JP2587235B2 - Liquid weighing method - Google Patents

Liquid weighing method

Info

Publication number
JP2587235B2
JP2587235B2 JP62106412A JP10641287A JP2587235B2 JP 2587235 B2 JP2587235 B2 JP 2587235B2 JP 62106412 A JP62106412 A JP 62106412A JP 10641287 A JP10641287 A JP 10641287A JP 2587235 B2 JP2587235 B2 JP 2587235B2
Authority
JP
Japan
Prior art keywords
weighing
deviation
valve
value
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62106412A
Other languages
Japanese (ja)
Other versions
JPS63273013A (en
Inventor
登 樋口
敬三 松井
忠造 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62106412A priority Critical patent/JP2587235B2/en
Priority to EP19880106920 priority patent/EP0290889B1/en
Priority to DE19883877815 priority patent/DE3877815T2/en
Priority to CN88103592A priority patent/CN1016116B/en
Priority to US07/188,987 priority patent/US4872763A/en
Publication of JPS63273013A publication Critical patent/JPS63273013A/en
Application granted granted Critical
Publication of JP2587235B2 publication Critical patent/JP2587235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体計量方法に関し、更に詳述すれば、計量
途中に得られる観測量に基づいてファジィ推論を行い、
被計量体の流速を逐次変化させることにより、計量精度
の向上、計量範囲の拡大及び短時間計量を実現する液体
計量方法に関する。
Description: TECHNICAL FIELD The present invention relates to a liquid measuring method, and more specifically, performs a fuzzy inference based on an observation amount obtained during the measurement,
The present invention relates to a liquid measuring method for improving a measuring accuracy, expanding a measuring range, and realizing a short-time measuring by sequentially changing a flow velocity of an object to be measured.

(従来技術) 液体計量においては、検出方式として、重量式(ロー
ドセル等)、圧力式(差圧伝送器等)、容積式(オーバ
ル流量計等)等、様々な方式がある。
(Prior Art) In liquid measurement, there are various detection methods such as a weight type (load cell or the like), a pressure type (differential pressure transmitter or the like), a positive displacement type (oval flow meter or the like), and the like.

しかし、いずれの方式においても、計量制御として流
速一定が前提であり、連続的に流速を可変させるクロー
ズドループの計量制御方式はない。
However, in any of the methods, a constant flow rate is assumed as the measurement control, and there is no closed-loop measurement control method that continuously varies the flow rate.

従来、計量精度を向上させる方法として、下記の技術
が実施されている。
Conventionally, the following technology has been implemented as a method for improving the measurement accuracy.

流速を2段階に分割して、計量設定値の近傍にて、
遅い流速側に切り換えて計量する技術(例えば特開昭56
−148019号公報)。
Divide the flow rate into two stages, and in the vicinity of the weighing setting,
Technology for weighing by switching to the slow flow side (for example,
-148019).

具体例1)流速の異なる2種類の装置を設置して、計量
設定値と実計量値との偏差がある条件値に達すると切り
換える。
Specific Example 1) Two types of devices having different flow velocities are installed, and switching is performed when a deviation between a set measurement value and an actual measurement value reaches a certain condition value.

2)流速を2種類の固定条件に切り換えられる機能を有
した単一装置を設置して、1)と同様に偏差がある条件
値に達すると切り換える。
2) A single device having a function of switching the flow velocity between two fixed conditions is installed, and when the deviation reaches a certain condition value as in 1), the switching is performed.

3)1)、2)の内容において、ソフトウェア機能とし
て学習機能を付加して、前回の計量実績値から、切り換
えを指令する条件値を修正する。
3) In the contents of 1) and 2), a learning function is added as a software function, and a condition value for instructing switching is corrected from the previous actual measurement value.

計量停止条件として、流れ込み量(落差量とも言わ
れる)があり、この量を予測して事前に計量を停止させ
て計量する技術(例えば特開昭57−29114号公報)。
As a weighing stop condition, there is an inflow amount (also referred to as a head amount), and a technique of predicting this amount and stopping the weighing in advance to perform weighing (for example, JP-A-57-29114).

具体例1)計量設定値と実計量値との偏差がある条件に
達すると計量停止させる。
Specific example 1) When the deviation between the weighing set value and the actual weighed value reaches a certain condition, the weighing is stopped.

2)−3)と同様であるが、前回の計量実績値から演
算して、計量停止を指令する条件値を修正する。
2) Same as -3), except that the condition value for instructing the stop of the measurement is corrected by calculating from the previous actual measurement value.

(発明が解決しようとする問題点) しかしながら、従来の計量制御では、流速一定或いは
前述したとおり流速を2段階に分割して切換えているも
ののある範囲内では固定しての計量のため、下記の欠点
がある。
(Problems to be Solved by the Invention) However, in the conventional metering control, the flow rate is fixed, or as described above, the flow rate is divided into two stages and switched, but the measurement is fixed within a certain range. There are drawbacks.

計量精度: 外乱による流速変動や液物性(粘度な
ど)の違いによる流速変動により、精度が保証されない
事態を生じる。
Measurement accuracy: Accuracy is not guaranteed due to flow velocity fluctuations due to disturbances and flow velocity fluctuations due to differences in liquid physical properties (viscosity, etc.).

例えば、重力移送の場合、上流側容器内の被計量体の
残存量(以下、本明細書ではこの残存量をヘッド差と呼
ぶ。)により、流出する被計量体に流速変動を生じる
が、ヘッド差の変化が大きいと流速がある条件範囲をは
み出し、精度が悪化する。また、このことは、上流側容
器のヘッドの変化巾に制限を生じさせる結果となり、ヘ
ッド差を所定範囲内に維持しておくためには、計量の停
止或いは上流側容器に適宜原材料を補給しなければなら
ず、計量値以上の原材料を準備することは、二次的に原
材料のロスの発生につながる。
For example, in the case of gravity transfer, the flow rate fluctuation occurs in the outflowing weighing object due to the remaining amount of the weighing object in the upstream container (hereinafter, this remaining amount is referred to as a head difference in the present specification). If the change in the difference is large, the flow velocity goes out of a certain condition range, and the accuracy deteriorates. In addition, this results in a limitation on the change width of the head of the upstream container, and in order to maintain the head difference within a predetermined range, stop the measurement or supply the raw material to the upstream container appropriately. Preparing raw materials that are equal to or greater than the weighed value leads to a secondary loss of raw materials.

計量範囲: 流速を制限しているため、計量可能な
最小計量値及び最大計量値の比は通常1:5程度である。
Measuring range: Since the flow rate is restricted, the ratio of the minimum weighing value and the maximum weighing value that can be measured is usually about 1: 5.

流速の2段設定タイプでも、最大1:10程度となる。 Even with a two-stage flow velocity setting type, the maximum is about 1:10.

このように、計量範囲が狭い理由は、計量停止して
も、系の応答遅れによる流れ込み量があり、この量が流
速により決定されるため計量設定値が小さい場合に、こ
の量が精度の保証範囲を越え、その結果計量レンジが制
限される事となる。
The reason for the narrow measurement range is that even if measurement is stopped, there is an inflow due to the response delay of the system, and this amount is determined by the flow velocity. Range, which limits the weighing range.

多品種対応の製造プラントにおいては、同一原材料に
おいても計量レンジとして最大1:100程度のものもあ
り、計量設定値範囲にて計量装置を選択する必要があ
る。
In a manufacturing plant that can handle a wide variety of products, there is a maximum measuring range of about 1: 100 even for the same raw material, and it is necessary to select a measuring device in a measuring set value range.

計量時間: 計量設定値により計量時間が左右され
る。
Weighing time: The weighing time depends on the weighing set value.

計量設定値が小さい場合は、計量時間は短く、大きい
場合は長くなる。
When the weighing set value is small, the weighing time is short, and when it is large, the weighing time is long.

計量設定値が小さい場合は、系の動作時間のバラツキ
があり、計量精度を保証できず、計量範囲を狭くするこ
とにもつながる。
When the weighing set value is small, the operation time of the system varies, which makes it impossible to guarantee the weighing accuracy and narrows the weighing range.

更に、計量された複数種の被計量体を混合して新たな
品種を生産するシステム全体から見ると、製造能力が個
々の計量時間に左右され、これら計量時間は、特にパイ
プレスの移動方式の製造システムにおいては、搬送能力
を制限することとなる。
Furthermore, from the point of view of the entire system for producing a new variety by mixing a plurality of types of weighed objects, the production capacity is dependent on the individual weighing times, and these weighing times are particularly affected by the production of a pipeless moving method. In the system, the transport capacity is limited.

(発明の目的) 本発明の目的は、上記事情にもとづいてなされたもの
で、外乱による流速変動に影響されない高精度な計量を
実現すると共に、ワイドレンジな計量範囲を確保し、か
つ計量設定値の大小に左右されない短時間計量を実現す
る液体計量方法を提供することにある。
(Object of the Invention) The object of the present invention is based on the above circumstances, and realizes high-precision weighing that is not affected by flow velocity fluctuations due to disturbance, secures a wide-range weighing range, and sets weighing set values. It is an object of the present invention to provide a liquid measuring method for realizing a short time measuring regardless of the size of the liquid.

更に、本発明の他の目的は、システム構成、バルブ流
量特性・液物性(粘度など)に左右されず、容易な調整
のみで、高精度、広範囲、短時間計量を実現する液体計
量方法を提供することにある。
Further, another object of the present invention is to provide a liquid measuring method which achieves high accuracy, wide range, and short time measurement by only easy adjustment without being influenced by the system configuration, valve flow characteristics and liquid physical properties (viscosity, etc.). Is to do.

すなわち、本発明は、液体についての計量に限定して
より高精度な計量を実現するものであり、従来計量装置
における制御方式、開度調整弁、被計量体の流量を測定
する検出器等における下記の欠点を解消することにあ
る。
That is, the present invention is intended to realize more accurate measurement limited to the measurement of the liquid, the control method in the conventional metering device, the opening adjustment valve, the detector for measuring the flow rate of the object to be measured, etc. It is to eliminate the following disadvantages.

従来の計量制御では、流速一定を前提としている
が、バルブの流量特性は、ヘッド差、液物性等にて変化
し、計量精度を悪化させる。
In the conventional metering control, it is assumed that the flow rate is constant. However, the flow rate characteristics of the valve change due to a head difference, liquid physical properties, and the like, thereby deteriorating the metering accuracy.

検出器の動特性により、観測量が見掛け上ある変動
巾をもつため、計量精度を悪化させる。
Due to the dynamic characteristics of the detector, the observed quantity has an apparent fluctuation range, which deteriorates the measurement accuracy.

バルブの流量特性において、リニアな特性をもた
せ、且つ同一の特性を持たせることは難しく、バルブ毎
に流量特性がことなり、又、システム構成によっても流
量特性が異なる。そのため、高精度の計量を確保するた
めには、構成毎に調整を必要とする。
It is difficult to make the flow characteristics of the valves linear and have the same characteristics. The flow characteristics vary from one valve to another, and the flow characteristics also differ depending on the system configuration. Therefore, in order to ensure high-precision weighing, adjustment is required for each configuration.

(発明の概要) 本発明は、任意に設定される計量設定値と帰還される
実計量値とにより流速を変化させるクローズドループの
液体計量方法において、液流量を制限する開度調整弁の
流量特性と計量設定値とによりファジィ推論を行い、計
量開始前の弁の初期開度を決定し、計量開始後は、逐次
観測される実計量値と計量設定値との偏差及び偏差の時
間的変化量を観測量とし、偏差と偏差の時間的変化の領
域をメンバシップ関数表現し、かつ、観測量に対応する
軸の分割を観測量の小さい区間は細かくるように表現
し、このメンバシップ関数で表現された領域の移行関係
をファジィルールで表現し、これらからファジィ推論を
行い、そのファジィ推論の結果に基づいて前記開度調整
弁の弁開度を変化させることを特徴とする液体計量方法
にある。
(Summary of the Invention) The present invention relates to a closed-loop liquid metering method in which a flow rate is changed by an arbitrarily set metering set value and an actual metering value fed back, and a flow rate characteristic of an opening control valve for limiting a liquid flow rate. Fuzzy inference based on the measured value and the measured set value, determines the initial opening of the valve before the start of weighing, and after the start of weighing, the deviation between the actual measured value and the weighed set value that are sequentially observed, and the time variation of the deviation Is the observable, the area of the deviation and the temporal change of the deviation is expressed as a membership function, and the division of the axis corresponding to the observable is expressed so that the section with a small observable is fine. A liquid measuring method characterized by expressing the transition relation of the expressed region by fuzzy rules, performing fuzzy inference from these, and changing the valve opening of the opening degree adjustment valve based on the result of the fuzzy inference. is there .

(実施態様) 以下、図面に基づいて本発明の実施態様を説明する。(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の1実施態様に適用される液体計量
装置であり、本実施態様では、計量タンクから流出され
た液量を観測する減算式計量に基づいて説明する。
FIG. 1 shows a liquid metering apparatus applied to one embodiment of the present invention. In this embodiment, description will be made based on subtraction-type metering for observing the amount of liquid flowing out of a metering tank.

図において、1は計量制御装置、2は計量タンク8に
重点された原材料の重量を測定するロードセル、3は重
量計増幅器、4は計量制御装置1により制御されるサー
ボドライバ、5はサーボドライバ4により駆動され、後
述する開度調整弁を可動するサーボモータ、6は計量タ
ンク8からの流出液量を調整する開度調整弁、7は計量
制御装置1により制御され、液の流出を停止させるスト
ップ弁である。また、前記開度調整弁6は流量特性が第
3図の(1)に示すようなそれぞれの特性を有してい
る。
In the figure, 1 is a weighing control device, 2 is a load cell for measuring the weight of the raw material focused on the weighing tank 8, 3 is a weigh scale amplifier, 4 is a servo driver controlled by the weighing control device 1, and 5 is a servo driver 4. , A servo motor that moves an opening adjustment valve, which will be described later, 6 is an opening adjustment valve that adjusts the amount of effluent from the measuring tank 8, and 7 is controlled by the measurement control device 1 to stop the outflow of the liquid. It is a stop valve. In addition, the opening adjustment valve 6 has respective flow characteristics as shown in FIG. 3 (1).

次に、本発明の液体計量方法について説明する。第2
図は、本発明の計量方法に係わる制御プロセスを示して
いる。
Next, the liquid measuring method of the present invention will be described. Second
The figure shows a control process according to the weighing method of the present invention.

第1図及び第2図において、計量設定値が計量制御装
置1に与えられると、計量制御装置1のファジィ制御部
(第2図、符号1−2)にて、第3図の弁の流量特性か
らファジィ推論による弁の初期開度が算出される。この
時の、メンバシップ関数は、第8図に示すように、計量
の設定値に対して開度調整弁の初期開度の係数を関数付
けるものであり、例えば、設定値が1000gであれば、初
期開度の係数は×0.5となる。このようにして得た初期
開度が、第7図(a)および(b)における計量時刻ゼ
ロにおける弁開度である。計量制御装置1は、計量開始
と同時に初期開度設定値を、サーボドライバ4を通じて
開度調整弁6のサーボモータ5に指示する。これにより
液が計量タンク8から流出し、ロードセル2の実重量値
が変化する。また、計量制御装置1は所定の制御周期に
て重量増幅器3よりの実重量値を繰り返し計測してお
り、計量制御装置1の中のファジィ演算部(第2図、符
号1−1)が、計量設定値と実重量値との偏差及び偏差
の時間的変化量を算出すると共に、これら量にローパス
フィルタ処理を施した観測量を算出すると、ファジィ制
御部1−2が定められたファジィルールに基づき、すな
わち、偏差と偏差の時間的変化分をメンバシップ関数に
表現し、それぞれのバランス領域に移行する条件を定め
たファジィルールに従って弁開度の変化分を求めるファ
ジィ推論を行う。この際、ファジィ推論によるメンバー
シップ関数は、偏差量及び偏差時間変化量の各物理量に
対応する軸の分割が物理量の小さい区間を細かくした、
例えば片対数とする第4図および第9図に示す形を持た
せる。これは、計量精度向上並びに短時間計量を目的と
するためであり、偏差量が大であれば、制御精度の良い
事は必要なく、偏差量が小である場合に制御精度を向上
させる必要があるからである。このことは、一次フィル
タ処理機能にも当てはまり、偏差量等が小さい場合に一
次フィルタの偏差量等を使用し、計量検出器の動特性を
緩和して計量精度を向上させる。
In FIG. 1 and FIG. 2, when a weighing set value is given to the weighing control device 1, the flow rate of the valve shown in FIG. The initial opening of the valve is calculated from the characteristics by fuzzy inference. At this time, as shown in FIG. 8, the membership function assigns a function of the initial opening degree of the opening degree adjustment valve to the measurement set value. For example, if the set value is 1000 g, , The coefficient of the initial opening is × 0.5. The initial opening obtained in this manner is the valve opening at the weighing time zero in FIGS. 7A and 7B. The metering control device 1 instructs the servo motor 5 of the opening adjustment valve 6 through the servo driver 4 with the initial opening set value at the same time as the start of the measurement. As a result, the liquid flows out of the measuring tank 8, and the actual weight value of the load cell 2 changes. Also, the weighing control device 1 repeatedly measures the actual weight value from the weight amplifier 3 at a predetermined control cycle, and the fuzzy operation unit (reference numeral 1-1 in FIG. 2) in the weighing control device 1 When the deviation between the weighing set value and the actual weight value and the amount of change in the deviation over time are calculated, and the amount of observation obtained by applying a low-pass filter process to these amounts is calculated, the fuzzy control unit 1-2 sets the fuzzy rule to the determined fuzzy rule. In other words, the deviation and the temporal change of the deviation are expressed in a membership function, and fuzzy inference for obtaining the change of the valve opening degree is performed in accordance with fuzzy rules that define conditions for shifting to the respective balance regions. At this time, the membership function based on fuzzy inference, the division of the axis corresponding to each physical quantity of the deviation amount and the deviation time change amount made the section where the physical quantity is small finer,
For example, it has a semi-logarithmic shape as shown in FIGS. This is for the purpose of improving weighing accuracy and short-time weighing. If the deviation amount is large, it is not necessary to have good control accuracy, and if the deviation amount is small, it is necessary to improve control accuracy. Because there is. This also applies to the primary filter processing function. When the deviation amount or the like is small, the deviation amount or the like of the primary filter is used to relax the dynamic characteristics of the weighing detector and improve the weighing accuracy.

なお、第9図は、メンバシップ関数のそれぞれの区間
に対応する、偏差及び偏差の時間的変化量のバランス領
域を示し、図中のバランス点は、それぞれの領域におい
て弁開度の変更を必要としない点を示している。
FIG. 9 shows a balance area of the deviation and the time variation of the deviation corresponding to each section of the membership function, and the balance point in the figure indicates that the valve opening degree needs to be changed in each area. And not.

計量開始後、観測量が第9図中のどこに位置するかに
対応して、それぞれのバランス領域に移行する条件を定
めたファジィルールに従ってファジィ推論を行い、その
結果により開度調整弁6は適切な開度となるように制御
され、次第に計量偏差が小さくなるにつれ、開度調整弁
6の開度も次第に絞まる方向になり、流速は小さくな
る。この時、第3図の流量特性を開度調整弁6が有して
いれば、弁開度は、偏差0近傍においては弁開度約10%
程度の領域すなわち、デッドゾーンにファジィ推論演算
に基づき推移する。デッドゾーンでは弁開度の所定の範
囲において流量が出ない。従って、弁の機械的ガタ等が
あっても、このデッドゾーン及びファジィ制御方式にて
弁開度変動が小さいことによりこのガタ等の悪影響が吸
収され、高精度の計量ができる。
After the start of the weighing, fuzzy inference is performed according to the fuzzy rules that define the conditions for shifting to the respective balance areas in accordance with where the observation quantity is located in FIG. 9, and the opening adjustment valve 6 is appropriately determined based on the result. The degree of opening is controlled so that the opening degree of the opening degree adjustment valve 6 gradually narrows as the measurement deviation gradually decreases, and the flow velocity decreases. At this time, if the opening degree regulating valve 6 has the flow characteristic shown in FIG. 3, the valve opening degree is about 10% near the deviation 0.
A transition is made to a degree area, that is, a dead zone based on a fuzzy inference operation. In the dead zone, there is no flow in a predetermined range of the valve opening. Therefore, even if there is mechanical backlash of the valve or the like, the adverse effect of the backlash or the like is absorbed by the small fluctuation of the valve opening degree by the dead zone and the fuzzy control method, and the measurement can be performed with high accuracy.

更に、本発明を、第5図に図示する複数のタンク11,1
2から供給される被計量体を1つの計量タンク16に混合
してロードセル15にて計量する累積計量系に適用する
と、上流側タンク11,12にそれぞれ付属した開度調整弁1
3,14の流量特性が異っても、第3図に示したデッドゾー
ン近傍の特性があまり変わらなければ、計量開始後の開
度調整弁の挙動は異なるが、計量終了直前の挙動はほぼ
同等となり、同一のメンバーシップ関数並びにファジィ
ルールにて計量できる。
Further, the present invention is applied to a plurality of tanks 11, 1 shown in FIG.
When the object to be weighed supplied from 2 is mixed into one weighing tank 16 and applied to the cumulative weighing system for weighing with the load cell 15, the opening adjustment valves 1 attached to the upstream tanks 11 and 12 respectively.
If the characteristics near the dead zone shown in FIG. 3 do not change so much even if the flow characteristics of 3, 14 are different, the behavior of the opening adjustment valve after the start of the measurement is different, but the behavior immediately before the end of the measurement is almost the same. They are equivalent and can be measured with the same membership function and fuzzy rules.

従って、システム構成、バルブ特性・液物性等の違い
に因らず容易に高精度、広範囲、短時間の計量が達成出
来る。
Therefore, high accuracy, wide range, and short time measurement can be easily achieved regardless of differences in system configuration, valve characteristics, liquid physical properties, and the like.

次に、本発明に基づいて行った実験結果について述べ
る。
Next, the results of experiments performed based on the present invention will be described.

この実験は、先の第1図に示した計量装置において行
った。
This experiment was performed using the weighing device shown in FIG.

本結果の計量装置は、最大10kgの計量ができ、ロード
セルの精度は5000分の1である。FCV(開度調整弁)は
サーボモータにて位置制御され、計量制御装置から位置
指令が出力される。
The resulting weighing device can weigh up to 10 kg and the accuracy of the load cell is 1/5000. The position of the FCV (opening adjustment valve) is controlled by a servomotor, and a position command is output from the metering control device.

第6図は、2種類の開度調整弁の流量特性を示す。こ
の2種類の開度調整弁を第1図の構成系に順次設置して
制御方式等全く変更せずに計量を行った。
FIG. 6 shows the flow characteristics of the two types of opening adjustment valves. These two types of opening adjustment valves were sequentially installed in the system shown in FIG. 1, and the measurement was performed without any change in the control method or the like.

第7図は、その時の1000g計量結果を示す。図7−a
は図6−aの流量特性を持つ開度調整弁の結果であり、
図7−bは図6−bの結果である。
FIG. 7 shows the 1000 g weighing result at that time. Fig. 7-a
Is the result of the opening degree adjustment valve having the flow rate characteristic of FIG.
FIG. 7-b is the result of FIG. 6-b.

第7図から明らかなとおり、当然開度調整弁の弁開度
の動作パターンは変わるが、ほぼ同じ計量時間で、高精
度の計量結果が得られた。
As is clear from FIG. 7, the operation pattern of the opening degree of the opening adjustment valve naturally changes, but a highly accurate weighing result was obtained in almost the same weighing time.

また、本計量系では、第6図に示しているように、液
の残存量(ヘッド差)により同一開度であっても流量、
すなわち流速は異なる。そして、当然弁開度の動作パタ
ーンは異なるものの、計量時間、計量精度共に同一の結
果を得た。又、計量範囲についても、1:100の範囲に
て、±1.0g以内の精度が保証された。
In addition, in the present measuring system, as shown in FIG. 6, even if the opening degree is the same, the flow rate,
That is, the flow rates are different. And although the operation pattern of the valve opening was different, the same result was obtained in both the measuring time and the measuring accuracy. As for the measuring range, the accuracy within ± 1.0 g was guaranteed in the range of 1: 100.

前記実施態様では、計量検出器としてロードセルを用
いているが、ロードセルの代りに差圧伝送器、液面計等
の計量値が観測できるものであれば、何れの検出器でも
よい。
In the above embodiment, a load cell is used as a weighing detector, but any detector may be used instead of the load cell as long as a weighing value such as a differential pressure transmitter or a liquid level gauge can be observed.

また、開度調整弁の駆動装置としてサーボモータを例
として示したが、位置制御出来る装置であれば、いずれ
の機器でも実現できる。
In addition, although a servomotor has been described as an example of a driving device of the opening adjustment valve, any device that can control the position can be realized.

(発明の効果) 以上記載したとおり、本発明により、下記の効果が得
られる。
(Effects of the Invention) As described above, the following effects can be obtained by the present invention.

開度調整弁の流量特性、計量システムの構成等に依存
せず、同一のメンバーシップ関数並びにファジィルール
にて、下記の効果が得られる。
The following effects can be obtained with the same membership function and fuzzy rules without depending on the flow rate characteristics of the opening adjustment valve, the configuration of the metering system, and the like.

外乱による流速変動に影響されない高精度な計量の
実現 計量設定値の範囲の広いワイドレンジの計量の実現 計量設定値の大小に依存しない短時間の計量の実現 更に、計量制御装置として、低容量のメモリにて容易
に製作でき、装置価格のコストダウンができる。
Realization of high-precision weighing that is not affected by flow velocity fluctuations due to disturbance Realization of wide-range weighing with a wide range of weighing set values Realization of short-time weighing independent of the magnitude of weighing set values It can be easily manufactured with a memory, and the cost of the device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施態様に適用される液体計量装置
を説明する図、第2図は第1図を装置における制御プロ
セスを説明するブロック図、第3図は開度調整弁の流量
特性図、第4図はファジィ制御のメンバーシップ関数を
説明する図、第5図は本発明が適用される累積計量装置
を説明する図、第6図は本発明の実験のために、第1図
の計量装置に適用される開度調整弁の流量特性図であ
り、(a)は流速大のタイプを、(b)流速小のタイプ
を、それぞれ示した図であり、第7図は実験により得ら
れた計量結果を示す図であり、(a)及び(b)は第6
図のそれとそれぞれ対応した図、第8図は弁開度の初期
値を決めるメンバシップ関数を説明する図、第9図は偏
差と偏差の時間的変化量から弁開度を決めるメンバシッ
プ関数を説明する図である。 1……計量制御装置、2,15……ロードセル、 3……重量計増幅器、4……サーボドライバ、 5……サーボモータ、6,13,14……開度調整弁、 7……ストップ弁、8……タンク、 16……計量タンク
FIG. 1 is a diagram illustrating a liquid metering device applied to one embodiment of the present invention, FIG. 2 is a block diagram illustrating a control process in the device of FIG. 1, and FIG. 3 is a flow rate of an opening adjustment valve. FIG. 4 is a diagram illustrating a membership function of fuzzy control, FIG. 5 is a diagram illustrating a cumulative weighing device to which the present invention is applied, and FIG. It is a figure which shows the flow-rate characteristic diagram of the opening degree adjustment valve applied to the measuring device of a figure, (a) shows the type | mold of the high flow velocity, (b) the type of the low flow velocity, respectively, and FIG. 7 shows an experiment. 7A and 7B are diagrams showing the measurement results obtained by (a) and (b).
FIG. 8 is a diagram corresponding to that of FIG. 8, FIG. 8 is a diagram for explaining a membership function for determining the initial value of the valve opening, and FIG. 9 is a diagram illustrating a membership function for determining the valve opening from the deviation and the time variation of the deviation. FIG. DESCRIPTION OF SYMBOLS 1 ... Measurement control device, 2,15 ... Load cell, 3 ... Weigh scale amplifier, 4 ... Servo driver, 5 ... Servo motor, 6,13,14 ... Opening adjustment valve, 7 ... Stop valve , 8 ... tank, 16 ... measuring tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 忠造 南足柄市中沼210番地 富士写真フイル ム株式会社内 (56)参考文献 特開 昭51−147356(JP,A) 特開 昭59−202504(JP,A) 特開 昭60−185826(JP,A) 特開 昭59−56118(JP,A) 実開 昭51−123049(JP,U) 計測自動制御学会論文集,Vol. 20,No.8、昭和59年8月、P.720 〜726,自動学習ファジーコントローラ の項参照 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Kobayashi 210 Nakanuma, Minamiashigara Fuji Photo Film Co., Ltd. (56) References JP-A-51-147356 (JP, A) JP-A-59-202504 (JP) JP-A-60-185826 (JP, A) JP-A-59-56118 (JP, A) JP-A-51-223049 (JP, U) Transactions of the Society of Instrument and Control Engineers, Vol. 8, August 1984, p. 720 to 726, see automatic learning fuzzy controller

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】任意に設定される計量設定値と帰還される
実計量値とにより流速を変化させるクローズドループの
液体計量方法において、液流量を制限する開度調整弁の
流量特性と計量設定値とによりファジィ推論を行い、計
量開始前の弁の初期開度を決定し、計量開始後は、逐次
観測される実計量値と計量設定値との偏差及び偏差の時
間的変化量を観測量とし、偏差と偏差の時間的変化の領
域をメンバシップ関数表現し、かつ、観測量に対応する
軸の分割を観測量の小さい区間は細かくするように表現
し、このメンバシップ関数で表現された領域の移行関係
をファジィルールで表現し、これらからファジィ推論を
行い、そのファジィ推論の結果に基づいて前記開度調整
弁の弁開度を変化させることを特徴とする液体計量方
法。
In a closed-loop liquid metering method for changing a flow rate by an arbitrarily set metering value and an actual metering value fed back, a flow rate characteristic and a metering set value of an opening control valve for limiting a liquid flow rate. The fuzzy inference is performed according to and the initial opening of the valve before the start of weighing is determined, and after the start of weighing, the deviation between the actual weighing value and the weighing set value that are sequentially observed and the amount of temporal change in the deviation are taken as the observed amount. , The area of the deviation and the temporal change of the deviation are represented by a membership function, and the division of the axis corresponding to the observable is expressed so that the section with a small amount of the observable is fine, and the area expressed by this membership function The liquid transfer method is characterized in that the transition relation of the above is expressed by fuzzy rules, fuzzy inference is performed from them, and the valve opening of the opening adjustment valve is changed based on the result of the fuzzy inference.
JP62106412A 1987-05-01 1987-05-01 Liquid weighing method Expired - Fee Related JP2587235B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62106412A JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method
EP19880106920 EP0290889B1 (en) 1987-05-01 1988-04-29 Method of and apparatus for measuring liquid
DE19883877815 DE3877815T2 (en) 1987-05-01 1988-04-29 METHOD AND DEVICE FOR MEASURING LIQUID.
CN88103592A CN1016116B (en) 1987-05-01 1988-04-30 Be used to measure the method and apparatus of fluid
US07/188,987 US4872763A (en) 1987-05-01 1988-05-02 Method of and apparatus for measuring liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106412A JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method

Publications (2)

Publication Number Publication Date
JPS63273013A JPS63273013A (en) 1988-11-10
JP2587235B2 true JP2587235B2 (en) 1997-03-05

Family

ID=14432957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106412A Expired - Fee Related JP2587235B2 (en) 1987-05-01 1987-05-01 Liquid weighing method

Country Status (1)

Country Link
JP (1) JP2587235B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220534A (en) * 1990-12-21 1992-08-11 Kamachiyou Seiko Kk Continuously constant amount supplying device
FR2679516B1 (en) * 1991-07-23 1993-11-12 Andre Graffin WEIGHT DOSING METHOD AND DEVICE FOR FILLING CONTAINERS.
CN103592011A (en) * 2013-11-22 2014-02-19 芜湖集拓橡胶技术有限公司 Liquid weighing system
CN103862879B (en) * 2014-01-15 2016-08-17 珠海艾派克微电子有限公司 A kind of ink box chip and use the print cartridge of this chip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123049U (en) * 1975-03-31 1976-10-05
JPS51147356A (en) * 1975-06-13 1976-12-17 Asahi Eng Kk Balanced packer scale supbrvisory device
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
計測自動制御学会論文集,Vol.20,No.8、昭和59年8月、P.720〜726,自動学習ファジーコントローラの項参照

Also Published As

Publication number Publication date
JPS63273013A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
EP0290889B1 (en) Method of and apparatus for measuring liquid
US5024352A (en) Apparatus for the automatic determination of a continuous bulk material throughput by a continuous balance
EP0304093B1 (en) Liquid measuring apparatus
CN101479682B (en) Flow controller delivery of a specified quantity of a fluid
CN106774468A (en) Flow rate controlling method
EP0370557B1 (en) Gas meter
JP2587235B2 (en) Liquid weighing method
CN106104402A (en) The system and method for the mass flow controller of the insensitive self-authentication of pressure are provided
GB1466429A (en) Control apparatus for fractionation tower
CN112553715B (en) Weighing automatic compensation method and system for fine cotton mixer
JPS63283731A (en) Liquid and powder metering and mixing apparatus
JP2587236B2 (en) Powder weighing method
EP0542177A2 (en) Film thickness controller
CN104999061B (en) Constant-volume casting control method and system for tilting type casting machine
US4918994A (en) Gas meter
US20020026285A1 (en) Method and apparatus for measuring material
KR20020004801A (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
US3292852A (en) Dead-time simulator for industrial process control apparatus
EP0500324B1 (en) Method of and apparatus for controlling hydraulic rolling reduction in a rolling mill
JPH0472717A (en) Semiconductor manufacturing device
JPH1129106A (en) Filler
SU1045001A1 (en) Continuous action weigher
SU1641429A1 (en) Method for controlling stage manufacturing process of dressing ores, mainly asbestos ones
SU548766A1 (en) Method of volume and weight dosing of mixture components
JP2811041B2 (en) Equilibrium liquid level controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees