JPS63273014A - Measurement control of liquid and powder and measurement control instrument - Google Patents

Measurement control of liquid and powder and measurement control instrument

Info

Publication number
JPS63273014A
JPS63273014A JP10641387A JP10641387A JPS63273014A JP S63273014 A JPS63273014 A JP S63273014A JP 10641387 A JP10641387 A JP 10641387A JP 10641387 A JP10641387 A JP 10641387A JP S63273014 A JPS63273014 A JP S63273014A
Authority
JP
Japan
Prior art keywords
measurement
value
control
metering
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10641387A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP10641387A priority Critical patent/JPS63273014A/en
Priority to DE19883852716 priority patent/DE3852716T2/en
Priority to EP19880106918 priority patent/EP0289048B1/en
Priority to CN88103591A priority patent/CN1042267C/en
Priority to US07/189,099 priority patent/US4830508A/en
Publication of JPS63273014A publication Critical patent/JPS63273014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a highly accurate and short time measurement and secure a wide measuring range by calculating an output to an operating unit for enabling a flow velocity to change by any of fuzzy control, learning control and optimum control methods from the observation of a deviation between a planned setting value and an actual measured value and the quantity of temporal change in the deviation. CONSTITUTION:A planned setting value is set to a measurement controller 3. A DRV (drain valve) 9 and a CDV (cleaning drain valve) 10 are changed over to a measuring system line to start a measurement. Thus, an SRV (stop valve) 8 is opened by the controller 3, the flow of a material is caused by adjusting the opening of an FCV (opening control valve) 7 and the raw material in a tank 1 is fed to a tank 2. A load cell 4 detects the weight of the raw material and feeds back the value of the weight to the controller 3. The controller 3 calculates a deviation between the actual weight value and a set value from an actual weight value thus obtained and the quantity of temporal change in the deviation. Further, the controller 3 issues a new opening command thus obtained to the FCV 7 by any of fuzzy control, learning control and optimum control systems and changes a flow velocity.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は液体及び粉体の計量制御方法及び装置に関し、
更に詳述すれば、計量途中に得られる観測tFC基づい
て被計量体の流速を逐次変化させることにより、計量精
度の向上、計量範囲の拡大及び計量時間の一定化を実現
する液体及び粉体の計量制御方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a liquid and powder metering control method and device;
More specifically, this method of liquid and powder material improves measurement accuracy, expands the measurement range, and stabilizes measurement time by sequentially changing the flow velocity of the object to be measured based on the observed tFC obtained during measurement. The present invention relates to a metering control method and device.

(従来技術) 液体計量においては、検出方式として、Mftx式(ロ
ードセル等)、圧力式(着圧伝送器等)、容積式(オー
バル流量計等〕等、様々な方式がある。
(Prior Art) In liquid measurement, there are various detection methods, such as Mftx type (load cell, etc.), pressure type (pressure transmitter, etc.), and volumetric type (oval flowmeter, etc.).

又、粉体計量においては、主にロードセル等による重量
方式がある。
In powder measurement, there is mainly a weight method using a load cell or the like.

しかし、いずれの方式においても、計量制御として流速
一定が前提であシ、連続的に流速を可変させるクローズ
ドループの計量制御方式はない。
However, in either method, the metering control is based on the premise that the flow rate is constant, and there is no closed-loop metering control method that continuously varies the flow rate.

従来、訃音精度を向上させる方法として、下記の技術が
実施されている。
Conventionally, the following techniques have been implemented as a method for improving the accuracy of the sound.

■ 流速を2段階に分割して、計量設定値の近傍にて、
遅い流速側に切シ換えて計量する技術(例えば特開昭5
6−148019号公報)。
■ Divide the flow rate into two stages and set the flow rate near the measurement setting value.
Technology for measuring by switching to a slower flow rate (for example, Japanese Patent Application Laid-Open No. 5
6-148019).

具体例 1)流速の異なる2種類の装置を設置して、計量設定値
と実計量値との偏差がある条件値に達すると切り換える
Specific example 1) Two types of devices with different flow velocities are installed and switched when the deviation between the measurement setting value and the actual measurement value reaches a certain condition value.

2)流速を2鴇類の固定条件に切り換えられる機能を有
した単一装置を設置して、1)と同様に偏差がある条件
値に達すると切シ換える。
2) Install a single device that has the function of switching the flow rate to two fixed conditions, and switch the flow rate when the deviation reaches a certain condition value, as in 1).

3)1)、2)の内容において、ソフトウェア機能とし
て学習機能を付加して、前回の計量実績値から、切9換
えを指令する条件値を修正する。
3) Regarding the contents of 1) and 2), a learning function is added as a software function to correct the condition value for commanding the switching from the previous measurement result value.

■ 計量停止条件として、流れ込み*<落差量とも言わ
れる)があシ、この量を予測して事前に訃音を停止させ
て計量する技術 (例えば、特開昭57−29114号
公報)。
■ As a measurement stop condition, there is an inflow *<also referred to as head amount.Technology for predicting this amount and stopping the flow in advance for measurement (for example, Japanese Patent Application Laid-Open No. 57-29114).

具体例 1)計量設定値と実計量値との偏差がある条件に達する
と計量停止させる。
Specific example 1) When a certain condition of deviation between the measurement setting value and the actual measurement value is reached, the measurement is stopped.

2)■−5)と同様であるが、前回の計量実績値から演
算して、計量停止を指令する条件値を修正する。
2) Same as ①-5), but the condition value for commanding the stop of measurement is corrected by calculating from the previous measurement result value.

(従来技術の欠点) しかしながら、従来の計量制御では、流速一定或いは前
述したとおり流速を2段階に分割して切換えているもの
の、ある範囲内では固定しての計量のため、下記の欠点
がある。
(Disadvantages of conventional technology) However, in conventional metering control, although the flow rate is constant or the flow rate is divided into two stages and switched as described above, the metering is fixed within a certain range, so there are the following disadvantages. .

■計量精度:外乱や被計量体の物性値の変動にによる流
速&勤により、精度が保証されない事態を生じる。
■Measuring accuracy: Accuracy may not be guaranteed due to flow velocity and shift due to disturbances or changes in the physical properties of the object to be measured.

例えば、重力移送の場合、上流側容器内の被計量体の残
存量(以下、本明細書ではこの残存量をヘッド差と呼ぶ
。3によシ、流出する被計量体に流速変動を生じるが、
ヘッド差の変化が大きいと流速がある条件範囲をはみ出
し、精度が悪化する。また、このことは。
For example, in the case of gravity transfer, the remaining amount of the object to be measured in the upstream container (hereinafter, this remaining amount is referred to as the head difference). ,
If the change in head difference is large, the flow velocity will go outside a certain range of conditions, and accuracy will deteriorate. Also, about this.

上流側容器のヘッドの変化中に制限を生じさせる結果と
なり、ヘッド差を条件範囲内に維持しておくためには、
計量の停止或いは上流側容器に適宜原材料を補給し続け
ていなければならず二次的に原材料のロスの発生につな
がる。
This results in a restriction during the head change of the upstream vessel, and in order to keep the head difference within the required range,
It is necessary to stop measuring or to continue to replenish the upstream container with raw materials as appropriate, which leads to secondary loss of raw materials.

■計量範囲:流速を制限しているため、訃音可能な最小
針鼠値及び最大訃音値の比は通常1:5程度である。
■Measuring range: Since the flow rate is limited, the ratio of the minimum and maximum possible noise values is usually about 1:5.

流速の2段設定タイプでも、最大1:10程度となる。Even with a two-stage flow rate setting type, the maximum is about 1:10.

このように、計量範囲が狭い理由は、計量停止しても、
系の応答遅れによる流れ込み址があり、この址が流速に
より決定されるため計量設定値が小さい場合に、この意
が精度の保証範囲を越え、その結果計量レンジが制限さ
れる事となる。
The reason why the weighing range is so narrow is that even when the weighing is stopped,
There is a flow-in area due to the response delay of the system, and this area is determined by the flow velocity, so if the measurement setting value is small, this will exceed the guaranteed accuracy range, and as a result, the measurement range will be limited.

多品種対応の製造プラントにおいては、同一原材料にお
いても計量レンジとして最大1:100程度のものもあ
シ、計址設定値範囲にて計i装置を選択する必要がある
In a manufacturing plant that handles a wide variety of products, even for the same raw material, the measuring range may be approximately 1:100 at most, so it is necessary to select a metering device within the metering setting value range.

■計量時間:it設定値によシ計量時間が左右される。■Measuring time: The measuring time depends on the IT setting value.

計量設定値が小さい場合は、計披時間は短く、大きい場
合は長くなる。
If the metric setting value is small, the total time will be short; if it is large, the total time will be long.

計量設定値が小さい場合は、系の動作時間のバラツキが
あり、計it拮度を保証できす、計量範囲を狭くするこ
とにもつながる。
If the metering set value is small, there will be variations in the operating time of the system, and it will not be possible to guarantee the level of metering, but it will also lead to a narrowing of the metering range.

更に、計量された複数種の被計量体を混合して新たな品
種を生産するシステム全体から見ると、製造能力が計量
時間に左右され、特Pc、)Zイン0レスの移動方式の
製造システムにおいては、搬送能力を制限することとな
る。
Furthermore, from the perspective of the entire system that mixes multiple types of objects to be weighed to produce a new product, the manufacturing capacity is affected by the weighing time, and the manufacturing system is a mobile manufacturing system that does not require special Pc,) Z-in-0. In this case, the transport capacity will be limited.

上記の欠点は、プロセス構築上において、経済的な欠点
を誘起する結果となる。つまシ従米は、計量設定値に応
じて計量装置を多数台設置し、かつ製造能力の制限によ
る最適計量時間毎や原材料毎に計量装置を設置し、非常
に多くの計量装置が設備化されていた。
The above-mentioned drawbacks result in economical drawbacks in process construction. Tsumaishi Jumai has installed a large number of measuring devices according to the measurement setting value, and also installed a measuring device for each optimal weighing time and each raw material due to manufacturing capacity limitations. Ta.

(発明の目的) 本発明の目的は、上記事情に基づいてなされたもので、
外乱による流速変動や液物性(粘度など]・粉体物性(
流動性など)の変動に影響されない高精度な計量を実現
すると共に、ワイドレンジの計量範囲を確保し、かつ計
量設定値の大小に左右されない短時間の計量時間を実現
する液体及び粉体の計量制御方法を提供することにある
(Object of the invention) The object of the present invention was achieved based on the above circumstances, and
Fluctuations in flow velocity due to disturbances, liquid physical properties (viscosity, etc.) and powder physical properties (
Measurement of liquids and powders that achieves high-accuracy measurement that is not affected by fluctuations in flowability, etc.), secures a wide measurement range, and realizes short measurement times that are not affected by the size of measurement settings. The objective is to provide a control method.

また、本発明の他の目的は、上述の制御方法を実現する
ための制御装置を提供することにある。
Another object of the present invention is to provide a control device for implementing the above-described control method.

更に、この精密計量制御装置にてシステムを構成し、設
備台数の低減並びに設備能力増強、原材料ロスの低減を
計ることによシ。
Furthermore, by configuring a system using this precision weighing control device, we can reduce the number of equipment, increase equipment capacity, and reduce raw material loss.

■ イニシャルコストダウン ■ ランニングコストダウン ■ メンテナンスコストダウン 等々 の経済効果の高いプロセスを達成することにある。■ Initial cost reduction ■ Running cost reduction ■ Maintenance cost reduction, etc. The objective is to achieve a process with high economic efficiency.

(発明の概要) 従来の計量装置の欠点を生じさせる基本要因である流速
一定条件を、流速をクローズドループ制御にて可変する
計量制御方法にすることで、■ 外乱による流速変動に
影響を受けない高精度な計量 ■ ワイドレンジの計量範囲 ■ 計量設定値の大小に左右されない短時間の計量 を達成する。そのため、下記の構成要素にて計量制御方
法を構成する。
(Summary of the invention) By changing the constant flow rate condition, which is the basic factor that causes the drawbacks of conventional metering devices, to a metering control method that changes the flow rate using closed loop control, ■ it is not affected by flow rate fluctuations due to disturbances. Highly accurate weighing ■ Wide measuring range ■ Achieves short-time weighing that is not affected by the size of the weighing setting value. Therefore, the metering control method is composed of the following components.

1)制御方法:計量システムのモデル化を検討すると非
線形である。従って、従来の簡単なPID制御等の制御
方式では容易に実現出来ない。
1) Control method: When considering the modeling of the metrology system, it is nonlinear. Therefore, this cannot be easily realized using conventional control methods such as simple PID control.

そこで、ファジィ制御(あいまい制御)、学習制御又は
最適制御の方法にて、計量設定値と実計曾値との偏差、
偏差時間変化量の観測量から最適な操作量を演算して、
流速を連続的又は離散的に最適な状態に逐次変化させて
計量制御を行う。
Therefore, using fuzzy control, learning control, or optimal control methods, the deviation between the measurement setting value and the actual measurement value,
Calculate the optimal manipulated variable from the observed amount of deviation time change,
Metering control is performed by sequentially changing the flow rate to the optimum state either continuously or discretely.

2)検出器二計址値の時々刻々の変化を観測する機器で
ある。
2) This is a device that observes moment-to-moment changes in the detector value.

ロードセル、差圧伝送器、等々の計量値が観測出来る機
器であればよい。但し、計量範囲は、この検出器の静的
精度に依存する。
Any device that can observe measured values such as a load cell, differential pressure transmitter, etc. may be used. However, the metering range depends on the static accuracy of this detector.

3)操作器:流速を変化させるための装置である。3) Manipulator: A device for changing the flow rate.

装置として、機械部品と駆動のための電気機器とから成
る。(空気とか油とか流体を介して駆動するものでもよ
い。) 液体の場合は、開度を可変させて流速を変化させる方法
が通常であるが、この場合適用されるパルプは調節弁の
形状が例えば種々異なる外観形状の公知バルブや、或い
は弁周面に弁駆動方向に沼って切欠溝を有し、この溝形
状により流量が可変されるように設けられた新規なノ々
ルゾであってもよい。なお、公知ノ々ルブは、クイック
オープン特性以外の流量特性を有するバルブであればよ
い。ポンプについては、流速が連続的1cOから変化す
るものであればよい。その他種々の方法があるが、流速
な0から変化させられる装置であればどのようなもので
もよい。
The device consists of mechanical parts and electrical equipment for driving. (It may also be driven by air, oil, or other fluid.) In the case of liquids, the usual method is to change the flow rate by varying the degree of opening, but in this case, the pulp used in this case depends on the shape of the control valve. For example, there are known valves with various external shapes, or a new valve having a notched groove extending in the valve driving direction on the valve circumferential surface so that the flow rate can be varied by the shape of the groove. Good too. Note that the known knob valve may be any valve having flow characteristics other than quick-open characteristics. The pump may be one in which the flow rate varies continuously from 1 cO. Although there are various other methods, any device that can change the flow velocity from zero may be used.

粉体の場合はモーターの回転数を変えることにより粉体
の移送量を変化させるスクリューフィーダを用いる方法
が一般的である。
In the case of powder, a common method is to use a screw feeder that changes the amount of powder transferred by changing the rotational speed of the motor.

(実施態様) 以下、図面により本発明の実施態様を詳説する。(Embodiment) Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の1笑施態様に適用される液体計量装
置を例示したものであシ、上流側タンク1に充填した材
料を、計量タンクすなわち下流側タンク2に移送するこ
とにより、下流側タンク2に付属したa−ドセル4にて
1猿を計量する場合について述べる。
FIG. 1 illustrates a liquid measuring device applied to one embodiment of the present invention, in which material filled in an upstream tank 1 is transferred to a measuring tank, that is, a downstream tank 2. A case will be described in which one monkey is weighed using the a-docel 4 attached to the downstream tank 2.

タンク1とタンク2との配管系路には、流速を可変する
操作器としてのFC;V (開度調節弁)7を有するD
RV(ドレインノ々ルブ)9と、5RVCストツプノマ
ルク)8及びcvn(洗浄廃液パルブ)10と、が順次
配置されている。下流側タンク2には、被計量体の重量
な観611]する検出器としてのロードセル4が配置さ
れており、ロードセル4はロードセルアンプ5を通して
計量制御装置6と接続されている。また、計量制御装置
6は操作器を構成するサーボドライバ6及びFCV7と
接続されている。
The piping system between the tank 1 and the tank 2 has an FC;
An RV (drain valve) 9, a 5RVC stop valve) 8, and a cvn (cleaning waste liquid valve) 10 are arranged in this order. A load cell 4 serving as a detector for determining the weight of the object to be weighed is disposed in the downstream tank 2, and the load cell 4 is connected to a weighing control device 6 through a load cell amplifier 5. Further, the metering control device 6 is connected to a servo driver 6 and an FCV 7 that constitute an operating device.

このように構成された液体計量装置による被計量体の計
量は、計−制御装置6に計量設定値が設定され、DRV
 (ドレインノ々ルプ)9、CDv(洗浄廃液)々ルプ
)10が計量系ラインに切り換えられて開始される。計
tht制御装置6により計量開始が指示されると、SR
V (ストップノ々ルプ)8が開となり、FCV(開度
調整弁)7が、予め定められた開度となるように、計量
制御装置6からサーボドライバ6に位置指令が伝送され
、サーボモータを駆動して指示された位置にFCV7の
弁ボートを設定して、開度を調整し、原材料の流れを引
き起こす。これにより、タンク1の原材料は、タンク2
に移送され始める。
When measuring an object to be measured using the liquid measuring device configured as described above, a measurement setting value is set in the meter-control device 6, and the DRV
(Drain nozzle) 9 and CDv (Cleaning waste liquid nozzle) 10 are switched to the metering system line and the process is started. When the measurement start is instructed by the meter tht control device 6, the SR
A position command is transmitted from the metering control device 6 to the servo driver 6, and the servo motor Set the valve boat of FCV7 to the indicated position by driving, adjust the opening degree, and cause the flow of raw materials. As a result, the raw material in tank 1 is transferred to tank 2.
begins to be transferred to

タンク2のロードセルは、移送された原材料の重量を検
知し、その値をロードセルアンプ5を通じて計量制御装
置3にフィードバックする。
The load cell of the tank 2 detects the weight of the transferred raw material and feeds back the value to the weighing control device 3 through the load cell amplifier 5.

計量制御装置3は、この実重量値から、設定値との偏差
、偏差の時間変化量を演算し、ファジィ制御、最適制御
、学習制御の何れかの制御方式に基づき、次の制御周期
において適切な流速となる弁の開度指令(位置指令)を
演算にて求める。そして、次の制御周期において、FC
V7に新たな開度指令(位置指令)を指示し、流速を変
更する。
The weighing control device 3 calculates the deviation from the set value and the time change of the deviation from this actual weight value, and calculates the appropriate weight in the next control cycle based on any of the control methods of fuzzy control, optimal control, and learning control. Calculate the valve opening command (position command) that will give the flow velocity. Then, in the next control cycle, FC
Instruct V7 with a new opening command (position command) and change the flow velocity.

以上の様に、ロードセル4の観測量を基に、定められた
制御周期にてb’ c v 7の開度をクローズドルー
プ(図2)にて制御し、結果として連続的又は所定時間
間隔毎に離散的に流速を制御する。
As described above, the opening degree of b' c v 7 is controlled in a closed loop (Fig. 2) at a predetermined control cycle based on the observed amount of the load cell 4, and as a result, the opening degree of b' c v 7 is controlled continuously or at predetermined time intervals. The flow rate is controlled discretely.

観測量が計量設定値に近似し、計量偏差が小さくなると
、FCV7は開度を絞シ、微小流速となる。よって、計
量停止後の流れ込み蓋は小さくなり、訃音精腋は、例え
ばヘッド差等の外乱による流速変動に左右されず向上す
る。
When the observed amount approximates the metric setting value and the metric deviation becomes small, the FCV 7 reduces its opening and becomes a minute flow velocity. Therefore, the inflow lid becomes smaller after metering is stopped, and the flow rate improves regardless of flow velocity fluctuations caused by disturbances such as head differences.

又、本発明の計量制御装置6は、計量範囲において、計
量設定値とかプロセスの系によりFCV7の動作が変わ
り、計量設定値の大小を問わず同一計量装置にて計量が
でき、計量範囲が拡大する。
In addition, in the measurement control device 6 of the present invention, the operation of the FCV 7 changes depending on the measurement setting value and process system within the measurement range, and the measurement can be performed with the same measurement device regardless of the size of the measurement setting value, expanding the measurement range. do.

但し、検出器の静的精度内である。史に、計量時間(l
こおいても、FCV7の動作JRターンが変化し、計量
設定値の大小を問わず、はぼ同一の短時間のに行われた
実験結果である。
However, it is within the static accuracy of the detector. Historically, the measuring time (l
This is also the result of an experiment conducted in a short period of time, in which the operating JR turn of the FCV7 changes and regardless of the magnitude of the metering setting value.

本結果の訃音装置は、最大10kgの計量ができ、ロー
ドセルの精度は5000分の1である。FCV(開度調
整弁)Viサーボモータにて位置制御され、計量制御装
置から位置指令が出力される。
The resulting weighing device can weigh up to 10 kg, and the accuracy of the load cell is 1/5000. The position is controlled by an FCV (opening adjustment valve) Vi servo motor, and a position command is output from the metering control device.

第6図は、上流側タンクに1.2時の液体が残存してい
るとき、同一計量装置において1000.9゜500g
を各々計量したときの計量特性を示しており、そのとき
の計量偏差及びFCVの弁開度を縦軸に、計量時間を横
軸にそれぞれ示している。
Figure 6 shows that when 1.2 o'clock liquid remains in the upstream tank, the same measuring device weighs 1000.9°500g.
The graph shows the measurement characteristics when each is measured, and the measurement deviation and FCV valve opening at that time are shown on the vertical axis, and the measurement time is shown on the horizontal axis.

図から明らかなとおり、計量設定値の大小を問わず同一
計量装置にて計量ができ、従って、計量範囲が拡大する
。また、弁開度の推移は当然異なるものの、計量時間は
計量設定値の大小を問わすほび計量精度の関係を示す。
As is clear from the figure, measurement can be performed with the same measuring device regardless of the size of the measurement setting value, and therefore the measurement range is expanded. Although the valve opening degree changes naturally, the measurement time shows the relationship between the measurement accuracy and the measurement setting value.

なお、計量精度は別の検定された重量計にて流出液体を
計測したものである。
Note that the measurement accuracy was determined by measuring the outflowing liquid using a different certified weighing scale.

10kgの場合も計量時間は約160秒程度であり、計
量精度±0.5Iであった。従って、計量レンジ1:1
00において±1.0係の精度が得られた。
In the case of 10 kg, the weighing time was about 160 seconds, and the weighing accuracy was ±0.5I. Therefore, weighing range 1:1
00, an accuracy of ±1.0 was obtained.

更に、タンクの残存量にて流速は変化するが、異なる残
存量レベルから計量を開始しても計量精度、計量時間は
変化せず、流速変動の影響を受けないことも確認できた
Furthermore, although the flow rate changes depending on the remaining amount in the tank, it was confirmed that the measurement accuracy and measurement time do not change even if measurement is started from a different remaining amount level, and are not affected by flow rate fluctuations.

なお、前記実施態様では、液体における加算式計量(計
量タンクに貯めて計量する方式)を示したものであシ、
図中のDRV9、CDVloは付随的な洗浄、廃液のた
めの弁である。本発明は、上記加算式計量の外に、図中
破線で示すように貯蔵タンク(上流側タンク)に検出器
を配置して、流出量を計量する減算式計量であっても良
いことは容易に推察される。また、検出器としては、ホ
ラA−による重置計量の他に、液体計量では、例えば液
面計により液面レベルを計測し、これを差圧伝送器アン
プを介して計量制御器にフィードバックするように設け
た圧力式、オー/ぐル流m訂を用いた谷積弐等れの方式
であっても良い。
In addition, the above-mentioned embodiment shows an addition type measurement (method of storing and measuring a liquid in a measuring tank).
DRV9 and CDVlo in the figure are valves for incidental cleaning and waste liquid. In addition to the additive method described above, the present invention may also be a subtractive method in which a detector is placed in the storage tank (upstream tank) to measure the amount of outflow, as shown by the broken line in the figure. It is inferred that As a detector, in addition to overlay weighing using Hola A-, for liquid measurement, for example, a liquid level gauge is used to measure the liquid level, and this is fed back to the metering controller via a differential pressure transmitter amplifier. It may also be a pressure type using a pressure type, a tanizumi 2 using an O/Guru flow, etc.

また、操作器は、液体計量では、前記実施態様で記述し
た開度調整弁とブーlモータの組合せが一般的であるが
、本兄明は必ずしもこのような構成に限定されるもので
はない。−万、粉体計量では、開度調整弁に代ってスク
リューフィーダ、ダン・ソー、ゲート等が適用される。
Further, for liquid metering, the operating device is generally a combination of the opening adjustment valve and the motor described in the above embodiment, but the present invention is not necessarily limited to such a configuration. -For powder measurement, screw feeders, dump saws, gates, etc. are used instead of opening adjustment valves.

(発明の効果J 以上記載したとお夛、本発明によシ、下記の効果が得ら
れる。
(Effects of the Invention J) In addition to the above description, the present invention provides the following effects.

■ 外乱による流速変動に影響されない高精度な計量の
実現 ■ 計量設定値の範囲の広いワイドレンジの計量の実現 ■ 計量設定値の大小に依存しない短時間の計量の実現 本発明の制御装置の採用によるシステムにおいては、 ■ 計量装置台数の低減 ■ 原材料のロスの低減  等々 ができるため、下記の経済的効果を得ることができる。
■ Achieving high-accuracy measurement that is not affected by flow velocity fluctuations caused by external disturbances ■ Achieving wide-range measurement with a wide range of measurement setting values ■ Achieving short-time measurement that is independent of the magnitude of measurement setting values Adoption of the control device of the present invention In the system, it is possible to ■ reduce the number of weighing devices ■ reduce the loss of raw materials, etc., so the following economic effects can be obtained.

■ 装置台数の低減によるイニシャルコスト低減 ■ 装置台数の低減圧よるメンテナンス工数低減 ■ 装置台数の低減によるイd頼性向上による故障低減 ■ 流速制御のため原材料の残存t(ヘッド差)等に影
響されずlj材料ロスの低減にょるランニングコスト低
■ Reducing initial costs by reducing the number of devices ■ Reducing maintenance man-hours by reducing the pressure of the number of devices ■ Reducing failures by improving reliability by reducing the number of devices ■ Flow rate control reduces the influence of residual t (head difference) of raw materials, etc. Reducing running costs by reducing material loss

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様に適用される液体計量装置
を説明する図、第2図は本発明の制御方間じく計量特性
を示した表である。 1・・・・・・上流側タンク、2・・・・・・下流側タ
ンク、3・・・・・・訃音制御装置、4・・・・・・ロ
ードセル、5・・・・・・ロードセルアンプ、6・・・
・・・サーセトライノ々、7・・山・開度調節弁(FC
V)、8・・・・・・ストップバルブ(SRV)、9・
・・・・・ドレインバルブ(DRV)、10・・・・・
・洗浄廃液・々ルブ(CVD)。 代理人弁理士(8107)佐々木 清除(ほか6名) 第  2  図
FIG. 1 is a diagram illustrating a liquid metering device applied to one embodiment of the present invention, and FIG. 2 is a table showing the proper metering characteristics of the control method of the present invention. 1...Upstream tank, 2...Downstream tank, 3...Sound control device, 4...Load cell, 5... Load cell amplifier, 6...
...Surce liner, 7...Mountain/opening control valve (FC)
V), 8...stop valve (SRV), 9.
...Drain valve (DRV), 10...
・Cleaning waste liquid/lube (CVD). Representative Patent Attorney (8107) Kiyoyuki Sasaki (and 6 others) Figure 2

Claims (1)

【特許請求の範囲】 1)計量設定値と帰還された実計量値とにより流速を変
化させるクローズドループの計量制御方法において、任
意に設定される計量設定値と被計量体を計測する検出器
からの実計量値との偏差及び偏差時間変化量の観測量か
らファジィ制御、学習制御、最適制御の何れかの制御方
法にて流速を可変する操作器への出力を算出し、流速を
逐次最適状態に変化することを特徴とする液体及び粉体
の計量制御方法。 2)流速変化は連続的な変化であることを特徴とする特
許請求の範囲第1項に記載の制御方法。 3)流速変化は離散的な変化であることを特徴とする特
許請求の範囲第1項に記載の制御方法。 4)計量設定値と帰還された実計量値とにより流速を変
化させるクローズドループの計量制御装置において、流
速を可変にする操作器と、計量タンクと、計量タンクに
付属して被計量体を観測する検出器とを備え、任意に設
定される計量設定値と検出器からの実計量値に基づいて
偏差量及び偏差時間変化量の演算を行つて得られる観測
量から操作器をファジィ制御又は学習制御又は最適制御
することを特徴とする液体及び粉体の計量制御装置。
[Claims] 1) In a closed-loop metering control method in which the flow velocity is changed based on a metering set value and a fed-back actual metered value, a metering set value that is arbitrarily set and a detector that measures an object to be measured are used. The output to the actuator that varies the flow velocity is calculated using one of the following control methods: fuzzy control, learning control, or optimal control from the observed amount of the deviation from the actual measured value and the amount of deviation change over time, and the flow velocity is successively adjusted to the optimal state. A method for controlling the measurement of liquids and powders, characterized by a change in the amount of liquid and powder. 2) The control method according to claim 1, wherein the flow rate change is a continuous change. 3) The control method according to claim 1, wherein the flow velocity change is a discrete change. 4) In a closed-loop metering control device that changes the flow rate based on the metering set value and the actual metered value that is fed back, there is an operator that changes the flow rate, a metering tank, and an object to be measured attached to the metering tank for observing the object to be measured. Fuzzy control or learning of the operating device is performed from the observed quantity obtained by calculating the deviation amount and deviation time change amount based on the arbitrarily set measurement setting value and the actual measurement value from the detector. A metering control device for liquids and powders, characterized by controlling or optimally controlling them.
JP10641387A 1987-05-01 1987-05-01 Measurement control of liquid and powder and measurement control instrument Pending JPS63273014A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10641387A JPS63273014A (en) 1987-05-01 1987-05-01 Measurement control of liquid and powder and measurement control instrument
DE19883852716 DE3852716T2 (en) 1987-05-01 1988-04-29 Measuring mixing device for liquids and powders.
EP19880106918 EP0289048B1 (en) 1987-05-01 1988-04-29 Measuring mixer for liquids and powders
CN88103591A CN1042267C (en) 1987-05-01 1988-04-30 Controlling method and measuring mixer for liquids and powders
US07/189,099 US4830508A (en) 1987-05-01 1988-05-02 Controlling method and a measuring mixer for liquids and powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10641387A JPS63273014A (en) 1987-05-01 1987-05-01 Measurement control of liquid and powder and measurement control instrument

Publications (1)

Publication Number Publication Date
JPS63273014A true JPS63273014A (en) 1988-11-10

Family

ID=14432983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10641387A Pending JPS63273014A (en) 1987-05-01 1987-05-01 Measurement control of liquid and powder and measurement control instrument

Country Status (1)

Country Link
JP (1) JPS63273014A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116555U (en) * 1989-03-03 1990-09-18
JPH02244203A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Control system and optimum property deciding device
WO1991019035A1 (en) * 1990-05-28 1991-12-12 Kanebo, Ltd. Method of inspecting cleanliness of top and device used therefor
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
JP2005189057A (en) * 2003-12-25 2005-07-14 Nisshin Flour Milling Inc Determinate quantity transportation method for powder and grain
JP2015529548A (en) * 2012-07-18 2015-10-08 ラブマインズ リミテッド Automated solution dispenser
US10286371B2 (en) 2011-01-21 2019-05-14 Labminds Ltd Automated solution dispenser
US10578634B2 (en) 2015-02-06 2020-03-03 Labminds Ltd Automated solution dispenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583782U (en) * 1981-06-30 1983-01-11 富士通株式会社 Leakage current absorption circuit
JPS5949272A (en) * 1982-09-14 1984-03-21 Toshiba Corp Electrically-conductive coating compound
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583782U (en) * 1981-06-30 1983-01-11 富士通株式会社 Leakage current absorption circuit
JPS5949272A (en) * 1982-09-14 1984-03-21 Toshiba Corp Electrically-conductive coating compound
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116555U (en) * 1989-03-03 1990-09-18
JPH02244203A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Control system and optimum property deciding device
WO1991019035A1 (en) * 1990-05-28 1991-12-12 Kanebo, Ltd. Method of inspecting cleanliness of top and device used therefor
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
JP2005189057A (en) * 2003-12-25 2005-07-14 Nisshin Flour Milling Inc Determinate quantity transportation method for powder and grain
US10286371B2 (en) 2011-01-21 2019-05-14 Labminds Ltd Automated solution dispenser
US11904286B2 (en) 2011-01-21 2024-02-20 Accroma Labtec Ltd. Automated solution dispenser
JP2015529548A (en) * 2012-07-18 2015-10-08 ラブマインズ リミテッド Automated solution dispenser
US11077409B2 (en) 2012-07-18 2021-08-03 Labminds, Ltd. Automated solution dispenser
US10578634B2 (en) 2015-02-06 2020-03-03 Labminds Ltd Automated solution dispenser

Similar Documents

Publication Publication Date Title
EP0304093B1 (en) Liquid measuring apparatus
JP2602819B2 (en) Automatic control of flowable material flow by continuous metering device
US4872763A (en) Method of and apparatus for measuring liquid
JP2598834B2 (en) Container filling device with weight measurement
US11768099B2 (en) Calibration method for liquid flowmeter
DK148568B (en) METHOD AND APPARATUS FOR CONTROL OF LIQUID FLOW
CN101479682B (en) Flow controller delivery of a specified quantity of a fluid
JPH0368328B2 (en)
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
JPS6348550B2 (en)
JPS63283731A (en) Liquid and powder metering and mixing apparatus
US4522059A (en) Flowmeter and installation for mixing an additive in a liquid
JPH11105989A (en) Liquid filling device and its adjustment method
JPH09182534A (en) Apparatus for mixing liquid fertilizer for irrigation
JP2587236B2 (en) Powder weighing method
US5967654A (en) Core sand preparation apparatus
JP2587235B2 (en) Liquid weighing method
JPH02191193A (en) Method and apparatus for constant liquid filling
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
US4597405A (en) Process and apparatus for controlling a controllable magnitude and use of the process
JPS63274441A (en) Powder weighing and mixing apparatus
JPH1129106A (en) Filler
JPH0215314A (en) Measure control device
JPH01100612A (en) Liquid measuring and mixing device
JPH01100615A (en) Liquid/powder measuring, mixing and distributing device