JPS59202504A - Control system - Google Patents

Control system

Info

Publication number
JPS59202504A
JPS59202504A JP58077986A JP7798683A JPS59202504A JP S59202504 A JPS59202504 A JP S59202504A JP 58077986 A JP58077986 A JP 58077986A JP 7798683 A JP7798683 A JP 7798683A JP S59202504 A JPS59202504 A JP S59202504A
Authority
JP
Japan
Prior art keywords
judgment
control
decision
train
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58077986A
Other languages
Japanese (ja)
Inventor
Takeo Onizuka
鬼塚 武郎
Makoto Nomi
能見 誠
Shoji Miyamoto
宮本 捷二
Koichi Ihara
井原 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58077986A priority Critical patent/JPS59202504A/en
Publication of JPS59202504A publication Critical patent/JPS59202504A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Abstract

PURPOSE:To ensure control with cooperative decision by applying a fuzzy inference to a system having a transmission line for information which connects the decision control elements to each other for an interchange system, a production system, etc. CONSTITUTION:The decision elements 11-1, 11-2- corresponding to control stations 21-1, 21-2- decides preponderantly the priority to a local conflict between two trains and between a relevant stations and its adjacent station and decides the arrangement decision of operation. The decision element 12 connected to a train command means 22 gives the arrangement decision of operation centering on the general decision for operation of each train and the train group. The decision element 13 connected to an operation command means 23 performs the decision for alteration of operation centering on the operation for trains and train crew. The decision element 24 connected to a work control means 24 decides the constitutional work schedule. The decision elements 31-1, 32-1- connected to operation deciding means 32-1, 32-2- set on each train decide preponderantly the local priority to a conflict phenomenon to the preceding and following trains in accordance with the situation of each of preceding and following trains, the situations of preceding and following stations, the environmental condition of operation, etc. and then decide the arrangement of operation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複数個の制御対象の状態を監視し、その制御
対象の行動を判断して、それを制御する判断制御要素と
、これら各判断制御要素を相互結合する情報伝送路とか
らなるシステムに対し、状況に応じて局所的かつ大局的
に制御するための制御方式に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a judgment control element that monitors the states of a plurality of control objects, judges the behavior of the control objects, and controls the same, and each of these judgments. The present invention relates to a control method for locally and globally controlling a system consisting of information transmission paths interconnecting control elements, depending on the situation.

〔発明の背景〕[Background of the invention]

交通システム、生産システム等の複雑な社会システムは
、多数の多様なサブシステム、つまり制御対象から構成
され、それらの各対象間の関係が局所的状況、大局的状
況のあいまいな関係に支配されている。このようなシス
テムに対して、従来は、運転制御方法の判断および判断
結果によるシステムの制御動作は、すべて人間の経験則
を用いて行われていた。すなわち、複雑な制御システム
における人間の判断および制御の長所は、変動する多様
な局面に応じて、局所性と大局性とのバランスを考慮し
た最適な判断を加えることができるという点である。
Complex social systems such as transportation systems and production systems are composed of a large number of diverse subsystems, or control objects, and the relationships between these objects are governed by ambiguous relationships between local and global situations. There is. Conventionally, for such systems, determination of the operation control method and control operations of the system based on the determination results have all been performed using human experience rules. In other words, the advantage of human judgment and control in complex control systems is that it is possible to make optimal judgments that take into account the balance between locality and globality, in response to a variety of changing situations.

このようなシステムを自動化する場合、各制御対象間の
関係、制約条件、および目的関数が定形的、確定的で、
かつ環境状況も定形的な範囲では、従来の方法を自動化
システムに適用することが可能であった。
When automating such a system, the relationships, constraints, and objective functions between each controlled object are fixed, deterministic, and
Moreover, if the environmental conditions were within a fixed range, it was possible to apply conventional methods to automated systems.

しかし、複数個の制御対象相互間の関係が前述のように
局所的状況や大局的状況によってあいまいに変化するよ
うな場合、すなわち、複数の人間が管理・制御の判断を
行っていたようなシステムでは、従来、各制御対象の担
当者が他の複数の制御対象担当者の意見を聞き、各対象
相互間の関係の程度も考慮して判断していたが、このよ
うなシステム制御の評価目標を従来技術で定式化するこ
とは殆んどの場合、不可能であった。
However, in cases where the relationship between multiple controlled objects changes ambiguously depending on local and global situations, as mentioned above, in other words, systems where multiple people are making management/control decisions. In the past, the person in charge of each controlled object listened to the opinions of multiple other controlled objects and made decisions by taking into account the degree of relationship between each controlled object, but this system control evaluation goal In most cases, it has been impossible to formulate it using the prior art.

例えば、軌道輸送の列車運行管理システムに用いられて
いた従来の制御方式では、各駅の局所的判断をすべて確
定的判断として、その判断を順次端末駅まで繰返し、端
末駅における着順序等について評価し、不満足であれば
、途中の判断を反復実行する方法がとられていた。また
、別の方法としては、途中の変更回数を、終端までの変
更余裕を用いて制御する方法等があった。
For example, in the conventional control method used in train operation management systems for rail transportation, all local decisions at each station are made deterministic, and the decisions are sequentially repeated up to the terminal station to evaluate the order of arrival at the terminal station. If the results were unsatisfactory, the method used was to repeat the intermediate judgments. Another method is to control the number of changes in the middle using a change margin up to the end.

しかし、確定的判断では、閾値付近の一義的判断には問
題が残ること。終端駅までの判断論理が段数にしたがっ
て複雑になるこ、と。途中に存在する例外的取扱いの駅
ごとに判断論理を用意する必要があること。端末駅から
先の折返し列車の運行や車両運用、乗務員運用等への汲
及等をすべて満足する定式化が殆んど不可能であること
。さらに、これら端末駅付近やそれ以後の事象があいま
いであること等の諸原因から、上記の方法では従来の人
間の判断に及ばないこと。等の問題があった。
However, when it comes to deterministic judgments, there remains a problem with unambiguous judgments around the threshold. The decision logic to reach the terminal station becomes more complex as the number of stages increases. It is necessary to prepare decision logic for each exceptionally handled station along the way. It is almost impossible to formulate a formula that satisfies all the implications for the operation of return trains beyond the terminal station, vehicle operation, crew operation, etc. Furthermore, due to various reasons such as the ambiguity of events near and after these terminal stations, the above methods are not as good as conventional human judgment. There were other problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来の問題を解決し、複数
個の制御対象から構成され、それらの各制御対象相互の
関係が局所的状況や大局的状況に応じてあいまいに変化
するシステムに対して、人間が経験則で判断、制御して
いた範囲を自動化し、他の関係がある判断結果を取り込
み、協調判断して制御することが可能な制御方式を提供
することにある。
The purpose of the present invention is to solve such conventional problems, and to solve the problem of a system that is composed of a plurality of control objects and in which the relationship between each control object changes ambiguously depending on local and global situations. On the other hand, the object is to provide a control method that automates the range of judgment and control that humans have made based on empirical rules, incorporates other related judgment results, and makes it possible to perform cooperative judgment and control.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明の制御方式は、複数個
の制御対象の状態を監視し、それら制御対象の行動を判
断し、かつ制御する判断要素、および各判断要素を相互
に結合する情報伝送路がら構成されるシステムにおいて
、上記各判断要素は、自判断要素の制御対象に生起する
事象に対する制御出力を単独判断し、その判断結果を伝
送路に送出する第1の手段、その伝送路から判断に関係
する他の判断結果を受信し記録する第2の手段、上記第
2の手段で取り込んだ他判断結果を、自判断要素と他の
各判断要素との関係の程度に応じて重み付けした後、各
結果と第1の手段の判断結果を協調した判断結果を得る
第3の手段を有することに特徴がある。
In order to achieve the above object, the control method of the present invention includes a judgment element that monitors the states of a plurality of control objects, determines and controls the actions of the control objects, and information that interconnects each judgment element. In a system composed of transmission lines, each of the above-mentioned judgment elements independently judges the control output for an event occurring in the control target of the self-judgment element, and sends the judgment result to the transmission line. a second means for receiving and recording other judgment results related to the judgment from the above, and weighting the other judgment results taken in by the second means according to the degree of relationship between the self-judgment element and each other judgment element; After that, the present invention is characterized by having a third means for obtaining a judgment result by coordinating each result with the judgment result of the first means.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を、図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明を軌道輸送における列車運行管理シス
テムに適用した場合の全体構成図である。
FIG. 1 is an overall configuration diagram when the present invention is applied to a train operation management system for track transportation.

伝送路1は、複数個の伝送制御装置2を結合して環状に
接続されており、各判断要素がそれぞれ伝送制御装置2
に接続されている。そして、これらの地上設備と軌道上
の各列車は、誘導無線等のよく知られている通信手段に
よって結合されている。
The transmission line 1 connects a plurality of transmission control devices 2 in a ring, and each determination element is connected to the transmission control device 2.
It is connected to the. These ground facilities and each train on the track are connected by well-known communication means such as guided radio.

第1図において、21−1.21−2.21−3は進路
制御等を含む制御駅に設けられた制御手段、11−1.
11−2.11−3は上記各制御駅の制御を司る制御判
断要素(以下単に判断要素と記す)である。制御駅21
−1.21−2.21−3等は制御対象であって、各制
御駅に対応する各判断要素11−1..11−2.11
−3はその駅と瞬接する駅との間における2列車相互間
の局所的競合に対する優先判断を重点的に行って運転整
理判断を行う。
In FIG. 1, 21-1.21-2.21-3 is a control means installed at a control station including route control, etc.; 11-1.
Reference numerals 11-2 and 11-3 are control judgment elements (hereinafter simply referred to as judgment elements) that govern control of each of the control stations. control station 21
-1.21-2.21-3, etc. are control targets, and each judgment element 11-1 corresponding to each control station. .. 11-2.11
-3 makes timetable rescheduling decisions by focusing on prioritizing local conflicts between two trains between the station and the station that has instant contact with the station.

22は列車指令手段、12は列車指令手段に接続された
判断要素で、各列車ならびに列車群の運行についての大
局的判断を中心とする運転整理判断を行う。
22 is a train command means, and 12 is a judgment element connected to the train command means, which makes timetable rescheduling decisions centering on global judgments regarding the operation of each train and train group.

23は車両ならびに乗務員の運用指令手段、13はその
運用指令手段23に接続された判断要素で、車両運用な
らびに乗務員運用についての判断を中心とする運用変更
判断を行う。
Reference numeral 23 denotes a vehicle and crew operation command means, and 13 a judgment element connected to the operation command means 23, which makes operation change decisions mainly regarding vehicle operation and crew operation.

24は車両基地作業管理手段、14はその作業管理手段
24に接続された判断要素で、運転整理や運用変更に伴
う構内作業変更の判断、あるいは車両故障等に伴う出庫
スケジュール変更の判断等を重点的に行って、構内作業
スケジュールの判断を行う。
24 is a depot work management means, and 14 is a decision element connected to the work management means 24, which focuses on decisions such as changes in yard work due to traffic rescheduling or changes in operation, or changes in depot schedule due to vehicle breakdowns, etc. to determine the on-site work schedule.

32−1.32−2・・・・・32−6は、軌道−Lを
走行する各列車上に設けられた運行判断手段、31−1
.31−2.  ・・・・・31−6はそれぞれ運行判
断手段に接続された判断要素で、前後の各列車の状況、
前後駅の状況、ならびに運転の環境状況等を用いて、前
後列車との競合現象に対する局所的優先判断を重点的に
行い、運転整理判断を行うことにより、その列車の運転
制御手段および案内放送手段に対して、環境状況に関す
る情報を供給する。
32-1.32-2...32-6 is an operation judgment means provided on each train running on track-L, 31-1
.. 31-2. ...31-6 are judgment elements connected to the operation judgment means, and the status of each train before and after,
By using the conditions of the preceding and preceding stations and the operating environment, etc., to make local priority judgments regarding the phenomenon of competition with preceding and preceding trains, and making decisions on train rescheduling, the operation control means and guidance broadcasting means for the train are activated. provide information on environmental conditions to

次に、代表的な判断要素の各機能を説明する。Next, each function of typical judgment elements will be explained.

この場合、列車には急行列車Aと各駅停車列車Bの2種
があり、待避側線を備えた駅では、各停列車Bが急行列
車Aを待避して、Aを先行させることができる。ただし
、列車ダイヤにより、計画上の待避駅は定められている
In this case, there are two types of trains, express trains A and trains B that stop at each station, and at stations equipped with sidings, the trains B that stop at each station can shunt the express train A and allow A to precede the train. However, the planned evacuation stations are determined by the train schedule.

先ず、急行列車Aの車上判断要素31−1・、・31−
6の機能を詳細に述べる。
First, on-board judgment elements 31-1, 31- of express train A
The functions of No. 6 will be described in detail.

この判断要素31−1は、先行する各駅停車列車Bが次
の待避駅の変更判断地点(これをS。とする)に達した
という情報を受信して起動される。
This determination element 31-1 is activated upon receiving information that the preceding train B, which stops at each station, has reached the change determination point (this is referred to as S) of the next shelter station.

入力変数は、下記(&)〜(d)である。The input variables are (&) to (d) below.

(a) S o 地点における後続の列車Aとの間隔(
距離。
(a) Distance from the following train A at point S o (
distance.

計画との差△SB〜A) 、(b)自動車A(7)遅延
時間、(c)自動車Aの遅延時間増加率、(d)先行列
車Bの遅延時間。
Difference from plan ΔSB~A), (b) Vehicle A (7) Delay time, (c) Delay time increase rate of Vehicle A, (d) Delay time of preceding train B.

これらの各人力値は、それぞれ与えられている帰属度関
数を用いてファジィ変数(ペクト/I/)に変換される
。ここで、ファジィ (Fuzzy )とは、2値論理
系の限界に対して用いられる多値論理系の集合概念であ
る。
Each of these human power values is converted into a fuzzy variable (Pect/I/) using a given membership function. Here, fuzzy is a set concept for multi-valued logic systems used for the limits of binary logic systems.

前記S0 地点におけるA、B両列車の間隔(距離)に
ついて、計画との差△SB〜、を用いて、△SB、−w
Aの値と待避駅の各変更判断に関する帰属度関数〔μ(
待避判断)△Sお〜□〕を、第2図に示す。また、列車
の遅延時間値△tと、遅延の程度に関する帰属度関数(
すなわち、遅延量を遅延の程度という言葉に変換するた
めの関数)〔μ (遅延程度)△t〕を第3図に示す。
Regarding the interval (distance) between trains A and B at the S0 point, using the difference from the plan △SB~, △SB, -w
Attribution degree function [μ(
The evacuation judgment) △S~□] is shown in FIG. In addition, the train delay time value △t and the degree of membership function regarding the degree of delay (
That is, a function for converting the amount of delay into terms of degree of delay) [μ (degree of delay) Δt] is shown in FIG.

第2図では、計画どおりの走行、つまり、差△SB、−
,AがOのときには定められた駅で待避するが、A、B
両列車の間隔が計画より短かいとき、定められた駅より
1つ前の駅で待避し、両列車の間隔が計画より長いとき
、定められた駅の次駅、さらに長いときには次の次駅で
それぞれ待避する。
In Figure 2, traveling as planned, that is, the difference △SB, -
, When A is O, evacuate at the designated station, but A, B
When the interval between both trains is shorter than planned, evacuate at the station one station before the designated station, and when the interval between both trains is longer than planned, evacuate at the next station after the designated station, and if it is even longer than the designated station, take shelter at the next station. evacuate each.

なお、第2図は、待避変更判断の帰属度とともに、計画
ダイヤに対する両列車間隔の偏差の程度についての帰属
度関数にもなっている。
It should be noted that FIG. 2 is a function of the degree of attribution of the judgment of evacuation change as well as the degree of deviation of the distance between both trains from the planned timetable.

第2図および第3図において、前記の入力に対するこの
判断要素の判断側は、例えば、「△5B−Aが十小で、
かつ自動車の遅延程度が中で、かつその増加率の程度が
土中で、かつ先行車の遅延程度が小であれば、待避状を
次々駅に変更せよ。」等という文章形式になる。このフ
ァジィ推論は、4次元のマトリクスで表現される。
In FIGS. 2 and 3, the judgment side of this judgment element for the above input is, for example, ``△5B-A is ten small,
If the degree of delay of the car is medium, the rate of increase is on the ground, and the degree of delay of the vehicle in front is small, change the evacuation notice to one station after another. ”, etc. This fuzzy inference is expressed as a four-dimensional matrix.

説明を図示するため、初めの2人力に関する判断側の例
を、第4薗に示す。
To illustrate the explanation, an example of the first two-person judgment side is shown in the fourth column.

4次元マ) IJクスの行列の内容が推論出力を示して
おり、上記2人力の例ではその出力は第4図のようにな
る。
The contents of the IJ matrix indicate the inference output, and in the above two-person example, the output is as shown in Figure 4.

例えば、先行車との間隔が大でなく、自動車の遅延−程
度がOないし小であれば、計画通り当駅で待避する。ま
た、先行車との間隔が計画ダイヤと同じ場合には、自動
車の遅延程度に関係なく計画通り当駅で待避する。そし
て、次駅で待避する場合は、先行車との間隔および自動
車の遅延程度が大。
For example, if the distance from the preceding vehicle is not large and the delay of the vehicle is O or small, the vehicle will evacuate at this station as planned. Furthermore, if the distance from the preceding vehicle is the same as the planned timetable, the vehicle will evacuate at this station as planned, regardless of the degree of delay of the vehicle. If you have to evacuate at the next station, the distance between you and the vehicle in front and the degree of delay will be significant.

小または中、中の組合わせのときである。This is when it is small or medium, or a combination of medium.

同じように、制御駅判断要素の接近2列車の待避変更判
断側の例を第5図に、また列車指令判断要素における2
列車間待避変更可否の判断側の例を第6A図に、それぞ
れ示す。
Similarly, an example of the control station determination element for determining whether to change the evacuation of 2 approaching trains is shown in Figure 5, and an example of the 2nd train command determination element
An example of determining whether or not to change the evacuation between trains is shown in FIG. 6A.

第5図の各制御駅判断要素による判断側では、計画上の
待避状とは無関係に、接近中の列車群の平均的遅延程度
と、B、A両列車の競合損失値とから待避状を判断する
。B、Aの損失値(時間)は、符号が互いに逆になる。
On the judgment side based on the judgment elements of each control station in Figure 5, the evacuation order is determined based on the average delay of the approaching train group and the competitive loss value of both trains B and A, regardless of the planned evacuation order. to decide. The loss values (time) of B and A have opposite signs.

なお、第5図の当駅が、計画駅と同一であるとは限らな
い。
Note that this station in Figure 5 is not necessarily the same as the planned station.

第6A図の列車指令判断要素では、端末駅の到着順序が
計画と変わらないようにするための待避変更の余裕の程
度と、現在の列車群の運行の乱れの程度が車両運用等、
他の変数に波及する程度とを変数とし、待避変更等の局
所的判断に対して許容する程度を推論する。列車群の運
行の乱れの程度を、遅延量および順序変化数等を用いて
数緻化することにより、車両運用、折返し始発列車、あ
るいは基地作業等への波及程度を帰属度関数を用いて求
めることができる。第6A図では、他への波及が大で・
変更余裕がすでに負の場合、または0の場合には、局所
的変更を禁止すること、また同じく他への波及が大でも
、余裕が土中程度であれば、次々駅への変更、あるいは
次駅への変更を2件程度4ま許容でさること、等の判断
側を表わしている。
The train command judgment factors in Figure 6A are based on the degree of margin for evacuation changes to ensure that the order of arrival at terminal stations does not change from the plan, and the degree of disruption to the current train group operations, such as vehicle operation, etc.
Using the degree of influence on other variables as a variable, the degree to which local decisions such as evacuation changes are allowed is inferred. By elaborating the degree of disruption in the operation of a train group using the amount of delay and the number of order changes, etc., the degree of influence on rolling stock operations, turnaround trains, base operations, etc. is determined using a degree of belonging function. be able to. Figure 6A shows that the ripple effect on others is large.
If the change margin is already negative or 0, local changes are prohibited, and even if the ripple effect is large, if the margin is only medium-sized, changes to one station after another or to the next station are prohibited. This represents the decision-making side, such as allowing up to two changes to the station.

第6A図における判断側の1変数である「池への波及の
程度」は、第6B図および第6C図に示すファジィ判断
側を用いて推論される。なお、第6C図は、第6B図の
1つの出力がさらに波及する場合の一例である。
"Degree of spillover to the pond", which is one variable on the judgment side in FIG. 6A, is inferred using the fuzzy judgment side shown in FIGS. 6B and 6C. Note that FIG. 6C is an example in which one output in FIG. 6B further spreads.

第6B図では、着順変化率の大中小と、折返し運用列車
遅延量の大中小の組合わせにより、他への波及の程度を
出力する。行列の各要素の大、中、小は、端末駅におけ
る(1)番線変更、(il)折返し列車への乱れ波及、
011)運用変更、等の件数の程度を示している。
In FIG. 6B, the degree of influence on others is output based on a combination of large, medium, and small arrival order change rates and large, medium, and small delay amounts of turnaround trains. The large, medium, and small elements of the queue are determined by (1) platform change at the terminal station, (il) disturbance spreading to the returning train,
011) Indicates the degree of number of operational changes, etc.

第6C図では、運用変更件数の大、中、小と、入庫車遅
延量(件X時)の大中小との組合わせにより、他への波
及の程度を出力する。行列各要素の値(大、中、小)は
、(1)構内作業(入出庫操車)変更、(11)車両検
査(保守)スケジュールの変更、011)次端末駅にお
ける運用変更、等の件数の程度を示す。
In FIG. 6C, the degree of influence on others is output based on the combination of the large, medium, and small number of operation changes and the large, medium, and small values of the delay amount of arriving cars (case X). The value of each element in the matrix (large, medium, small) is the number of changes such as (1) changes in on-site work (in/out vehicle handling), (11) changes in vehicle inspection (maintenance) schedule, 011) changes in operation at the next terminal station, etc. Indicates the degree of

以上の各処理によって、1つの事象に対する関係各要素
の判断結果(単独判断結果)が、それぞれ得られる。
Through each of the above processes, the judgment results (independent judgment results) of each element related to one event are obtained.

次に、本発明の特徴である他の判断要素の判断結果との
協調結果を得る方法について説明する。
Next, a method of obtaining a cooperative result with judgment results of other judgment elements, which is a feature of the present invention, will be explained.

先ず、他要素の判断結果を、自要素との関係の程度に応
じて重み付けを行う。
First, the judgment results of other elements are weighted according to the degree of relationship with the own element.

要素Pの判断結果の出力変数yに関する帰属度関数の値
、すなわち帰属度をμp(y)、重み倍率をωとし、重
み付けされた帰属度をμp(y)’として、それぞれの
関係を次のように設定する。
The value of the membership function regarding the output variable y of the judgment result of element P, that is, the membership degree, is μp(y), the weight multiplier is ω, and the weighted membership degree is μp(y)', and the respective relationships are expressed as follows. Set it as follows.

μ (ロ)’−o、s−ω(0,5−μpけ))・・・
・・”’Pp(y) < o、 sμ(ロ)1=0.5
 ・・・ μpひ)−o、5μけ)’−=0.5十〇(
μpけ)−o、s)・・・・・0.5〈μひ)≦1 ある制御駅判断要素の待避変更判断結果に対して、大、
中、小の各重み付けを実行した結果を、第7図に示す。
μ (b)'-o, s-ω(0,5-μpke))...
...”'Pp(y) < o, sμ(b)1=0.5
... μphi)-o, 5μke)'-=0.500(
μpke)-o,s)...0.5〈μhi)≦1 For the evacuation change judgment result of a certain control station judgment element, large,
The results of medium and small weighting are shown in FIG.

第7図では、待避判断が前駅(0,0)、当駅(0,4
)、次駅(0,9)、次々駅(0,6)のそれぞれにつ
いて、重み(ω)付けを行った場合が示され、重み大の
ときはω=1.重み中のときはω−2/3 、重み小の
ときはω=l/3 として、削代より帰属度μ 〔げを
求めると、第7図の値になる。
In Figure 7, the evacuation judgment is the previous station (0,0) and the current station (0,4).
), the next station (0, 9), and the next station (0, 6) are weighted (ω), and when the weight is large, ω = 1. When the weight is medium, ω-2/3 is set, and when the weight is small, ω=l/3, and when the degree of membership μ is determined from the cutting allowance, the values shown in FIG. 7 are obtained.

重み付けされた各推論出力(制御指定に関する帰属度を
示す変数値の組)から協調結果を求める。
A cooperation result is obtained from each weighted inference output (a set of variable values indicating the degree of belonging regarding control specification).

協調判断側の例の一部を、次に挙げる。Some examples on the collaborative decision side are listed below.

列車Aの出力、列車Bの出力、計画待避状の出力、次駅
の出力、列車指令の出力、および協調結果の順に配列す
る。なお、△印は、ANDを示す。
The output of train A, the output of train B, the planned evacuation notice output, the next station output, the train command output, and the coordination result are arranged in this order. Note that the △ mark indicates AND.

(1)計画通りへ次駅に変更△前駅に変更、Δ次駅に変
更、△計画通り△少産であれば、次駅に変更する。
(1) Change to the next station as planned △ Change to the previous station, Δ Change to the next station, △ As planned △ If there is a small production, change to the next station.

(II)計画通り、△次駅に変更、△前駅に変更、△次
駅に変更、△少産、であれば、次駅に変更する。
(II) If it goes as planned, change to △next station, △change to previous station, △change to next station, △low birth, then change to next station.

0i1)次駅に変更△計画通り△次駅に変更、へ次々駅
に変更△不変、であれば計画通りである。
0i1) Change to the next station △ As planned △ Change to the next station, then change to one station after another △ No change, then it is as planned.

怜次々駅に変更、△次駅に変更、へ次々駅に変更△計画
通り、△少産、であれば、次駅に変更する。
Change to Reijitsu Station, △Change to the next station, Change to 〇Next Station△If it goes as planned, △If there is a small birth, change to the next station.

第8図は、計画待避状判断要素の出力と、列車指令判断
要素の出力との2人力の協調推論の例を示す図である。
FIG. 8 is a diagram showing an example of two-person collaborative reasoning between the output of the planned evacuation notice determining element and the output of the train command determining element.

前者(すなわち、当駅判断と記されている)の出力はそ
のまま、つまり重み大のω=1であり、後者(すなわち
指令判断と記されている)の出力は重み小、つまりω−
1/3 で計算されている。
The output of the former (i.e., marked as "current station judgment") is unchanged, i.e., has a large weight, ω=1, and the output of the latter (i.e., marked as "command judgment") has a small weight, that is, ω-
It is calculated as 1/3.

駅要素の出力は、次駅へ変更が0.8で最大値であるの
に対し、指令要素の生の出力は不変(変更禁止)が0.
9で最大値、重み付は後はそれが0.63に変更される
。第8図の縦軸(指令判断の出力)は、第6A図に示す
不変、歪変、中度、多食を出力する制御則である。
The output of the station element has a maximum value of 0.8 when changing to the next station, while the raw output of the command element has a maximum value of 0.8 when changing to the next station.
The maximum value is 9, and the weighting is later changed to 0.63. The vertical axis (output of command judgment) in FIG. 8 is a control law that outputs unchanged, distorted, moderate, and overeating shown in FIG. 6A.

第8図において、当駅の判断結果は、待避を次駅に変更
、列車指令の判断結果は不変、かつ指令判断の重みは小
であるが、この協調側の結果は、待避不変、つまり当駅
待避となる。これは、0.63の値が生きるためである
In Figure 8, the judgment result of this station is that the evacuation is changed to the next station, the judgment result of the train command is unchanged, and the weight of the command judgment is small, but the result of this cooperation side is that the evacuation is unchanged, that is, the evacuation is changed to the next station. The station will be evacuated. This is because the value of 0.63 is valid.

図中の太線は、協調結果が同一の言語値になる領域の境
界を表す。
The thick lines in the figure represent the boundaries of regions where the collaboration results have the same language value.

協調推論の演算は、一般の7アジイ推論と同じように、
各出力言語値領域内の最大値がi択され、そうして得ら
れた各領域の値が最大となる言語値が協調推論の出力と
なる。もし、複数言語値の値が同一になる場合には、そ
の中で計画通りに近いものを選択する。
The operation of collaborative reasoning is similar to general 7Ajii reasoning,
The maximum value in each output language value region is selected, and the language value with the maximum value in each region thus obtained becomes the output of collaborative inference. If the values of multiple language values are the same, the one closest to the plan is selected.

第8図では、当駅の領域の値の0.63が最大であるか
ら、当駅待避、つまり変更なしが協調推論の出力である
In FIG. 8, since the value of the region of the current station is 0.63, which is the maximum value, the output of the cooperative inference is that the current station is evacuated, that is, there is no change.

次に、前記の協調判断結果を用いて、異常要素を検出す
るための方法を述べる。
Next, a method for detecting abnormal elements using the above-mentioned cooperative judgment results will be described.

第9図は、ファジィ協調側による異常検定の図である。FIG. 9 is a diagram of abnormality test on the fuzzy cooperation side.

各判断要素は、自要素も含めて協調の入力である各判断
要素の出力を、第9図に示すファジィ協調側を用いて、
出力の差の程度から異常の程度を検定する。
Each judgment element, including its own element, receives the output of each judgment element, which is input for cooperation, using the fuzzy cooperation side shown in Fig. 9.
The degree of abnormality is tested based on the degree of difference in output.

この方法は、推論の基準になっている協調出力が、関係
の強さに応じて重み付けられた数個の要素の協調結果で
あるから、関係の強い2個以−Eの要素が異常でない限
り、最適に近い出力になるものであるという前提に基づ
く。この前提が変化する場合には、第9図中のA、B、
C,Dの解釈を変更して対処することができる。なお、
第9図におけるAは異常なし、Bは異常ではないが、継
続しなければ要注意、Cは要注意(異常対策が必要)、
Dは異常(異常対策必要)である。
In this method, the collaborative output that is the basis for inference is the collaborative result of several elements weighted according to the strength of the relationship, so unless two or more elements with a strong relationship -E are abnormal, , based on the premise that the output is close to optimal. If this assumption changes, A, B in Figure 9,
This can be dealt with by changing the interpretation of C and D. In addition,
In Figure 9, A means no abnormality, B means no abnormality but requires caution if it does not continue, C means caution (needs to take measures against abnormality),
D is an abnormality (abnormality countermeasures are required).

次に、他の判断要素が発信する判断情報を受信して入力
する場合に、関係の程度に応じて選択入力するための方
法を説明する。
Next, a method for selectively inputting judgment information according to the degree of relationship when receiving and inputting judgment information transmitted by another judgment element will be explained.

各判断要素は、情報を発(N L、た他要素と自要素と
の関係の程度、および上記情報に含まれるキイワードと
自要素の判断に用いているキイワードとの一致の個数を
入力として、第10図に示すファジィ判断側を用いて入
力情報(判断結果)を選択する。選択基準は、A、B、
C,D、Eの各解釈を変更することにより、対処するこ
とができる。
Each judgment element emits information (NL), the degree of relationship between other elements and its own element, and the number of matches between keywords included in the above information and keywords used to judge its own element. The input information (judgment result) is selected using the fuzzy judgment side shown in Fig. 10.The selection criteria are A, B,
This can be dealt with by changing the interpretations of C, D, and E.

なお、Aは無条件で入力、Bは判断事象発生頻度が大程
度のとき入力、Cは判断事象発生頻度が中程度のとき入
力、Dは判断事象発生頻度が小程度のとき入力、Eは無
条件で無視を、それぞれ示している。
Note that A is input unconditionally, B is input when the judgment event occurrence frequency is high, C is input when the judgment event occurrence frequency is medium, D is input when the judgment event occurrence frequency is small, and E is input when the judgment event occurrence frequency is moderate. Each shows unconditional disregard.

第11図は、各制御要素を対象とする判断要素で実行さ
れる処理フローチャートであり、第12図から第15図
までは、その部分フローチャートである。
FIG. 11 is a flowchart of a process executed by a determination element targeting each control element, and FIGS. 12 to 15 are partial flowcharts thereof.

各判断要素は、制御対象の状態を監視し、事象発生に対
する適当な処理をして制御出力または異常対策を出力す
るとともに、常に伝送路側も監視し、自分の制御対象に
関係ある情報または自要素で判断中の事象に関する他要
素の判断結果があれば、それらを取り込んで自分の判断
やその評価に利用する。それとともに、自制御対象の事
象や単独判断結果、および評価結果を送出する。
Each judgment element monitors the state of the controlled object, performs appropriate processing in response to the occurrence of an event, and outputs control output or abnormality countermeasures.It also constantly monitors the transmission line side and outputs information related to its own controlled object or its own element. If there are judgment results of other factors related to the event being judged, they are taken in and used for one's own judgment and evaluation. At the same time, it sends out events to be controlled by itself, independent judgment results, and evaluation results.

第11図のステップ100 (対象の監視)の詳細フロ
ーが第12図のステップ101〜103であり、また第
11図のステップ130(自要素単独異常判断)の詳細
フローが第13図のステップ131〜134であり、第
11図のステップ300(他の判断結果との協調判断)
の詳細フローが第14図のステップ301〜302であ
り、第11図のステップ400 (各単独判断結果の評
価)の詳細フローが第15図のステップ401〜404
である。
The detailed flow of step 100 (object monitoring) in FIG. 11 is steps 101 to 103 in FIG. 12, and the detailed flow of step 130 (self-element individual abnormality determination) in FIG. ~134, and step 300 in FIG. 11 (cooperative judgment with other judgment results)
The detailed flow is steps 301 to 302 in FIG. 14, and the detailed flow of step 400 (evaluation of each independent judgment result) in FIG. 11 is steps 401 to 404 in FIG.
It is.

本発明は、自要素の制御対象を判断する第1の手段と、
他の要素の判断情報を伝送路を介して受(i4 %記憶
する第2の手段と、上記第1、第2手段で得た結果を重
み付けして協調した判断結果を得る第3の手段を有する
ことを特徴とするものであって、第11図におけるステ
ップ130(第13図の131〜134)が第1の手段
、ステップ200.210,211,220,221,
270および271が第2の手段、ステップ300 (
第14図の301.302)が第3の手段である。
The present invention provides a first means for determining a control target of its own element;
A second means for receiving (i4%) judgment information of other elements via a transmission path, and a third means for weighting the results obtained by the first and second means to obtain a coordinated judgment result. The method is characterized in that step 130 in FIG. 11 (131 to 134 in FIG. 13) is the first means, steps 200, 210, 211, 220, 221,
270 and 271 are second means, step 300 (
301 and 302) in FIG. 14 are the third means.

第1手段におけるステップ133には、第2図、第3図
等の変数の帰属度関数の例が、またステップ134には
、第4図〜第6C図に示すような各人力値に対する判断
要素の判断側の1つが、それぞれ適用されている。第2
手段におけるステップ211の出力は協調判断に、ステ
ップ221の出力は自要素の制御対象に関係のある他事
機によって自判断を起動するだめのものである。また、
第3手段におけるステップ301には、第7図に示すよ
うなファジィ重み制御則が、ステップ302には、第8
図に示すようなファジィ協調推論側が、それぞれ適用さ
れる。
In step 133 of the first means, examples of the degree of belonging functions of variables such as those shown in FIGS. 2 and 3 are provided, and in step 134, judgment elements for each human power value as shown in FIGS. One of the judgment sides is applied respectively. Second
The output of step 211 in the means is for cooperative judgment, and the output of step 221 is for activating self-judgment by other machines related to the control target of the own element. Also,
Step 301 in the third means uses the fuzzy weight control law as shown in FIG.
The fuzzy collaborative inference side as shown in the figure is applied respectively.

その他、第11図におけるステップ400 (第15図
のステップ401〜404)は第4の手段であって、ス
テップ401には第9図に示すようなファジィ評価剤が
適用され、その結果に応じてステップ402で判定する
。また、ステップ250.251は第5の手段であって
、ステップ250には第10図に示すようなファジィ選
択側が適用され、自要素の判断に関係のありそうな情報
を収集し、異常判断、制御判断における環境状態変数、
制約条件等として大局的に誤りのない判断のために活用
する。
In addition, step 400 in FIG. 11 (steps 401 to 404 in FIG. 15) is a fourth means, in which a fuzzy evaluation agent as shown in FIG. 9 is applied to step 401, and depending on the result, A determination is made in step 402. Further, steps 250 and 251 are the fifth means, and step 250 is applied with the fuzzy selection side as shown in FIG. environmental state variables in control decisions;
It is used as a constraint condition, etc. to make judgments that are error-free.

全体のフローを説明する。各判断要素は、ステップ10
0〜103で、事象の受付を行い、制御対象の事象発生
に対する適当な処理を行って、他判断要素への通報事項
を編集すると共に、その事象を解析する。次にステップ
120では、その事象が異常か否かを判別する。ステッ
プ130では、自要素単独事象判断(ファジィ推1倫)
を行うが、ステップ200,250,251で常時伝送
路側も監視しており、自分の制御対象と関係ある情報か
否かを判別して、情報を受信し、これを取り込んで自分
の判断やその評価に利用する(第:10図等を用いる)
。また、ステップ220.221では、他の関係ある判
断要素の事象か否かを判断し、その情報を受信して、ス
テップ120に取り込む。
Explain the overall flow. Each judgment element is determined in step 10.
0 to 103, the event is accepted, appropriate processing is performed for the occurrence of the event to be controlled, information to be reported to other judgment elements is edited, and the event is analyzed. Next, in step 120, it is determined whether the event is abnormal. In step 130, self-element independent event judgment (fuzzy reasoning 1)
However, in steps 200, 250, and 251, the transmission line side is also constantly monitored, determining whether or not the information is related to the object to be controlled, receiving the information, and incorporating it to make decisions and decisions. Use for evaluation (Use Figure 10, etc.)
. Further, in steps 220 and 221, it is determined whether the event is an event of other related determining factors, and the information is received and taken into step 120.

さらに、ステップ210,211では、自判断要素で判
断中の事象に閃する他判断装素の判断結果があれば、そ
れらを取り込んで、ステップ270に進む。ステップ1
30〜134では、事象が異常であれば、対象に関する
状部変数の処理を行い、また、自判断要素と関係ある情
報を取り込んで、環境に関する大局的状部変数の処理を
行い、これらの処理の結果、第2図、第3図等の変数の
帰属度関数を用いて変数のファジィ化を行った後、制御
対象の状態の異状解決のための7アジイ推論を行う(第
4図〜第6C図を用いる)。
Further, in steps 210 and 211, if there are judgment results of other judgment elements that flash on the event being judged by the self-judgment element, they are taken in and the process proceeds to step 270. Step 1
In steps 30 to 134, if the event is abnormal, the state variables related to the object are processed, information related to the self-judgment element is taken in, and the global state variables related to the environment are processed. As a result, after fuzzifying the variables using the variable membership functions shown in Figures 2 and 3, 7-agility inference is performed to resolve abnormalities in the state of the controlled object (Figures 4 to 4). (Use diagram 6C).

そして、ステップ270,271では、m個以上の他の
判断結果を取り込んで、判断するための余裕がないとき
には、直ちにステップ300にAtr。
Then, in steps 270 and 271, if there is not enough time to take in m or more other judgment results and make a judgment, the process immediately proceeds to step 300.

ステップ300〜302では、他要素の判断との協調判
!P1(ファジィ協調推論)を行うため、先ず他要素か
らの判断結果の重み付けを行い(第7図等を用いる)、
ステップ134−がらの出力と、他要素からの出力との
ファジィ協調推論を行う(第8図等を用いる)。
In steps 300 to 302, cooperative judgment with judgments of other elements! In order to perform P1 (fuzzy collaborative inference), first weight the judgment results from other elements (using Fig. 7 etc.),
Step 134 - Perform fuzzy cooperative inference between the output of the element and the output from other elements (using FIG. 8, etc.).

次に、ステップ400〜404では、協調判断結果と単
独判断結果を比較し、エラーの検出を行う(ファジィ比
較推論)。すなわち、各単独判断結果と協調結果を第9
図等を用いてファジィ比較し、その差が不意か否か、有
意差のある要素が自要素か否かを判別して、自要素でな
いときは関係ある出力を編集して送出する。一方、自要
素のときには、異常処理を起動する。なお、第11図〜
第15図におけるLは伝送路への送信を示している。
Next, in steps 400 to 404, the cooperative judgment result and the independent judgment result are compared to detect errors (fuzzy comparative inference). In other words, each independent judgment result and cooperative result are
A fuzzy comparison is made using diagrams, etc., and it is determined whether the difference is unexpected or not, and whether the element with a significant difference is the own element. If it is not the own element, the related output is edited and sent. On the other hand, if it is the own element, abnormality processing is activated. In addition, Figure 11~
L in FIG. 15 indicates transmission to the transmission path.

以上の処理により、明らかになったことは、次の事項で
ある。
As a result of the above processing, the following matters were clarified.

(1)ファジィ推論を適用することにより、個々の局所
的判断の閾値付近の扱いに前後列車の状況等を取り入れ
た現実的判断ができること、周辺の列車や駅の判断要素
による同一判断に対して、別の立場からの判断、ならび
に端末駅を中心とする列車指令の立場から、さらに先の
折返し列車や運用への波及を考慮した判断を、協調判断
の方法で統合することにより、判断対象のあいまいさ、
未来現象のあいまいさを考慮したモデリングが可能にな
ること。そして、このような協調判断は、各制御対象に
関する判断要素について適用できるから、システムを構
成するすべての判断要素が、人間の判断と同じように現
実的な判断を行うようになること。
(1) By applying fuzzy inference, it is possible to make realistic judgments that incorporate the situation of the trains in front and behind when handling areas near the threshold of individual local judgments, and to make the same judgment based on judgment factors of surrounding trains and stations. , by integrating judgments from different standpoints, as well as judgments from the perspective of train dispatchers centered on terminal stations, taking into account the ripple effects on turnaround trains and operations in the future, using a collaborative judgment method, to improve the judgment target. ambiguity,
Possibility of modeling that takes into account the ambiguity of future phenomena. Since such cooperative judgment can be applied to the judgment elements related to each controlled object, all the judgment elements making up the system will be able to make realistic judgments in the same way as human judgments.

(11)各列車車上、各駅、各指令等の判断要素は、そ
れぞれ他の関係ある判断結果を取り込んで協調判断する
ことにより、判断の誤りがあってもそれがカバーされる
とともに、各単独判断結果を上記の協調結果と比較する
ことにより、異常要素を検出することができること。
(11) Judgment elements on each train car, at each station, each command, etc., incorporate the results of other related judgments and make cooperative judgments, so that even if there is an error in judgment, it is covered, and each individual Abnormal elements can be detected by comparing the judgment results with the above coordination results.

011)各判断要素は、他の要素の発信する情報の中で
、自分に関係のある情報をファジィ推論を用いて選択し
て入力することにより、上記判断に関係のある判断をそ
れぞれ自分の立場で実行して、他の判断要素の協調判断
に参加できるとともに、自判断要素でも他の判断結果を
用いて協調判断することができること。
011) Each judgment element uses fuzzy reasoning to select and input information relevant to itself from the information sent by other elements, thereby making judgments related to the above judgment from its own position. In addition to being able to participate in the collaborative judgment of other judgment elements by executing it, the self-judgment element can also make a cooperative judgment using the judgment results of other judgment elements.

〔発明の効果) したがって、本発明によれば、ファジィ推論を用いるこ
とにより、閾値付近の判断に広域のあいまいな状況や条
件を導入して、現実的な判断を行うことができるととも
に、各判断要素は、それぞれ自制外対象に関係のある他
要素の判断情報、判断結果を選択して受信し、自判断と
の関係の程度に応じてファジィ協調判断することにより
、局所的な判断だけでなく、他の立場の判断の他、必要
に応じ、判断が連鎖的に拡がるような大局的判1171
をも考慮した判断が可能になる。さらに、ファジィ協調
判断を用いることにより、1個4Cいし少数個の判断の
誤りはカバーされ、その誤りとその程度を検出すること
ができる。なお、本発明は、その他、FA、制御システ
ム等蝮雑7(システムのすべてに適用できる。
[Effects of the Invention] Therefore, according to the present invention, by using fuzzy inference, it is possible to make a realistic judgment by introducing a wide range of ambiguous situations and conditions into judgments near the threshold value, and to improve the accuracy of each judgment. Each element selects and receives the judgment information and judgment results of other elements related to the object outside of self-control, and makes fuzzy cooperative judgments according to the degree of relationship with the self-judgment, thereby making not only local judgments. , in addition to judgments from other standpoints, judgments from a broader perspective can be spread as needed.1171
It becomes possible to make decisions that also take into consideration. Furthermore, by using fuzzy cooperative judgment, one 4C or a small number of judgment errors can be covered, and the error and its degree can be detected. Note that the present invention can be applied to all other systems such as FA and control systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を軌道輸送の列車運用管理システムに適
用した場合の全体構成V、第2図、第3図は変数の帰属
度関数の一例を示す図、第4図は2人力に関する判断剤
の例を示す図、第5図は接近2列車の待避変更判断剤の
例を示す図、第6 A 。 5B、 6C図は2列車間待避変更町否の判断剤および
他への波及の程度を示す図、第7図は待避変更判断結果
に対する重み付は結果を示す図、第8図は2人力の協調
推論の例を示す図、第9図はファジィ協調剤による異常
検定を示す図、第1Q図はファジィ判断側の一例を示す
図、第11図は各制御要素を対象とする判断要素で実行
される処理70〜チヤート、第12図から第15図まで
はいずれも第11図の部分的詳細フローチャートである
。 11−1〜11−3,31−1〜31−6 、12〜1
4二制宿■判断要素、21−1〜21−5二制御駅の制
御手段、22:列車指令手段、23:乗務員の運用指令
手段、24:車両基地作業管理手段、32−1〜32−
6 :列車上の連行判断手段、130:第1の手段、2
10’、211,220゜221.270.271 :
第2の手段、300:第3の手段、400.450:第
4の手段、250.251 :第5の手段。 特許出願人 株式会社 日立製作所 唯− 第   1   図 −第  2  ノ 「15 第   3   図 第   4   図 第   5   V 第     6 、へ     1゛4「h石1 第  6 B  図 第   7   図 第   8   図 第  12  図 第   13   図 第  14  図 第   15   図
Figure 1 shows the overall configuration V when the present invention is applied to a train operation management system for rail transport, Figures 2 and 3 are diagrams showing examples of variable membership functions, and Figure 4 is a judgment regarding two-manpower. Fig. 5 is a diagram showing an example of the agent for determining whether to change the evacuation of two approaching trains, and Fig. 6A is a diagram showing an example of the evacuation change determination agent for two approaching trains. Figures 5B and 6C are diagrams showing the criteria for determining whether a two-train evacuation change is necessary and the extent of its influence on others, Figure 7 is a diagram showing the weighting of the evacuation change judgment result, and Figure 8 is a diagram showing the results of a two-man-powered Figure 9 shows an example of cooperative inference, Figure 9 shows abnormality testing using a fuzzy coordinating agent, Figure 1Q shows an example of the fuzzy judgment side, and Figure 11 is executed with a judgment element targeting each control element. The processes 70 to 15 shown in FIGS. 12 to 15 are all partially detailed flowcharts of FIG. 11. 11-1 to 11-3, 31-1 to 31-6, 12-1
4.2 system accommodation■judgment element, 21-1 to 21-52 control station control means, 22: train command means, 23: crew operation command means, 24: depot work management means, 32-1 to 32-
6: Entrainment judgment means on the train, 130: First means, 2
10', 211, 220° 221.270.271:
Second means, 300: Third means, 400.450: Fourth means, 250.251: Fifth means. Patent Applicant: Hitachi, Ltd. - Figure 1 - Figure 2 15 Figure 3 Figure 4 Figure 5 V 6, 1'4'' 1 Figure 6 B Figure 7 Figure 8 Figure 12 Figure 13 Figure 14 Figure 15

Claims (1)

【特許請求の範囲】 α)複数個の制御対象、該制御対象の状態を監視し、そ
の行動を判断し、かつ制御する判断要素、および各判断
要素を相互に結合する情報伝送路から構成されるシステ
ムにおいて、上記各判断要素は、自判断要素の制御対象
に生起する事象に対する制御出力を単独に判断し、判断
結果を上記制御対象と情報伝送路に送出する第1の手段
、情報伝送路から自判断要素に関係する他の判断結果を
受信し記憶する第2の手段、該第2の手段で取り込んだ
他判断結果を自判断要素と他の各判断要素との関係の程
度に応じて重み付けした後、各結果と上記第1の手段の
判断結果を協調した判断結果を得る第3の手段を有する
ことを特徴とする制御方式O C)前記第1、第2、第3の手段は、それぞれファジィ
推論を適用することを特徴とする特許請求の範囲第1項
記載の制御方式。 0前記各判断要素は、第1、@2、第3の手段の他に、
第1の手段の結果と、第2の手段から得られた他の判断
要素の結果を、それぞれ第3の手段の結果と比較して、
自判断要素または他判断要紫の異常の程度を検出する@
4の手段を有することを特徴とする特許請求の範囲第1
項記載の制御方式。 (4)前記各判断要素は、第1、第2、第3および第4
の手段の他に、第2の手段において、他の判断要素の判
断情報を受信し記憶する場合に、上記判断情報に含まれ
るキイワードと自判断要素が行った判断過程に含まれ′
るキイワードとの一致の程度と、上記判断情報を発信し
た他判断要素と自判断要素との関係の程度とから、情報
を取り込むか否かを判断する第5の手段を有することを
特徴とする特許請求の範囲第1項記載の制御方式。 (5)前記第4、第5の手段は、それぞれファジィ推論
を適用することを特徴とする特許請求の範囲第1項、第
3項または培養項記載の制御方式。
[Claims] α) Consisting of a plurality of control objects, a judgment element that monitors the state of the control objects, judges their behavior, and controls them, and an information transmission path that interconnects each judgment element. In the system, each of the above-mentioned judgment elements independently judges the control output for an event occurring in the controlled object of the self-judgment element, and sends the judgment result to the above-mentioned control object and an information transmission path, and an information transmission path. a second means for receiving and storing other judgment results related to the self-judgment element from the computer; and a second means for receiving and storing other judgment results related to the self-judgment element from C) The first, second, third means are 2. The control method according to claim 1, wherein fuzzy inference is applied to each of the control methods. 0 In addition to the first, @2, and third means, each of the above-mentioned judgment elements includes:
Comparing the results of the first means and the results of other judgment factors obtained from the second means with the results of the third means, respectively,
Detecting the degree of abnormality that requires self-judgment or other judgment @
Claim 1 characterized in that it has the means of 4.
Control method described in section. (4) Each of the above judgment elements is the first, second, third and fourth judgment element.
In addition to the above means, in the second means, when receiving and storing judgment information of other judgment elements, the key words included in the judgment information and the judgment process carried out by the self-judgment element are
The present invention is characterized by having a fifth means for determining whether or not to incorporate information based on the degree of coincidence with the keyword that is transmitted and the degree of relationship between the self-judgment element and other judgment elements that have transmitted the judgment information. A control method according to claim 1. (5) The control system according to claim 1, 3 or culture, wherein the fourth and fifth means apply fuzzy inference, respectively.
JP58077986A 1983-05-02 1983-05-02 Control system Pending JPS59202504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58077986A JPS59202504A (en) 1983-05-02 1983-05-02 Control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58077986A JPS59202504A (en) 1983-05-02 1983-05-02 Control system

Publications (1)

Publication Number Publication Date
JPS59202504A true JPS59202504A (en) 1984-11-16

Family

ID=13649174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58077986A Pending JPS59202504A (en) 1983-05-02 1983-05-02 Control system

Country Status (1)

Country Link
JP (1) JPS59202504A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135902A (en) * 1985-12-09 1987-06-18 Idemitsu Petrochem Co Ltd Optimum control method for process
JPS6362001A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Digital control system by fuzzy inference
JPS63216102A (en) * 1987-03-05 1988-09-08 Mitsubishi Electric Corp Plant control system
JPS63273013A (en) * 1987-05-01 1988-11-10 Fuji Photo Film Co Ltd Measurement of liquid
JPS63273014A (en) * 1987-05-01 1988-11-10 Fuji Photo Film Co Ltd Measurement control of liquid and powder and measurement control instrument
JPS63279119A (en) * 1987-05-12 1988-11-16 Fuji Photo Film Co Ltd Powder weighing method
JPH02136346A (en) * 1988-11-15 1990-05-24 Omron Tateisi Electron Co Control device for headlight

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978077A (en) * 1972-12-01 1974-07-27
JPS5113153A (en) * 1974-07-23 1976-02-02 Tokyo Shibaura Electric Co Fukusuhaisuiikeno seigyosochi
JPS5721201B2 (en) * 1976-06-11 1982-05-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978077A (en) * 1972-12-01 1974-07-27
JPS5113153A (en) * 1974-07-23 1976-02-02 Tokyo Shibaura Electric Co Fukusuhaisuiikeno seigyosochi
JPS5721201B2 (en) * 1976-06-11 1982-05-06

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135902A (en) * 1985-12-09 1987-06-18 Idemitsu Petrochem Co Ltd Optimum control method for process
JPS6362001A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Digital control system by fuzzy inference
JPS63216102A (en) * 1987-03-05 1988-09-08 Mitsubishi Electric Corp Plant control system
JPS63273013A (en) * 1987-05-01 1988-11-10 Fuji Photo Film Co Ltd Measurement of liquid
JPS63273014A (en) * 1987-05-01 1988-11-10 Fuji Photo Film Co Ltd Measurement control of liquid and powder and measurement control instrument
JPS63279119A (en) * 1987-05-12 1988-11-16 Fuji Photo Film Co Ltd Powder weighing method
JPH02136346A (en) * 1988-11-15 1990-05-24 Omron Tateisi Electron Co Control device for headlight

Similar Documents

Publication Publication Date Title
US5794172A (en) Scheduling system and method
US7558740B2 (en) System and method for scheduling and train control
US7539624B2 (en) Automatic train control system and method
D’ariano et al. A branch and bound algorithm for scheduling trains in a railway network
CN112883640B (en) Digital twin station system, job scheduling method based on system and application
CN112232552B (en) Emergency uncertainty-oriented train operation plan adjustment risk control method
Lüthi Improving the efficiency of heavily used railway networks through integrated real-time rescheduling
Ochkasov et al. Usage of intelligent technologies in choosing the strategy of technical maintenance of locomotives
JPS59202504A (en) Control system
CN114240002A (en) Bus departure timetable dynamic optimization algorithm based on deep reinforcement learning
He et al. A microscopic agent-based simulation for real-time dispatching problem of a busy railway passenger station
Bouamrane et al. Decision making system for regulation of a bimodal urban transportation network, associating a classical and a multi-agent approaches
Liu Optimization of Computer-aided Decision-making System for Railroad Traffic Dispatching Command
JP2645092B2 (en) Automatic operation management system
Goodman et al. Dynamic re-scheduling of trains after disruption
Ren et al. Optimization with fuzzy linear programming and fuzzy knowledge base
Gao et al. Reliable optimization of corridor capacity for China high speed railway by considering passenger service
Morri et al. An Approach to Intelligent Control Public Transportation System Using a Multi-agent System
Morri et al. Towards an Intelligent control system for public transport traffic efficiency KPIs optimization
Khokhrin et al. Analysis of the use of artificial intelligence systems in railway transport
Ahmed Automatic Route Setting and Dynamic Rescheduling Following Disturbance
Yu Quality Analysis of Railroad Train Shunting Operation Plan Using the Intelligent Body Model
Henesey et al. Enemy at the gates: introduction of multi-agents in a terminal information community
Sun et al. Intelligent train dispatching for high-speed railway based on Fuzzy Neural Network
JPS6170699A (en) Control system