JPS63273013A - Measurement of liquid - Google Patents

Measurement of liquid

Info

Publication number
JPS63273013A
JPS63273013A JP10641287A JP10641287A JPS63273013A JP S63273013 A JPS63273013 A JP S63273013A JP 10641287 A JP10641287 A JP 10641287A JP 10641287 A JP10641287 A JP 10641287A JP S63273013 A JPS63273013 A JP S63273013A
Authority
JP
Japan
Prior art keywords
measurement
flow rate
valve
liquid
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10641287A
Other languages
Japanese (ja)
Other versions
JP2587235B2 (en
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62106412A priority Critical patent/JP2587235B2/en
Priority to EP19880106920 priority patent/EP0290889B1/en
Priority to DE19883877815 priority patent/DE3877815T2/en
Priority to CN88103592A priority patent/CN1016116B/en
Priority to US07/188,987 priority patent/US4872763A/en
Publication of JPS63273013A publication Critical patent/JPS63273013A/en
Application granted granted Critical
Publication of JP2587235B2 publication Critical patent/JP2587235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Abstract

PURPOSE:To realize a highly accurate and short time measurement and secure a wide measuring range by making a fuzzy inference from the flow rate characteristics of an opening regulating valve for limiting the flow rate of a liquid and a measurement set value, determining the initial opening of the valve before the initiation of the measurement and conducting a fuzzy control on the basis of the actual measurement. CONSTITUTION:When a measurement setting value is given to a measurement controller 1, the initial opening of an opening regulating valve 6 is calculated by fuzzy inference from the flow rate characteristics of the valve 6 and a liquid flows out from a measuring tank 8 by an instruction from the controller 1. The actual weight value of a load cell 2 charges. The controller 1 measures the actual weight value from a gravimeter amplifier 3 at prescribed control periods and calculates a deviation between the measurement set value and the actual weight value and the quantity of temporal change in the deviation. When an observation resulting from the low-pass filter processing of those quantities is calculated, the inferential calculation of the opening of the valve 6 is conducted on the basis of a fuzzy rule. Thus, the valve 6 is controlled so as to take the suitable opening, the infection of a backlash or the like is absorbed and highly accurate measurement can be performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体計量方法に関し、更に詳述すれば、計量途
中に得られる観測量に基づいてファジィ推論を行い、被
計量体の流速を逐次変化させることにより、計量精度の
向上、計量範囲の拡大及び短時間計量を実現する液体計
量方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a liquid measuring method, and more specifically, fuzzy inference is performed based on observed quantities obtained during measurement, and the flow velocity of the object to be measured is sequentially determined. The present invention relates to a liquid measuring method that improves measuring accuracy, expands the measuring range, and achieves short-time measuring by changing the measuring method.

(従来技術) 液体計量においては、検出方式として、重量式(o−)
”セル等)、圧力式(差圧伝送器等)、容積式(オーバ
ル流量計等)等、様々な方式がある。
(Prior art) In liquid measurement, the detection method is gravimetric (o-).
There are various methods such as ``cell, etc.'', pressure type (differential pressure transmitter, etc.), and volumetric type (oval flow meter, etc.).

しかし、いずれの方式においても、計量制御として流速
一定が前提であり、連続的に流速を可変させるクローズ
ドループの計量制御方式はない。
However, in either method, the premise is that the flow rate is constant as metering control, and there is no closed-loop metering control method that continuously varies the flow rate.

従来、計量精度を向上させる方法として、下記のの技術
が実施されている。
Conventionally, the following techniques have been implemented as a method for improving measurement accuracy.

■ 流速を2段階に分割して、計量設定値の近傍にて、
遅い流速側に切シ換えて計量する技術(例えば特開昭5
6−148019号公報)。
■ Divide the flow rate into two stages and set the flow rate near the measurement setting value.
Technology for measuring by switching to a slower flow rate (for example, Japanese Patent Application Laid-Open No. 5
6-148019).

具体例1)流速の異なる2種類の装置を設置して、計量
設定値と実計量値との偏差が ある条件値に達すると切り換える。
Specific example 1) Two types of devices with different flow velocities are installed and switched when the deviation between the measurement setting value and the actual measurement value reaches a certain condition value.

2)流速を2種類の固定条件に切シ換えられる機能を有
した単一装置を設置し て、1)と同様に偏差がある条件値に 達すると切υ換える。
2) Install a single device that has the function of switching the flow velocity between two types of fixed conditions, and as in 1), switch when the deviation reaches a certain condition value.

3)1)、2)の内容において、ソフトウェア機能とし
て学習機能を付加して、前回の計量実績値から、切シ換
えを指 令する条件値を修正する。
3) Regarding the contents of 1) and 2), a learning function is added as a software function to correct the condition value for commanding switching based on the previous measurement result value.

■ 計量停止条件として、流れ込み!(落差量とも言わ
れる)があり、この量を予測して事前に計量を停止させ
て計量する技術(例えば特開昭57−29114 号公
報)。
■ As a measurement stop condition, inflow! There is a technology that predicts this amount (also called the amount of head difference) and stops the measurement in advance to measure it (for example, Japanese Patent Application Laid-Open No. 57-29114).

具体例1)計量設定値と実計量値との偏差がある条件に
達すると計量停止させる。
Specific example 1) When a certain condition of deviation between the measurement setting value and the actual measurement value is reached, the measurement is stopped.

2)■−3)と同様であるが、前回の 計量実績値から演算して、計量停止 を指令する条件値を修正する。2) Same as ■-3), but with the previous Calculates from the actual measurement value and stops the measurement. Modify the condition value that commands.

(発明が解決しようとする問題点) しかしながら、従来の計量制御では、流速一定或いは前
述したとおシ流速金2段階に分割して切換えているもの
のある範囲内では固定しての計量のため、下記の欠点が
ある。
(Problem to be solved by the invention) However, in conventional metering control, the flow rate is constant or the flow rate is divided into two stages as described above. There are drawbacks.

■ 計量精度: 外乱による流速変動や液物性(粘度な
ど)の違いによる流速変動に より、精度が保証されない事態を 生じる。
■ Weighing accuracy: Accuracy may not be guaranteed due to flow velocity fluctuations due to disturbances or differences in liquid physical properties (viscosity, etc.).

例えば、重力移送の場合、上流 側容器内の被計量体の残存量(以 下、本明細書ではこの残存量をヘ ブト9差と呼ぶ。)によ勺、流出す る被計量体に流速変動を生じるが、 ヘッド差の変化が大きいと流速が ある条件範囲をはみ出し、精度が 悪化する。また、このことは、上 流側容器のヘッドの変化中に制限 を生じさせる結果となり、ヘッド 差を所定範囲内に維持しておくた めには、計量の停止或いは上流側 容器に適宜原材料を補給し続けて いなければならず、二次的に原材 料のロスの発生につながる。For example, in the case of gravity transfer, upstream The remaining amount of the object to be measured in the side container (hereinafter Below, in this specification, this residual amount is It's called Buto9 difference. ), leaked out Although this causes flow velocity fluctuations in the object to be measured, If the change in head difference is large, the flow velocity will increase. Accuracy goes out of a certain condition range Getting worse. Also, this Restricted during change of head of stream side vessel This results in the head In order to keep the difference within a certain range, In order to Continue to replenish the container with raw materials as appropriate. raw material must be secondarily This leads to loss of fees.

■ 計量範囲: 流速を制限しているため、計量可能な
最小計量値及び最大計量値 の比は通常1:5程度である。
■Measuring range: Since the flow rate is restricted, the ratio of the minimum and maximum measurable values is usually about 1:5.

流速の2段設定タイプでも、最 大1:1喝度となる。Even with the two-stage flow rate setting type, the The ratio is 1:1.

このように、計量範囲が狭い理 由は、計量停止し【も、系の応答 遅れによる流れ込み量があり、こ の量が流速により決定されるため 計量設定値が小さい場合に、この 量が精度の保証範囲を越え、その 結果計量レンジが制限される事と なる。In this way, the reason why the measurement range is narrow The reason is that the measurement is stopped and the response of the system is There is an inflow amount due to the delay, and this Since the amount of is determined by the flow velocity This is used when the weighing set value is small. If the amount exceeds the guaranteed accuracy range, As a result, the weighing range is limited. Become.

多品種対応の製造プラントにお いては、同一原材料においても計 量レンジとして最大1:IOQ程度の ものもあシ、計量設定値範囲にて 計量装置を選択する必要がある。For manufacturing plants that can handle a wide variety of products. However, even if the same raw materials are used, The maximum amount range is 1:IOQ. In the weighing set value range A weighing device must be selected.

■ 計量時間: 計量設定値により計量時間が左右され
る。
■ Weighing time: The measuring time is affected by the weighing settings.

計量設定値が小さい場合は、計 置時間は短く、大きい場合は長く なる。If the weighing set value is small, The setting time is short, and if the size is large, the time is longer. Become.

計量設定値が小さい場合は、系 の動作時間のバラツキがあり、計 量精度を保証できず、計量範囲を 狭くすることにもつながる。If the weighing set value is small, the system There are variations in operating time, and The measurement accuracy cannot be guaranteed, and the measurement range cannot be guaranteed. It also leads to narrowing.

更に、計量された複数種の抜針 量体を混合して新たな品種を生産 するシステム全体から見ると、製 造能力が計量時間に左右され、特 に、パイプレスの移動方式の製造 システムにおいては、搬送能力を 制限することとなる。In addition, weighed multiple types of needle removal Producing new varieties by mixing quantities From the perspective of the entire system, Production capacity is affected by weighing time, and In the production of pipeless mobile method In the system, conveyance capacity It will be restricted.

(発明の目的) 本発明の目的は、上記事情にもとづいてなされたもので
、外乱による流速変動に影響されない高精度な計量を実
現すると共に、ワイドレンジな計量範囲を確保し、かつ
計量設定値の大小に左右されない短時間計量を実現する
液体計量方法を提供することにある。
(Objective of the Invention) The object of the present invention has been made based on the above-mentioned circumstances, and is to realize highly accurate measurement that is not affected by flow velocity fluctuations caused by external disturbances, secure a wide measurement range, and set measurement value. An object of the present invention is to provide a liquid measuring method that realizes short-time measuring that is not affected by the size of liquid.

更に、本発明の他の目的は、システム構成、パルプ流量
特性・液物性(粘度など)に左右されず、容易な調整の
みで、高精度、広範囲、短時間計量を実現する液体計量
方法を提供することにある。
Furthermore, another object of the present invention is to provide a liquid measuring method that achieves high precision, wide range, and short-time metering with only easy adjustments, regardless of system configuration, pulp flow characteristics, and liquid physical properties (viscosity, etc.). It's about doing.

すなわち、本発明は、液体についての計量に限定してよ
り高精度な計量を実現するものであり、従来計量装置に
おける制御方式、開度調整弁、被計量体の流(fを測定
する検出器等における下記の欠点を解消することにある
That is, the present invention realizes more accurate measurement by limiting the measurement to liquids, and improves the control method, opening adjustment valve, and detector for measuring the flow (f) of the object to be measured in the conventional measuring device. The purpose is to eliminate the following drawbacks in

■ 従来の計量制御では、流速一定条件であるが、パル
プの流量特性は、ヘッド差、液物性等にて変化し、計量
精度を悪化させる。
(2) In conventional metering control, the flow rate is constant, but the pulp flow rate characteristics change depending on head differences, liquid physical properties, etc., which deteriorates metering accuracy.

■ 検出器の動特性によシ、観測量が見掛は上ある変動
中をもつため、計量精度を悪化させる。
■ Due to the dynamic characteristics of the detector, the observed amount has an apparent fluctuation, which deteriorates measurement accuracy.

■ パルプの流8%性において、リニアな特性をもたせ
、且つ同一の特性を持たせることは難しく、パルプ毎に
流量特性がことなり、又、システム構成によっても流量
特性が異なる。そのため、高精反の計量を確保するため
には、構成毎に調整を必要とする。
(2) It is difficult to give pulp flow characteristics of 8% that are linear and have the same characteristics, and the flow characteristics vary depending on the pulp and also vary depending on the system configuration. Therefore, in order to ensure the measurement of high precision fabric, adjustment is required for each configuration.

(発明の概要) 従りて、本発明は、パルプの流量特性において、弁開度
0%近傍は全閉とし、10%程度近傍から液が流れる構
造とする。それ以上の流量特性は、クイックオープン特
性以外の特性であればよい。
(Summary of the Invention) Therefore, the present invention has a structure in which the valve opening is fully closed near 0% and liquid flows from around 10% in the pulp flow characteristics. Further flow characteristics may be any characteristics other than quick open characteristics.

検出器の動特性を考慮して、直接観測或いは算出された
量と、ローパスフィルタ処理を施した量を制御演算処理
に使用する。
In consideration of the dynamic characteristics of the detector, directly observed or calculated quantities and quantities subjected to low-pass filter processing are used for control calculation processing.

制御方式として、ファジィ制御を使用し、ファジィ推論
においてのメンバーシップ関数について物理量に対応す
る軸を片対数表現する。
Fuzzy control is used as a control method, and the axis corresponding to the physical quantity is expressed semi-logarithmically for membership functions in fuzzy inference.

パルプの初期開度設定として、弁の流量特性と計量設定
値によりファジィ推論を行い、決定する。
The initial pulp opening is determined by performing fuzzy reasoning based on the flow rate characteristics of the valve and the metering set value.

その後ファジィ制御方法にて操作f[全算出し、操作端
へ出力する。
After that, the fuzzy control method is used to calculate the entire operation f [and output it to the operation terminal.

(実施態様) 以下、図面に基づいて本発明の実施態様を説明する。(Embodiment) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の1実施態様に適用される液体計量装
置であシ、本実施態様では、計量タンクから流出された
液量を観測する減算式計量に基づいて説明する。
FIG. 1 shows a liquid measuring device applied to one embodiment of the present invention, and this embodiment will be explained based on subtractive metering in which the amount of liquid flowing out from a measuring tank is observed.

図において、1は計量制御装置、2は計量タンク8に充
填された原材料の重iを測定するロードセル、3は重量
計増幅器、4は計量制御装置1によシ制御されるサーボ
ドライバ、5はサーボドライバ4によシ駆動され、後述
する開度調整弁を可動するサーボモータ、6は計量タン
ク8からの流出液量を調整する開度調整弁、7は計量制
御装置1により制御され、液の流出を停止させるストラ
ップ弁である。また、前記開度調整弁6は流量特性が第
3図の(1)に示すよ5なイコールパーセント特性を有
している。
In the figure, 1 is a weighing control device, 2 is a load cell that measures the weight i of the raw material filled in a weighing tank 8, 3 is a weighing scale amplifier, 4 is a servo driver controlled by the weighing control device 1, and 5 is a A servo motor is driven by a servo driver 4 to move an opening adjustment valve (to be described later), 6 is an opening adjustment valve that adjusts the amount of liquid flowing out from the metering tank 8, and 7 is controlled by the metering control device 1, This is a strap valve that stops the flow of water. Further, the opening adjustment valve 6 has a flow rate characteristic of 5 equal percentage as shown in (1) of FIG.

次に、本発明の液体計量方法について説明する。Next, the liquid measuring method of the present invention will be explained.

第2図は、本発明の計量方法に係わる制御プロセスを示
している。
FIG. 2 shows a control process related to the weighing method of the present invention.

第1図及び第2図において、計量設定値が計量制御装置
1に与えられると、計量制御装置1のファジィ制御部(
第2図、符号1−2)にて、第3図の弁の流量特性から
ファジィ推論による弁の初期開度が算出される。計量制
御装置1は、計量開始と同時に初期開度設定値を、サー
ボドライバ4を通じて開度調整弁6のサーボモータ5に
指示する。これにより液が計量タンク8から流出し、ロ
ードセル2の実重量値が変化する。また、計量制御装置
1は所定の制御周期にて重量増幅器3よりの実重量値を
繰り返し計測しておシ、計量制御装置1の中のフィイル
演算部(第2図、符号1−1)が、計量設定値と実重量
値との偏差及び偏差の時間的変化歪を算出すると共に、
これら量にローノクスフィルタ処理を施した観測量を算
出すると、ファジィ制御部1−2が定められたファジィ
ルールに基づき弁開度の推論演算を行う。この際、ファ
ジィ推論によるメンバーシップ関数は、偏差量及び偏差
時間変化量の各物理量に対応する軸の分割が物理量の小
さい区間を細かくした、例えば片対数とする第4図のよ
うな形を持たせる。これは、計量精度向上並びに短時間
計量を目的とするためであシ、偏差量が大であれば、制
御性の良い事は必要なく、偏差量が小である場合に制御
精度を向上させる必要があるからである。このことは、
−次フィルタ処理機能にも当てはまり、偏差量等が小さ
い場合に一次フィルタの偏差量等を使用し、計量検出器
の動特性を緩和して計if/!度を向上させる。
1 and 2, when a measurement setting value is given to the measurement control device 1, the fuzzy control section (
In FIG. 2, reference numeral 1-2), the initial opening degree of the valve is calculated by fuzzy reasoning from the flow rate characteristics of the valve shown in FIG. The metering control device 1 instructs the servo motor 5 of the opening adjustment valve 6 through the servo driver 4 to set the initial opening at the same time as metering starts. As a result, the liquid flows out from the measuring tank 8, and the actual weight value of the load cell 2 changes. In addition, the weighing control device 1 repeatedly measures the actual weight value from the weight amplifier 3 at a predetermined control cycle, and the fill calculation section (FIG. 2, reference numeral 1-1) in the weighing control device 1 , calculate the deviation between the measurement setting value and the actual weight value, and the temporal change distortion of the deviation,
When observed quantities are calculated by performing Ronox filter processing on these quantities, the fuzzy control unit 1-2 performs an inference calculation of the valve opening based on a defined fuzzy rule. At this time, the membership function based on fuzzy inference has a form as shown in Figure 4, in which the division of the axes corresponding to each physical quantity of deviation amount and deviation over time is made into smaller sections of small physical quantities, for example, semi-logarithm. let This is for the purpose of improving measurement accuracy and short-time measurement.If the amount of deviation is large, it is not necessary to have good controllability, but if the amount of deviation is small, it is necessary to improve control accuracy. This is because there is. This means that
This also applies to the -order filter processing function, which uses the deviation amount of the first-order filter when the deviation amount, etc. is small, relaxes the dynamic characteristics of the weighing detector, and calculates if/! Improve your degree.

計量開始後、開度調整弁6は適切な開度となるように制
御され、次第に計量偏差が小さくなるにつれ、開度調整
弁6の開度も次第に絞まる方向になり、流速は小さくな
る。この時、第3図の流量特性を開度調整弁6が有して
いれば、偏差0近傍にて弁開度約10%程度ファジィ推
論演算に基づき推移する。従って、弁の機械的ガタ等が
あっても、このデッドゾーン及びファジィ制御方式によ
シ、このガタ等の悪影響を吸収し、高精度の計量が出来
る。
After the start of metering, the opening degree adjusting valve 6 is controlled to have an appropriate opening degree, and as the metering deviation gradually becomes smaller, the opening degree of the opening degree adjusting valve 6 also gradually becomes narrower, and the flow velocity becomes smaller. At this time, if the opening degree adjusting valve 6 has the flow rate characteristic shown in FIG. 3, the valve opening degree changes by about 10% based on the fuzzy inference calculation with the deviation in the vicinity of 0. Therefore, even if there is mechanical backlash of the valve, the dead zone and fuzzy control method absorb the negative effects of the backlash and allow highly accurate measurement.

更に、本発明を、第5図に図示する複数のタンク11.
12から供給される被計量体を1つの計量タンク16に
混合してロードセル15にて計量する累積計量系に適用
すると、上流側タンク11.12にそれぞれ付属した開
度調整弁13.14の流量特性が異っても、第3図に示
したデッドゾーン近傍の特性があまり変わらなければ、
計量開始後の開度調整弁の挙動は異なるが、計量終了直
前の挙動はほぼ同等となシ、同一のメンバーシップ関数
並びにファジィルールにて計量はできる。
Additionally, the present invention may be applied to a plurality of tanks 11. as illustrated in FIG.
When applied to a cumulative measurement system in which the objects to be measured supplied from 12 are mixed into one measurement tank 16 and measured by the load cell 15, the flow rate of the opening adjustment valves 13 and 14 attached to the upstream tanks 11 and 12, respectively. Even if the characteristics are different, if the characteristics near the dead zone shown in Figure 3 do not change much, then
Although the behavior of the opening adjustment valve after the start of measurement is different, the behavior immediately before the end of measurement is almost the same, and measurement can be performed using the same membership function and fuzzy rule.

従って、システム構成、バルズ特性・液物性等の違いに
因らず容易に高精度、広範囲、短時間の計量が達成出来
る。
Therefore, high precision, wide range, and short time measurement can be easily achieved regardless of differences in system configuration, bulb characteristics, liquid physical properties, etc.

次に、本発明に基づいて行った実験結果について述べる
Next, the results of experiments conducted based on the present invention will be described.

この実験は、先の第1図に示した計量、装置において行
った。
This experiment was conducted using the measuring device shown in FIG. 1 above.

本結果の計量装置は、最大10kf9の計量ができ、ロ
ードセルの精度は5000分の1である。E’CV(開
度調整弁)はサーボモータにて位置制御され、計量制御
装置から位置指令が出力される。
The resulting weighing device can weigh up to 10 kf9, and the accuracy of the load cell is 1/5000. The position of E'CV (opening adjustment valve) is controlled by a servo motor, and a position command is output from the metering control device.

第6図は、2種類の開度調整弁の流量特性を示す。この
2種類の開度調整弁を第1図の構成系に順次設置して制
御方式等全く変更せずに計量を行った。
FIG. 6 shows the flow characteristics of two types of opening adjustment valves. These two types of opening adjustment valves were sequentially installed in the system shown in FIG. 1, and measurements were performed without changing the control system or the like.

第7図は、その時の1000 g計量結果を示す。Figure 7 shows the 1000g weighing results at that time.

図7−aは図6−aの流量特性を持つ開度調整弁の結果
であシ、図7−1)は図6−1)の結果である。
FIG. 7-a shows the results of the opening adjustment valve having the flow rate characteristics shown in FIG. 6-a, and FIG. 7-1) shows the results of FIG. 6-1).

第7図から明らかなとおり、当然開度調整弁の弁開度の
動作パターンは変わるが、はぼ同じ計量時間で、高精度
の計量結果が得られた。
As is clear from FIG. 7, although the operation pattern of the opening degree of the opening adjustment valve changes, highly accurate measurement results were obtained with approximately the same measurement time.

また、本計量系では、第6図に示しているように、液の
残存量(ヘッド差)により同一開度であっても流量、す
なわち流速は異なる。しかし、液の残存量を各水準にて
測定したが、当然弁開度の動作パターンは異なるものの
、計量時間、計量精度共に同一の結果を得た。又、計量
範囲についても、1:100の範囲にて、±1.Og以
内の精度が保証された。
In addition, in this measuring system, as shown in FIG. 6, the flow rate, that is, the flow rate, varies depending on the remaining amount of liquid (head difference) even if the opening degree is the same. However, when the remaining amount of liquid was measured at each level, although the operation pattern of the valve opening was different, the same results were obtained in terms of measurement time and measurement accuracy. Also, regarding the measurement range, ±1. Accuracy within 0g was guaranteed.

前記実施態様では、計量検出器としてロードセルを用い
ているが、ロードセルの代りに差圧伝送器、液面計等の
計量値が観測できるものであれば、倒れの検出器でもよ
い。
In the embodiment described above, a load cell is used as the measurement detector, but instead of the load cell, a fall detector such as a differential pressure transmitter or a liquid level gauge may be used as long as the measurement value can be observed.

また、開度調整弁の駆動装置としてサーボモータを例と
して示したが、位置制御出来る装置であれば、いずれの
機器でも実現できる。
Furthermore, although a servo motor is shown as an example of a driving device for the opening adjustment valve, any device that can control the position can be used.

(発明の効果) 以上記載したとおシ、本発明により、下記の効果が得ら
れる。
(Effects of the Invention) As described above, the present invention provides the following effects.

開度調整弁の流儀特性、計量システムの構成等に依存せ
ず、同一のメンバーシップ関数並びにファジィル(たて
、下記の効果が得られる。
Regardless of the style characteristics of the opening adjustment valve, the configuration of the metering system, etc., the following effects can be obtained using the same membership function and fuzzy function.

■ 外乱による流速変動に影響されない高精度な計量の
実現 ■ 計量設定値の範囲の広いワイドレンジの計量の実現 ■ 計量設定値の大小に依存しない短時間の計量の実現 更に、計量制御装置として、低容量のメそりにて容易に
製作でき、装置価格のコストダウンができる。
■ Achieving high-accuracy measurement that is not affected by flow velocity fluctuations caused by external disturbances ■ Achieving wide-range measurement with a wide range of measurement setting values ■ Achieving short-time measurement that is independent of the magnitude of measurement setting values In addition, as a measurement control device, It can be easily manufactured using a low-capacity mesori, and the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様に適用される液体計量装置
を説明する図、第2図は第1図の装置における制御プロ
セスを説明するブロック図、第3図は開度調整弁の流i
l特性図、第4図はファジィ制御のメンバーシップ関数
を説明する図、第5図は本発明が適用される累積計量装
置を説明する図、第6図は本発明の実験のために、第1
図の計量装置に適用される開度調整弁の流量特性図であ
シ、国は流速大のタイプを、(1))流速小のタイプを
、それぞれ示した図であシ、第7図は実験により得られ
た計量結果を示す図であり、(al及び(1)Jは第6
図のそれとそれぞれ対応し九図である。 1−計量制御装置、  2.15−ロードセル、3−重
量計増幅器、   4−サーボドライバ、5−サーボモ
ータ、   6.13.14−開度調整弁、7−ストッ
プ弁、    8−タンク、16−計量タンク 代理人 弁理士(8107)  佐々木 清 隆 ′、
パ(ほか3名)゛ 第3図 ?#lA(?AAt冒) 第4図 僅差量(K) 第5図 手続補正書 昭和62年 6月22日
FIG. 1 is a diagram explaining a liquid measuring device applied to one embodiment of the present invention, FIG. 2 is a block diagram explaining the control process in the device of FIG. 1, and FIG. 3 is a flow diagram of the opening adjustment valve. i
FIG. 4 is a diagram explaining the membership function of fuzzy control, FIG. 5 is a diagram explaining the cumulative weighing device to which the present invention is applied, and FIG. 1
Fig. 7 is a flow characteristic diagram of the opening adjustment valve applied to the measuring device shown in Fig. 7. It is a figure showing the measurement results obtained by the experiment, (al and (1) J are the 6th
There are nine figures corresponding to those in the figure. 1-Weighing control device, 2.15-load cell, 3-weight scale amplifier, 4-servo driver, 5-servo motor, 6.13.14-opening adjustment valve, 7-stop valve, 8-tank, 16- Metering Tank Agent Patent Attorney (8107) Kiyotaka Sasaki',
Pa (3 others) ゛Figure 3? #lA(?AAtdeflation) Figure 4 Slight difference amount (K) Figure 5 Procedural amendment June 22, 1986

Claims (1)

【特許請求の範囲】 1)任意に設定される計量設定値と帰還される実計量値
とにより流速を変化させるクローズドループの液体計量
方法において、液流量を制限する開度調整弁の流量特性
と計量設定値とによりファジィ推論を行い、計量開始前
の弁の初期開度を決定すると共に、逐次観測される実計
量値にもとずいてファジィ制御を行い、弁開度を変化す
ることを特徴とする液体計量方法。 2)開度調整弁の流量特性として、弁開度の所定範囲に
おいて流量の出ないデッドスペースを設けることを特徴
とする特許請求の範囲第1項に記載の液体計量方法。 3)実計量値を計測し、計量設定値と前記実計量値との
偏差及び偏差の時間的変化量の観測量にローパスフィル
タ処理を施すことを特徴とする特許請求の範囲第1項或
は第2項に記載の液体計量方法。 4)ファジィ推論のメンバーシップ関数として物理量に
対応する軸の分割を、物理量の小さい区間は細かくする
ことを特徴とする特許請求の範囲第1項、第2項或は第
3項に記載の液体計量方法。
[Claims] 1) In a closed-loop liquid metering method in which the flow rate is changed by an arbitrarily set metering set value and a fed-back actual metered value, the flow rate characteristic of an opening adjustment valve that limits the liquid flow rate and The system performs fuzzy inference based on the measurement set value to determine the initial valve opening before starting measurement, and also performs fuzzy control based on the actual measurement values that are sequentially observed to change the valve opening. Liquid measuring method. 2) The liquid measuring method according to claim 1, characterized in that the flow rate characteristic of the opening adjustment valve includes providing a dead space in which no flow occurs within a predetermined range of the valve opening. 3) An actual measured value is measured, and a low-pass filter process is applied to the deviation between the measured value and the actual measured value and the observed amount of the change over time of the deviation. Liquid measuring method according to item 2. 4) The liquid according to claim 1, 2, or 3, wherein the division of the axis corresponding to the physical quantity as a membership function of fuzzy inference is made finer in sections where the physical quantity is small. Weighing method.
JP62106412A 1987-05-01 1987-05-01 Liquid weighing method Expired - Fee Related JP2587235B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62106412A JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method
EP19880106920 EP0290889B1 (en) 1987-05-01 1988-04-29 Method of and apparatus for measuring liquid
DE19883877815 DE3877815T2 (en) 1987-05-01 1988-04-29 METHOD AND DEVICE FOR MEASURING LIQUID.
CN88103592A CN1016116B (en) 1987-05-01 1988-04-30 Be used to measure the method and apparatus of fluid
US07/188,987 US4872763A (en) 1987-05-01 1988-05-02 Method of and apparatus for measuring liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106412A JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method

Publications (2)

Publication Number Publication Date
JPS63273013A true JPS63273013A (en) 1988-11-10
JP2587235B2 JP2587235B2 (en) 1997-03-05

Family

ID=14432957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106412A Expired - Fee Related JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method

Country Status (1)

Country Link
JP (1) JP2587235B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220534A (en) * 1990-12-21 1992-08-11 Kamachiyou Seiko Kk Continuously constant amount supplying device
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
CN103592011A (en) * 2013-11-22 2014-02-19 芜湖集拓橡胶技术有限公司 Liquid weighing system
JP2016535868A (en) * 2014-01-15 2016-11-17 エーペックス マイクロエレクトロニクス カンパニー リミティドApex Microelectronics Co., Ltd. Ink cartridge chip and ink cartridge using the chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123049U (en) * 1975-03-31 1976-10-05
JPS51147356A (en) * 1975-06-13 1976-12-17 Asahi Eng Kk Balanced packer scale supbrvisory device
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123049U (en) * 1975-03-31 1976-10-05
JPS51147356A (en) * 1975-06-13 1976-12-17 Asahi Eng Kk Balanced packer scale supbrvisory device
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220534A (en) * 1990-12-21 1992-08-11 Kamachiyou Seiko Kk Continuously constant amount supplying device
JPH05223627A (en) * 1991-07-23 1993-08-31 Andre Graffin Quantitative distribution method and apparatus
CN103592011A (en) * 2013-11-22 2014-02-19 芜湖集拓橡胶技术有限公司 Liquid weighing system
JP2016535868A (en) * 2014-01-15 2016-11-17 エーペックス マイクロエレクトロニクス カンパニー リミティドApex Microelectronics Co., Ltd. Ink cartridge chip and ink cartridge using the chip

Also Published As

Publication number Publication date
JP2587235B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US5024352A (en) Apparatus for the automatic determination of a continuous bulk material throughput by a continuous balance
JP2598834B2 (en) Container filling device with weight measurement
EP0290889B1 (en) Method of and apparatus for measuring liquid
CN101479682B (en) Flow controller delivery of a specified quantity of a fluid
US10112816B2 (en) Method for filling a container with a fill product using a proportional valve
JPS6348550B2 (en)
JPS63283731A (en) Liquid and powder metering and mixing apparatus
JPS63273013A (en) Measurement of liquid
CN100371840C (en) On-line weighing dispensing method based on feed speed control
JP2587236B2 (en) Powder weighing method
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
CN111247088A (en) Method for filling a container with a filling product
US3486013A (en) Ratio controller
CN113204253A (en) Fuzzy control method and system for liquid level of drip tray of pill dripping machine
JP2011051624A (en) Method and device for filling with fixed quantity of liquid
SU548766A1 (en) Method of volume and weight dosing of mixture components
JPS6082818A (en) Automatic measuring method of pulverulent material
SU1654667A1 (en) Model flowmetering rig
JPH1129106A (en) Filler
CN207123318U (en) mass flowmeter calibration detecting system
US4597405A (en) Process and apparatus for controlling a controllable magnitude and use of the process
JPS63283730A (en) Liquid metering and mixing apparatus
SU390369A1 (en) ; Hhg, ka yna ^ 'bytfATi ^ 390369M. Cl. G Olf 11 / 00УДК 53.2.57 (088.8)
JPH01100612A (en) Liquid measuring and mixing device
SU1265486A1 (en) Continuous weigher

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees