pipe lake. In the preparation tank 50, a predetermined chemical solution is added and one stirrer 51 is driven to perform mixing. At the end of stirring, the bottom valve 52 opens and the mixed powder is discharged.

次に、本発明に基づいて行った実験結果について述べる
Next, the results of experiments conducted based on the present invention will be described.

この実験は、先の第1図に示した計量装置において、貯
蔵ホラ/42台を有し、調製タンクのない系にて実験を
行った。
This experiment was conducted using the measuring device shown in FIG. 1, which had 42 storage containers and no preparation tank.

本結果の計量装置は、最大501C9の計量ができ、ロ
ードセルの精度は2500分の1である。スクリューフ
ィーダはインバータモータにて回転数制御され、計量制
御装置から回転数指令(電圧出力)が出力される。
The resulting weighing device can weigh up to 501C9, and the accuracy of the load cell is 1/2500. The rotation speed of the screw feeder is controlled by an inverter motor, and a rotation speed command (voltage output) is output from the metering control device.

第6図は、2種類の粉体の各々のインバータ入力電圧(
回転数)に対する流量(平均値)特性を示す。この2種
類の粉体の特徴につい七記すと、粉体Aは顆粒状であり
、見掛は比重0.5程度であり、粉体Bは付着性の強い
小麦粉体のものであり、見掛は比重は0.5程度である
。この2種類の粉体について@1図の構成系にて、各々
制御方式等全く変更せずに順次計量を行った。つまり、
貯蔵ホッパ1の粉体Aを、貯蔵ホッパ42に粉体Bをい
れ、各々同一の制御装置で、切替装置19を切替ること
で順次計量を行った。
Figure 6 shows the inverter input voltage (
This shows the flow rate (average value) characteristics relative to rotation speed). To describe the characteristics of these two types of powder, Powder A is in the form of granules and has an apparent specific gravity of approximately 0.5, while Powder B is a highly adhesive wheat flour with an apparent appearance. has a specific gravity of about 0.5. These two types of powder were sequentially measured using the configuration shown in Figure 1 without changing the control system or the like. In other words,
Powder A in the storage hopper 1 and powder B in the storage hopper 42 were sequentially weighed by switching the switching device 19 using the same control device.

第7図は、その時の粉体Aの1 kg計量結果を示す。FIG. 7 shows the result of weighing 1 kg of powder A at that time.

又、第8図に粉体Bの1kg計量結果を示す。Furthermore, Fig. 8 shows the results of weighing 1 kg of powder B.

第7図と第8図から明らか々通り、スクリューフィーダ
の回転数の動作パターンは変わるが、はぼ同じ計量時間
で高精度の計量結果が得られた。
As is clear from FIGS. 7 and 8, highly accurate weighing results were obtained with approximately the same weighing time, although the operation pattern of the screw feeder rotation speed was different.

又、貯蔵ホラ/譬に振動を加え粉体を圧縮し、流動性を
変化させるなど、流量特性に変化を加えたが、当然スク
リューフィーダの動作ノ々ターンは異なるものの、計量
時間、計量精度共に同一の結果を得た。
In addition, changes were made to the flow characteristics by applying vibration to the storage bowl to compress the powder and change the fluidity. Although the number of turns of the screw feeder's operation is different, both the metering time and metering accuracy were improved. I got the same results.

第1表は、計量設定値に対する計量時間及び計量精度の
関係を示す。尚、計量精度は別の検定された重量計にて
流出粉体を計測したものである。
Table 1 shows the relationship between measurement time and measurement accuracy with respect to measurement settings. Note that the measurement accuracy was determined by measuring the flowed powder using a different certified weighing scale.

5kgの計量では、本実験系で使用したインバータモー
タの最大回転数の制限にて計量時間は長くなったものの
計量精度は±29−であった。このインバータモータの
能力を上げれば、計量時間については短縮可能である。
When weighing 5 kg, the weighing time was longer due to the limit on the maximum rotation speed of the inverter motor used in this experimental system, but the weighing accuracy was ±29-. By increasing the capacity of this inverter motor, the measuring time can be shortened.

第9図に粉体Bの5 kg計量結果を示すが、これから
明らかなように最大回転数で流出しており、この流出速
度が向上すれば更に時間短縮となる。
FIG. 9 shows the results of weighing 5 kg of powder B. As is clear from this, it flows out at the maximum rotation speed, and if this flow rate is increased, the time will be further shortened.

第1表 又、本実験系では、2500分の1の精度のロードセル
を使用したため、501F計量の場合、精度は±2ノで
おり、これはロードセルの静荷重精度と等しい。したが
って、ロードセルとして5000分の1のタイプを使用
すれば、計量レンツl:100において±1.0チの精
度が得られることが分かる。更に、本実験系では、イン
バータモータを使用し、回転数レンジ(最低回転数と最
大回転数の比)は1:10であった。このモータをサー
はモータに変更すれば、よシ回転数レンジが広がシ計量
しンゾ1:100において同一の計量時間並びKよシ高
精度の計量が可能である。
Table 1 Also, in this experimental system, a load cell with an accuracy of 1/2500 was used, so in the case of 501F measurement, the accuracy was ±2, which is equal to the static load accuracy of the load cell. Therefore, it can be seen that if a 1/5000 type is used as a load cell, an accuracy of ±1.0 inch can be obtained at a weighing lens l:100. Furthermore, in this experimental system, an inverter motor was used, and the rotation speed range (ratio of minimum rotation speed to maximum rotation speed) was 1:10. If this motor is replaced with a rotary motor, the range of revolutions will be widened, and high-accuracy measurement will be possible with the same measuring time at 1:100.

前記実施態様では、N種の粉体を1つの計量ホッパ々に
て累積計量する場合について述べておシ、計量する籾種
の数を制限するものでは々い。しかし、システム上、同
一計量装置にて制御するスクリューフィーダの数として
は、約8側径度が最適である。
In the embodiment described above, the case is described in which N types of powder are cumulatively weighed in one weighing hopper, and the number of paddy types to be weighed is not limited. However, in view of the system, the optimum number of screw feeders to be controlled by the same metering device is about 8 side diameters.

第3図は本発明の変更例を示している。FIG. 3 shows a modification of the invention.

この変更例では、先の実施態様において述べた受粉容器
に検出器を設置して計量する加算計量方式と、これとは
別に供給容器に検出器を設置して、流出する粉の量を計
量する減算計量方式と、を組み合わせている。
In this modified example, a detector is installed in the pollination container described in the previous embodiment to measure the amount of powder, and a detector is installed in the supply container to measure the amount of powder flowing out. It combines the subtraction weighing method.

すなわち、図中、1からN−1番目までの貯蔵ホラ/母
並びにその粉体供給系及び計量混合系砿先の実施態様と
同一構成であり、従って同一符号を用いて説明は省略す
る。本例では、貯蔵ホッパNがロードセルN5に設置さ
れており、ホッパぐNの流出粉量が計量される。また、
ホラINHの出口には開度ダン・4N6が設けられてお
り、ダンノ4の開度により流出素が制御される。なお、
図中では、減算計量の操作端として開度ダン・やを示し
ているが、他のスクリューフィーダ等においても可能で
ある。
That is, in the figure, it has the same configuration as the embodiment of the 1st to N-1th storage hollow/matter, its powder supply system, and measuring/mixing system cutting tip, so the same reference numerals will be used and the explanation will be omitted. In this example, a storage hopper N is installed on a load cell N5, and the amount of powder flowing out of the hopper N is measured. Also,
An opening degree DAN 4N6 is provided at the outlet of the hole INH, and the outflow element is controlled by the opening degree of DAN NO 4. In addition,
In the figure, the opening degree is shown as the operation end for subtraction metering, but it is also possible for other screw feeders and the like.

第4図は、上記変更例の制御ブロック図を示している。FIG. 4 shows a control block diagram of the above modification.

すなわち、貯蔵ホラINNに関して述べると、貯蔵ホツ
I々NK充填された粉体は流出量がロードセルN5によ
り減算計量されると共に1計量ホツノ譬14に移送され
た際、既に移送されている峠蔵ホツz月、2.・ 、N
−1の粉体と累積計量される。このようにして減算計量
方式及び累積計量方式によりそれぞれ得られた実計量値
は、対応する減算方式計量制御部17a“及び加算方式
計量制御部171′にそれぞれフィードバックされる。
In other words, regarding the storage hole INN, when the outflow amount of the powder filled in the storage hole I-NK is subtracted and measured by the load cell N5 and transferred to the 1-measurement hot spring 14, the powder that has been filled in the storage hole I-NK is transferred to the storage hole INN which has already been transferred. z month, 2.・ , N
-1 powder is cumulatively weighed. The actual measurement values obtained by the subtraction measurement method and the cumulative measurement method in this way are fed back to the corresponding subtraction method measurement control section 17a'' and addition method measurement control section 171', respectively.

各計量制御部17 a’ 、 17 a”はそれぞれ設
定され九計景設定値との間で偏差及び偏差時間変化量を
算出し、ファジィ制御又は学習制御又は最適制御に基づ
いてスクリューフィーダの回転数及び位置指令変換部1
7Cにより変換された開度ダンパN6の開度を、駆動制
御部17bに伝え、切替装置19で切替えて出力する。
Each of the metering control units 17 a' and 17 a'' calculates the deviation and deviation time change amount between the set value and the set value, and adjusts the rotation speed of the screw feeder based on fuzzy control, learning control, or optimal control. and position command converter 1
The opening degree of the opening damper N6 converted by 7C is transmitted to the drive control section 17b, and is switched and outputted by the switching device 19.

上述のような構成とすることにより、例えば、減算計量
にて微小計量を行い、加算式計量にて計量設定値の大き
なものを計量することで、更に広い計量範囲の計量が出
来る。
With the above configuration, for example, by performing minute measurements using subtraction weighing and weighing items with large measurement settings using additive weighing, it is possible to perform measurements over a wider measurement range.

また、本発明の変更例として、調製タンクを移動式に設
けることも出来る〇 このように構成することにより、例えば攪拌。
Further, as a modification of the present invention, the preparation tank can be provided in a mobile manner. By configuring it in this way, for example, stirring can be performed.

反応時に調製タンクに供給される複数種の薬液を、それ
ぞれに対応した排出y−ト下を調製タンクが移動するこ
とにより、配管系を簡素化して所望液のみを受液できる
By moving a plurality of types of chemical liquids supplied to the preparation tank during the reaction under the corresponding discharge yt, the preparation tank can simplify the piping system and receive only the desired liquid.

なお、先の第1図の実施態様では、検出装置として、ロ
ードセルを例として挙げたが、他の検出器にても可能で
ある。例えば、各種レベル計等がある。ここで、計量範
囲は、その検出機の静的精度により異なる。
In the embodiment shown in FIG. 1, a load cell was used as an example of the detection device, but other detectors may also be used. For example, there are various level meters. Here, the measurement range varies depending on the static accuracy of the detector.

(発明の効果) 以上記載したとおり、本発明の粉体計量混合装置によれ
ば、計量設定値、残存粉量、粉物性等に左右されない計
量装置の採用により、 ■計量装置台数の低減 ■原材料のロスの低減 ができるため、下記の経済的効果を得ることができる。
(Effects of the Invention) As described above, according to the powder measuring and mixing device of the present invention, by adopting a measuring device that is not affected by measurement settings, residual powder amount, powder properties, etc., ■ Reduction in the number of measuring devices ■ Raw materials Since the loss can be reduced, the following economic effects can be obtained.

■装置台数の低減によるイニシャルコスト低減■装置台
数の低減によるメンテナンス工数低減■装置台数の低減
による信頼性向上による故障低減 ■流速制御のため原材料の残存!(ヘッド差)等に影響
されず、原材料ロスの低減によるランニングコスト低減
■Initial cost reduction by reducing the number of devices ■Reducing maintenance man-hours by reducing the number of devices ■Reducing failures by improving reliability by reducing the number of devices ■Remaining raw materials due to flow rate control! (Head difference), etc., and running costs are reduced by reducing raw material loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様による多積粉体の計量混合
装置の構成図、第2図は第1図装置を説明する制御ブロ
ック図、第3図は本発明の変更例による計量混合装置の
構成図、第4図は@3図装置を説明する制御ブロック図
、第5図は従来装置を説明する図、第6図は2種類の粉
体のスクリューフィーダによる流量特性図、第7図ない
し第9図は本発明に基づいて行なわれた実験結果による
計量特性図である。 1.2.−、N−貯蔵ホツノ9.11,12.・−9N
l・−サー?モータ、’12 、22、−・、 N 2
−・スクリューフィーダ、13,23.・−、N3・・
・シャッタゲート、14・−計量ホツバ、15.N5・
・・ロードセル、16・−ロードセルアンプ、17・・
・計量制御装置、18・−サーがドライバ、19・・・
切替装置、N6−開度ダンノや、50−調製タンク、5
1−攪拌機、52−底弁。 第  5  図 第6図 0s9fA≧ズ(鮫7I (V〕 手続補正書 1寺8午庁E==丁1° 殿         昭和6
2年 7月7日1、 事イ′1の表示 昭和62年特許願第106415号 2、 発明の名称 粉体計量混合装置 3、 補正をする者 事1′↑との関係: 特許出願人 名称: (520)富士写真フィルム株式会社4、代理
人 住所:〒100  東京都千代[u区霞が関3丁目2番
5号 霞が関ビル29階霞が関ピル内郵便局私店箱第4
9号 栄)乞1寺8午事務所 電話 (581)−9GO1(代表) (1) 明細書第4頁20行目、「液体計量混合装置」
を「粉体計a混合装置」と補正する。 (2) 聞出第13頁15行目、「シャツタゲ−1〜」
を「スクリューフィーダ゛ 」と補正する。 (3) 同書第14頁20行目、r5ONfJを「5に
び」と補正する。 (4) 回内第15頁9行目、「小麦粉体」を1小麦粉
状」と補正する。
FIG. 1 is a configuration diagram of a measuring and mixing device for multi-ply powder according to an embodiment of the present invention, FIG. 2 is a control block diagram explaining the device shown in FIG. 1, and FIG. 3 is a measuring and mixing device according to a modification of the present invention. The configuration diagram of the device, Figure 4 is a control block diagram explaining the device shown in Figure 3, Figure 5 is a diagram explaining the conventional device, Figure 6 is a flow rate characteristic diagram of two types of powder using a screw feeder, and Figure 7 is a diagram explaining the device. 9 to 9 are metrological characteristic diagrams based on experimental results conducted based on the present invention. 1.2. -, N-storage hot springs 9.11, 12.・-9N
l・-Sir? Motor, '12, 22, --, N 2
-・Screw feeder, 13, 23.・-, N3・・
・Shutter gate, 14・-Measuring hotspot, 15. N5・
・・Load cell, 16・−Load cell amplifier, 17・・
- Metering control device, 18 - sir is driver, 19...
Switching device, N6-opening Danno, 50-adjustment tank, 5
1 - stirrer, 52 - bottom valve. Figure 5 Figure 6 0s9fA≧zu (Same 7I (V) Procedural Amendment 1 Temple 8 PM Office E==Cho 1° Showa 6
July 7, 2015 1, Indication of Matter A'1 Patent Application No. 106415 of 1986 2, Name of the invention Powder Measuring and Mixing Apparatus 3, Relationship with the person making the amendment 1'↑: Name of patent applicant : (520) Fuji Photo Film Co., Ltd. 4, Agent address: 100 Chiyo, Tokyo [3-2-5 Kasumigaseki, U-ku, Kasumigaseki Building, 29th floor, Kasumigaseki Pill, Post Office Private Store Box No. 4
No. 9 Sakae) Goi 1 Temple 8pm Office Phone: (581)-9GO1 (Representative) (1) Specification page 4, line 20, "Liquid measuring and mixing device"
is corrected as "powder meter a mixing device". (2) Paperback page 13, line 15, “Shirt tag game-1~”
is corrected as "screw feeder". (3) On page 14, line 20 of the same book, r5ONfJ is corrected to "5 nibi." (4) On page 15, line 9 of pronunciation, ``flour body'' is corrected to ``1 flour-like''.

Claims (1)

【特許請求の範囲】 1)流速を変化させるクローズドループの粉体計量方法
を用いて複数種の粉体を重量計量して混合する粉体計量
混合装置であつて、少なくとも2個以上の供給容器と、
各供給容器から送られる粉体を計量する受粉容器と、前
記供給容器にそれぞれ付属して流速を制御する流速制御
機と、前記受粉容器に付属して粉量を計測する検出器と
、前記検出器により計量された実計量値と計量設定値と
に基づいて流速制御量を算出する計量制御装置と、前記
流速制御量を前記流速制御機にそれぞれ切替えて出力す
る切替装置と、から成ることを特徴とする粉体計量混合
装置。 2)計量制御装置は任意に設定される計量設定値と実計
量値との偏差及び偏差時間変化量からファジィ制御また
は学習制御または最適制御により流速制御量を算出する
ことを特徴とする特許請求の範囲第1項に記載の粉体計
量混合装置。 3)流速制御機がスクリューフィーダまたは開度ダンパ
またはロータリ式装置により設けられることを特徴とす
る特許請求の範囲第1項に記載の粉体計量混合装置。 4)受粉容器に検出器を設置して計量する加算計量方式
と、供給容器に検出器を設置して流出する粉量を計量す
る減算計量方式と、を組み合わせることを特徴とする特
許請求の範囲第1項に記載の粉体計量混合装置。 5)受粉容器にて計量する粉体毎に調製タンクに移送し
て混合することを特徴とする特許請求の範囲第1項に記
載の粉体計量混合装置。 6)供給容器から移送される粉体を受粉容器にて累積計
量後、調製タンクへ移送することを特徴とする特許請求
の範囲第1項に記載の粉体計量混合装置。
[Claims] 1) A powder measuring and mixing device that weighs and mixes multiple types of powder using a closed-loop powder measuring method that changes the flow rate, which comprises at least two or more supply containers. and,
a pollination container that measures the powder sent from each supply container; a flow rate controller that is attached to each of the supply containers and that controls the flow rate; a detector that is attached to the pollination container that measures the amount of powder; A metering control device that calculates a flow rate control amount based on an actual measured value measured by a meter and a metering setting value, and a switching device that switches and outputs the flow rate control amount to the flow rate controller, respectively. Characteristic powder measuring and mixing device. 2) The metering control device calculates the flow rate control amount by fuzzy control, learning control, or optimal control from the deviation between the arbitrarily set metering setting value and the actual metering value and the deviation time change amount. The powder measuring and mixing device according to scope 1. 3) The powder measuring and mixing device according to claim 1, wherein the flow rate controller is provided by a screw feeder, an opening damper, or a rotary device. 4) A claim characterized by combining an addition measurement method in which a detector is installed in a pollination container for measurement, and a subtraction measurement method in which a detector is installed in a supply container to measure the amount of powder flowing out. The powder measuring and mixing device according to item 1. 5) The powder measuring and mixing apparatus according to claim 1, wherein each powder measured in a pollination container is transferred to a preparation tank and mixed. 6) The powder measuring and mixing device according to claim 1, wherein the powder transferred from the supply container is cumulatively weighed in the pollination container and then transferred to the preparation tank.
JP62106415A 1987-05-01 1987-05-01 Powder weighing and mixing apparatus Pending JPS63274441A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62106415A JPS63274441A (en) 1987-05-01 1987-05-01 Powder weighing and mixing apparatus
EP19880106918 EP0289048B1 (en) 1987-05-01 1988-04-29 Measuring mixer for liquids and powders
DE19883852716 DE3852716T2 (en) 1987-05-01 1988-04-29 Measuring mixing device for liquids and powders.
CN88103591A CN1042267C (en) 1987-05-01 1988-04-30 Controlling method and measuring mixer for liquids and powders
US07/189,099 US4830508A (en) 1987-05-01 1988-05-02 Controlling method and a measuring mixer for liquids and powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106415A JPS63274441A (en) 1987-05-01 1987-05-01 Powder weighing and mixing apparatus

Publications (1)

Publication Number Publication Date
JPS63274441A true JPS63274441A (en) 1988-11-11

Family

ID=14433037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106415A Pending JPS63274441A (en) 1987-05-01 1987-05-01 Powder weighing and mixing apparatus

Country Status (1)

Country Link
JP (1) JPS63274441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111250A (en) * 2009-11-25 2011-06-09 Kyoei Sangyo Kk Material mixing device
JP2015529548A (en) * 2012-07-18 2015-10-08 ラブマインズ リミテッド Automated solution dispenser
US10286371B2 (en) 2011-01-21 2019-05-14 Labminds Ltd Automated solution dispenser
US10578634B2 (en) 2015-02-06 2020-03-03 Labminds Ltd Automated solution dispenser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111250A (en) * 2009-11-25 2011-06-09 Kyoei Sangyo Kk Material mixing device
US10286371B2 (en) 2011-01-21 2019-05-14 Labminds Ltd Automated solution dispenser
US11904286B2 (en) 2011-01-21 2024-02-20 Accroma Labtec Ltd. Automated solution dispenser
JP2015529548A (en) * 2012-07-18 2015-10-08 ラブマインズ リミテッド Automated solution dispenser
US11077409B2 (en) 2012-07-18 2021-08-03 Labminds, Ltd. Automated solution dispenser
US10578634B2 (en) 2015-02-06 2020-03-03 Labminds Ltd Automated solution dispenser

Similar Documents

Publication Publication Date Title
RU2135962C1 (en) Method and device for gravimetric metering and mixing of two components as minimum
US4830508A (en) Controlling method and a measuring mixer for liquids and powders
US4944428A (en) Apparatus for the automatic determination of a continuous bulk material throughput by means of a continuous balance
RU2219503C2 (en) Technique to control feeder based on measurement of loss in weight
US20040245283A1 (en) Volumetric feeder for powder or granular material and combination balance powder and granular material
JP2003130719A (en) Granule metering apparatus
JP2022528029A (en) Calibration method for liquid flowmeter
JPS6348550B2 (en)
CN100348955C (en) Device for effecting continuous gravimetric dosing
JPS63283731A (en) Liquid and powder metering and mixing apparatus
JPS63274441A (en) Powder weighing and mixing apparatus
JP2587236B2 (en) Powder weighing method
CN1730166B (en) Dynamic dosing post spraying system
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
CN105839498B (en) A kind of cold asphalt rehabilitation powder addition metering device
JPS6082818A (en) Automatic measuring method of pulverulent material
JPS63283733A (en) Powder material metering and mixing apparatus
JPS6256050B2 (en)
JP2001522989A (en) Method and apparatus for continuous weighing
JPS63283734A (en) Powder material metering and mixing apparatus
JPS63274439A (en) Liquid and powder weighing and mixing apparatus
JPS63274440A (en) Liquid and powder weighing and mixing apparatus
JP3999539B2 (en) Weight-type feeder and raw material supply method using weight-type feeder
JPS5863630A (en) Granular powder quantitative supply apparatus
JP2553552B2 (en) Continuous powder measuring device