JPS63283730A - Liquid metering and mixing apparatus - Google Patents

Liquid metering and mixing apparatus

Info

Publication number
JPS63283730A
JPS63283730A JP62115891A JP11589187A JPS63283730A JP S63283730 A JPS63283730 A JP S63283730A JP 62115891 A JP62115891 A JP 62115891A JP 11589187 A JP11589187 A JP 11589187A JP S63283730 A JPS63283730 A JP S63283730A
Authority
JP
Japan
Prior art keywords
metering
liquid
measuring
supply liquid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62115891A
Other languages
Japanese (ja)
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Shigeru Yamaguchi
滋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62115891A priority Critical patent/JPS63283730A/en
Priority to DE19883877815 priority patent/DE3877815T2/en
Priority to EP19880106920 priority patent/EP0290889B1/en
Priority to CN88103592A priority patent/CN1016116B/en
Priority to US07/188,987 priority patent/US4872763A/en
Publication of JPS63283730A publication Critical patent/JPS63283730A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/24Weighing mechanism control arrangements for automatic feed or discharge
    • G01G13/28Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle
    • G01G13/295Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle for controlling automatic loading of the receptacle
    • G01G13/2951Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle for controlling automatic loading of the receptacle involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight
    • G01G13/2952Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle for controlling automatic loading of the receptacle involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight wherein the main feed is effected by gravity from a hopper or chute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2204Controlling the mixing process by fuzzy control, i.e. a prescribed fuzzy rule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/02Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism
    • G01G13/04Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight
    • G01G13/06Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight wherein the main feed is effected by gravity from a hopper or chute
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes
    • G01G17/06Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes having means for controlling the supply or discharge
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/30Mixing paints or paint ingredients, e.g. pigments, dyes, colours, lacquers or enamel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fuzzy Systems (AREA)
  • Accessories For Mixers (AREA)

Abstract

PURPOSE:To accurately measure many kinds of raw liquids by varying the divergence of respective regulating valves in accordance with the received liquid variables on the liquid receiving vessel side in case of cumulatively metering a plurality of liquids from a plurality of vessels into a liquid receiving vessel and mixing. CONSTITUTION:When N chemicals are used for a group M of liquids which make no pollution problems or the like between the liquids to be metered cumulatively, liquid receiving vessels 4 and metering devices 5, each two units, are provided for a plurality of feeding liquid vessel 1. The liquid receiving vessels 4 can be transferred by an unmanned truck 9 and is operated efficiently by minimizing fixed pipings. When metering, the opening of opening regulating valves 2 is regulated basing on the deviation and deviation variability with time computed between the weight of raw liquid sensed by the metering devices 5 and the metering set values. In other words, after starting metering, the opening of the divergence regulating valve 2 is drawn when metering deviation gets smaller and generate micro-flow rate, and the metering accuracy is not dependent on the flow rate variations and enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多種類の原料液をそれぞれ計量後、混合して
新たな混合液を調整する液体計量混合装置に関する。特
に計量範囲の広い原料液を精密に能率よく計量混合する
液体計量混合装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid measuring and mixing device for preparing a new liquid mixture by measuring and mixing various types of raw material liquids. In particular, the present invention relates to a liquid measuring and mixing device that precisely and efficiently measures and mixes raw material liquids having a wide measuring range.

〔従来の技術〕[Conventional technology]

従来、液体計量混合装置に適用される計量装置として、
高精度な計量を達成するために、供給液流速可変に設け
たものはなく、計量設定値に対応した流速に制限した計
量装置が用いられている。
Conventionally, as a measuring device applied to a liquid measuring and mixing device,
In order to achieve highly accurate metering, a metering device is used that is not equipped with a variable supply liquid flow rate, but rather is limited to a flow rate that corresponds to a metering setting value.

また、従来タイプの液体計量混合装置においては、複数
の供給液容器から1つの受波容器に液を供給する場合、
それぞれの供給液容器に付属して計量装置を具備してい
る。
In addition, in conventional liquid measuring and mixing devices, when supplying liquid from multiple supply liquid containers to one receiving container,
A metering device is provided associated with each supply liquid container.

例えば、容積計量式を用いた場合、第8図に図示する様
に、ASB液2液体液体容器しては2個の計量装置を使
用し、混合容器への流れ込み量の予測制御のため、制御
装置として2ループの制御機能を必要とする。
For example, when a volumetric type is used, two measuring devices are used for the ASB liquid two-liquid container, as shown in Figure 8, and the control is performed to predict and control the amount flowing into the mixing container. The device requires two loop control functions.

すなわち、供給液の流速は、A液、B液の供給容器内の
液量、パルプ流量特性、液物性等により異なるため、同
一の制御機能では高精度な計量が期待できないことによ
る。
That is, since the flow rate of the supplied liquid varies depending on the amount of liquid A and B in the supply container, pulp flow rate characteristics, liquid physical properties, etc., highly accurate metering cannot be expected with the same control function.

このことは、タンク計量方式においても同様であり、各
県には付属するアクチユエータの閉止弁はそれぞれ独立
ループの制御系で制御される必要がある。(特開昭57
−29114号、特開昭58−163426号、特開昭
56−74715号、各公報参照) また、高精度な計量を実現するため、流速の異なるバル
ブを並列に設置して、所定の計量偏差にて切替する方法
があるが、この場合でも制御機能として、2ループの制
御が必要である。
The same applies to the tank metering system, and the shutoff valves of the actuators attached to each prefecture must be controlled by independent loop control systems. (Unexamined Japanese Patent Publication No. 57
-29114, JP-A-58-163426, JP-A-56-74715, and other publications) In addition, in order to achieve high-accuracy metering, valves with different flow rates are installed in parallel to maintain a predetermined metering deviation. There is a method of switching between the two loops, but even in this case, two-loop control is required as a control function.

ここで、2ループの制御機能と言う表現を使用している
のは、例えば、分散型制御装置等を使用した場合、1つ
の制御装置内で処理可能であり、制御装置が2個必要で
あるとは言えないからである。しかし、入出力点数、ソ
フトウェアからみた場合、2個の制御装置と言える。
The expression "two-loop control function" is used here because, for example, when a distributed control device is used, processing can be performed within one control device, and two control devices are required. This is because it cannot be said. However, in terms of the number of input/output points and software, it can be said that there are two control devices.

またバッチ製造プロセスでは、多数の薬液を使用する場
合、これらの液物性が異なるので、同一容器にて累積計
量を行うことが出来ない場合が多い。従って、第7図に
示すような複数の受波容器を有して、混合可能な液種は
同一容器にて計量し、混合不可な液種は別に計量容器を
有するような製造システムとなる。このため、下流側に
反応、調製等のための調製タンク10が必要である。
Further, in a batch manufacturing process, when a large number of chemical solutions are used, it is often impossible to perform cumulative measurement in the same container because these liquids have different physical properties. Therefore, the manufacturing system has a plurality of wave receiving containers as shown in FIG. 7, and liquid types that can be mixed are measured in the same container, and liquid types that cannot be mixed have separate measuring containers. Therefore, a preparation tank 10 for reaction, preparation, etc. is required on the downstream side.

反応調製等のための調整タンク10が固定式の製造シス
テムでは、多品種の製造を行う場合、品種の内容に応じ
て、設備化する必要があり、特に高精度の計量のために
は前述のとおり多数の計量タンク、調製タンク及びそれ
に付属する配管計量装置、制御装置、付属バルブ等が必
要となる。この場合、設備はある品種では使用されるが
、他の品種では使用されない装置があることとなり、非
常に、無駄の多いシステムとなり、設備のイニシャルコ
ストが増大する。更に、多目的の製造システムが近年叫
ばれているが、固定式の製造システムでは、配管系の変
更が必要となり、又その付帯装置の変更等が必要であり
、今以上に複雑な製造システムとなる。
In a production system with a fixed adjustment tank 10 for reaction preparation, etc., when manufacturing a wide variety of products, it is necessary to install equipment according to the content of the products. Therefore, a large number of measuring tanks, preparation tanks, and their attached piping measuring devices, control devices, attached valves, etc. are required. In this case, some equipment is used for one type of equipment but not for another, resulting in a very wasteful system and an increase in the initial cost of the equipment. Furthermore, although multi-purpose manufacturing systems have been in demand in recent years, fixed manufacturing systems require changes to the piping system and associated equipment, resulting in a more complex manufacturing system than is currently the case. .

そこで、これに対して近年計量タンク又は、調製タンク
を移動式にして計量装置を節減する移動式のバッチ製造
システムが提案されている。
Therefore, in recent years, a mobile batch manufacturing system has been proposed in which the measuring tank or the preparation tank is made mobile to reduce the need for measuring devices.

しかし、従来の計量装置にこのシステムを採用した場合
、計量設定値の大小にて、計量時間が異なり、計量設定
値が大きいと、計量に時間がかかり、移動式の製造シス
テムにおける容量の搬送時間に制限を加えることとなる
。このため従来製造システムでは、搬送時間に制約を与
えないために必要数の計量装置を設置しているが、これ
は移動式製造システムの利点に相反することとなる。ま
た、このようなシステムではステージ1ンでの滞在時間
を更に延長させる結果となる。(計量曹定僅の範囲、計
量時間の制限、計量精度の条件等々から、非常に多くの
計量装置を必要とする。そのため、配管の結合等の動作
時間が増加する。)写真感光材料の製造プロセスにおい
ては、感光材料を取扱うので遮光性を保たねばならず、
結合する箇所の増大によるシステムの複雑化、また搬送
サイクルの変化は製品の性能に影響する。
However, when this system is adopted in a conventional weighing device, the measurement time differs depending on the size of the measurement setting value, and the larger the measurement setting value, the longer it takes to weigh, and the time required to transport the volume in a mobile manufacturing system. will be subject to restrictions. For this reason, in conventional manufacturing systems, a necessary number of weighing devices are installed in order not to impose restrictions on transportation time, but this contradicts the advantages of mobile manufacturing systems. Moreover, such a system results in a further extension of the stay time in Stage 1. (A large number of measuring devices are required due to the small measuring range, limited measuring time, and conditions for measuring accuracy. Therefore, the operation time for connecting pipes, etc. increases.) Manufacturing of photographic light-sensitive materials Since photosensitive materials are handled in the process, they must be kept light-shielding.
The complexity of the system due to the increase in the number of joints and the change in the conveyance cycle affect the performance of the product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液体計量混合装置では、供給液流速一定を前提と
した計量制御のため、以下の欠点を有する。
Conventional liquid metering and mixing devices have the following drawbacks because the metering control is based on the assumption that the flow rate of the supplied liquid is constant.

■計Mta度:外乱や液物性の変化による流速変動によ
り、精度が保証されない事態を生じる。
■Total Mta degree: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances or changes in liquid physical properties.

すなわち、重力移送の場合、例えば供給側容器内の液残
存量の変化が大きいと流速がある条件範囲をはみ出すた
め、計量精度を悪くした。
That is, in the case of gravity transfer, for example, if there is a large change in the amount of liquid remaining in the supply side container, the flow rate will be outside a certain range of conditions, resulting in poor measurement accuracy.

また、このことは、供給液容器の流量をある幅内で制限
し、液量を常にある一定量以上に確保する必要があり、
供給液容器内残存液のロスを生じてランニングコストを
増加させた。
Additionally, this means that it is necessary to limit the flow rate of the supply liquid container within a certain range and ensure that the liquid volume is always above a certain level.
This caused a loss of the remaining liquid in the supply liquid container, increasing running costs.

■計量範囲:計量範囲が狭い。■Measuring range: The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み量があり、この量が供給液流速により決定されるた
め、流速一定のもとでは、計量範囲を狭めることにより
、許容できる流れ込み量を保証している。従って、同一
液の計量であっても、計量設定値が大きく相異する場合
はおのおの適性な計量範囲の計量装置が必要であり、装
置数が増加する。
The reason for this is that even if the metering is stopped, there is a flow amount due to the response delay of the system, and this amount is determined by the flow rate of the feed liquid, so if the flow rate is constant, narrowing the metering range will allow for an allowable flow amount. guaranteed. Therefore, even if the same liquid is to be measured, if the measurement setting values are significantly different, measuring devices each having an appropriate measurement range are required, which increases the number of devices.

■計量時間:計量設定値により計量時間が左右される。■Measuring time: Measuring time is affected by the measurement settings.

計量設定値が小さい場合は、計量時間は短く、大きい場
合は長(なる。従って、製造サイクル上適性な計量時間
の計量装置が計量設定値に応じて必要であり、装置数が
増加する。
If the measurement setting value is small, the measurement time is short; if it is large, the measurement time is long. Therefore, a measuring device with a measurement time suitable for the manufacturing cycle is required according to the measurement setting value, and the number of devices increases.

また従来の液体計量混合装置は、前述した理由により、
独立に制御される計量装置を、供給液容器毎に多数台設
置し、かつ製造能力の制限による最適計量時間毎に設置
しているため、システムを複雑にすると共に、非常に多
くの計量装置が設備化された。
Furthermore, conventional liquid measuring and mixing devices
A large number of independently controlled metering devices are installed for each supply liquid container, and each is installed at each optimum metering time due to manufacturing capacity limitations, which complicates the system and requires a large number of metering devices. It has been equipped.

又従来の計量方式ではオーバル流量計の様に容積計量方
式が良く用いられており、使用中は配管内に液の充填が
必要であり、これが原料液のロスとなる問題点を有して
いた。
In addition, in conventional measuring methods, volumetric measuring methods such as oval flowmeters are often used, and during use, it is necessary to fill the piping with liquid, which has the problem of causing loss of raw material liquid. .

本発明の目的は、上記事情に基づいてなされたもので、
外乱や液物性の変化による流速変動に影響されない高精
度な計量を実現すると共に、広範囲な計量範囲を確保し
、′かつ計量設定の大小に左右されないで短時間計量を
実現する計量制御装置を用い、これによりシステムを構
成し、設備の簡素化並びに製造能力の増強と、原材料ロ
スの低減を計り、 ■装置台数の低減によるイニシャルコスト低減■装置台
数の低減によるメンテンスエ数低減■装置台数の低減に
よる信頼性向上による故障低減 ■原材料ロスの低減によるランニングコスト低減の経済
効果の高い液体計量混合装置を提供することにある。
The object of the present invention was achieved based on the above circumstances, and
We use a metering control device that achieves high-precision metering that is not affected by flow rate fluctuations due to disturbances or changes in liquid physical properties, secures a wide metering range, and realizes short-time metering without being affected by the size of metering settings. , This allows the system to be configured, simplifying equipment, increasing manufacturing capacity, and reducing raw material loss. ■Reducing initial costs by reducing the number of devices.■Reducing the number of maintenance tasks by reducing the number of devices.■By reducing the number of devices. Reducing failures through improved reliability - Our objective is to provide a highly economical liquid measuring and mixing device that reduces running costs by reducing raw material loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、複数の供給液容器より複数液を累
積計量して受波容器に受け混合する装置であって、該供
給液容器からの液の計量装置を受波容器側に有し、供給
液計量制御装置が供給液計量値に対応し前記開度調整弁
の開度をファジィ推論により変化させ供給液流速を変化
させて計量するクローズドループ制御の精密計量制御装
置であり、更に受波容器の移動装置を有することを特徴
とする液体計量混合装置によって達成される。
The above-mentioned object of the present invention is to provide an apparatus for cumulatively measuring a plurality of liquids from a plurality of supply liquid containers and receiving and mixing the liquids in a wave receiving vessel, the apparatus having a measuring device for measuring liquid from the supply liquid containers on the side of the wave receiving vessel. , the supply liquid metering control device is a closed-loop control precision metering control device that measures the supply liquid by changing the opening degree of the opening adjustment valve by fuzzy reasoning in response to the supply liquid measurement value, and changing the supply liquid flow rate; This is achieved by a liquid metering and mixing device characterized in that it has a wave container displacement device.

本発明の構成要素について詳しく説明する。Components of the present invention will be explained in detail.

(1)供給液容器:計量される供給液を貯蔵する容器、
容器の容量は、製造に適したスケールを要する。本発明
にて、供給液溶器の残量の制限は無く、理論的には残量
0まで計量できる。又、液の物性値(例えば、粘度等)
に影響されず、流出可能な液物性値を有していれば、ど
んな液でも残量0まで計量可能である。
(1) Supply liquid container: a container that stores the supply liquid to be measured;
The capacity of the container requires a scale suitable for manufacturing. In the present invention, there is no limit to the amount remaining in the feed liquid solution container, and theoretically the remaining amount can be measured to zero. Also, physical property values of the liquid (e.g. viscosity, etc.)
Any liquid can be measured to zero remaining amount as long as it has physical properties that allow it to flow out without being affected by this.

(2)開度調整弁:供給液容器数に対応した個数分の開
度調整弁を有し、弁の開度を変化させる事で供給液流速
を広範囲に亘って変化させる流速制御弁である。また、
弁の流量特性は、弁開度0%近傍で全閉とし、lO%程
度近傍から液が流れる構造を有している。10%以上の
流量特性は、クイックオープン特性以外の特性を有する
(2) Opening degree adjustment valve: This is a flow rate control valve that has the number of opening degree adjusting valves corresponding to the number of supply liquid containers, and changes the supply liquid flow rate over a wide range by changing the opening degree of the valve. . Also,
The flow rate characteristics of the valve are such that the valve is fully closed when the opening degree is around 0%, and the liquid flows from around 10%. A flow rate characteristic of 10% or more has characteristics other than quick open characteristics.

駆動としては、例えばACサーボモータ等があ(3)受
波容器:製造スケールに適した容量の容器。混合可能な
液については、累積計量にて計量する。計量移液毎の洗
浄を行えば、混合不可の場合でも単独に同一容器にて計
量できる。攪拌混合を本容器にて行うことも可能である
The drive may be, for example, an AC servo motor, etc. (3) Receiving container: A container with a capacity suitable for the manufacturing scale. For liquids that can be mixed, measure by cumulative measurement. If the liquids are washed after each transfer, even if they cannot be mixed, they can be measured individually in the same container. It is also possible to perform stirring and mixing in this container.

(4)計量装置:受波容器側に設置され1台の計量装置
によって複数の供給液容器よりの液の計量を行う、累積
計量が可能である。ロードセル、差圧伝送器、レベル計
等タンク計量方式を用いる。
(4) Measuring device: Cumulative metering is possible in which liquids from a plurality of supply liquid containers are measured by one measuring device installed on the receiving vessel side. Tank measurement methods such as load cells, differential pressure transmitters, and level meters are used.

供給液容器に取付ける場合と、供給液容器を計量台に乗
せる場合とある。
There are cases where it is attached to the supply liquid container, and cases where the supply liquid container is placed on a weighing platform.

(5)計量制御装置:流速を変化させるクローズドルー
プ制御の精密計量装置であり、ファジィ推論による制御
方式により、開度調整弁の弁開度を可変にする。即ち、
弁の初期開度は弁の流量特性と計量設定値により、また
、その後の弁開度の推移は供給液計量値と計量設定値と
に基づいたファジィ制御により行われる。切替装置付に
することによって、複数の液を同一受波容器にて亦1台
の計量装置にて累積計量が可能であり、装置数を低減出
来る。
(5) Metering control device: This is a closed-loop controlled precision metering device that changes the flow rate, and uses a control method based on fuzzy inference to make the opening degree of the opening adjustment valve variable. That is,
The initial opening degree of the valve is determined by the flow rate characteristics of the valve and the metering setting value, and the subsequent transition of the valve opening degree is performed by fuzzy control based on the supplied liquid metering value and the metering setting value. By providing a switching device, it is possible to cumulatively measure a plurality of liquids in the same wave receiving container using at least one measuring device, and the number of devices can be reduced.

(6)切替装置:複数の開度調整弁を、1台の駆動制御
装置にて制御するための装置であり、計量制御装置の構
成の一部である。これによって開度調整弁1個宛に計量
制御部、駆動制御部を取付けなくて済む。
(6) Switching device: A device for controlling a plurality of opening adjustment valves with one drive control device, and is part of the configuration of a metering control device. This eliminates the need to install a metering control section and a drive control section for each opening adjustment valve.

(7)移動装置:受波容器を搬送させるための移動装置
である。搬送方法としては、無人搬送車、コンベア等が
ある。又、搬送物として、受波容器自体に搬送機能があ
る場合と、受波容器と分離する場合がある。
(7) Moving device: A moving device for transporting the wave receiving container. Transportation methods include automatic guided vehicles, conveyors, and the like. Further, as the conveyance object, there are cases where the wave receiving vessel itself has a conveyance function, and cases where the wave receiving vessel is separated from the wave receiving vessel.

本発明の基本構成要素は、上記の通りであるが、流速を
可変するクローズドループの計量制御装置を用いる事が
基本となり、かつその計量制御装置はファジィ制御を行
う。
The basic components of the present invention are as described above, and the basic component is the use of a closed-loop metering control device that varies the flow rate, and the metering control device performs fuzzy control.

亦、他に種々の付帯装置を設置する場合がある。In addition, various auxiliary devices may be installed.

例えば、洗浄のため、各容器にスプレーボール等を設置
し、配管途中に切替弁を設置する。又、各容器に混合等
のため攪拌機を設定する。更に、保温のため恒温槽等か
らの温水循環等を行う。
For example, a spray ball or the like is installed in each container for cleaning, and a switching valve is installed in the middle of the piping. Also, set up a stirrer in each container for mixing. Additionally, hot water from a constant temperature bath, etc. will be circulated to maintain heat.

〔作  用〕[For production]

本発明は複数の供給液容器より複数液を累積計量して受
波容器に受け混合する装置であって、該供給液容器が供
給液配管に開度調整弁を有し、供給液容器からの液の計
量装置を受波容器側に有し、供給液計量制御装置を各供
給液計量値に対応し、前記それぞれの開度調整弁の開度
をファジィ推論により変化させ供給液流速を変化させて
計量するクローズドループ制御の切替装置付精密計量制
御装置であり、更に受波容器の移動装置を有することを
特徴とする液体計量装置により、クローズドループ制御
の精密計量制御装置だけでも各種供給液容器に対し、計
量範囲の大小に左右されないで1種類の供給液容器に対
し1ケの開度調節弁で済ませるようになり、少なくとも
混合してもかまわない一緒に累積計量できる複数の供給
液容器に対しては連結管を用いて一つの受波容器(計量
タンク)と一つの計量装置と、一つの切替装置付計量制
御装置で計量が可能となり、大幅に装置を単純化してし
かも各供給液容器よりの液計量を精度良く短時間に行う
ことが出来る。
The present invention is an apparatus for cumulatively measuring a plurality of liquids from a plurality of supply liquid containers and receiving and mixing them in a receiving vessel, the supply liquid container having an opening adjustment valve in the supply liquid piping, A liquid measuring device is provided on the side of the wave receiving vessel, and a feed liquid metering control device is configured to correspond to each measured value of the feed liquid, and change the opening degree of each of the opening adjustment valves by fuzzy reasoning to change the flow rate of the feed liquid. This is a precision metering control device with a switching device for closed-loop control, which measures the amount of liquid using a closed-loop control, and also has a moving device for a receiving container. On the other hand, it is now possible to use only one opening adjustment valve for one type of supply liquid container, regardless of the size of the measurement range, and at least it is possible to use multiple supply liquid containers that can be mixed and cumulatively metered together. In contrast, by using a connecting pipe, measurement can be performed with one receiving vessel (measuring tank), one measuring device, and one metering control device with a switching device, which greatly simplifies the device and allows each supply liquid container to be It is possible to accurately measure liquids in a short time.

更に受波容器の移動装置を備えることにより、■各供給
液容器の供給液配管は連結管を使用せず単純化出来、洗
浄の必要性が減り設備が簡単化する。■受波容器(計量
タンク又は計量ポット)は移動出来るため、全ての調整
タンクに固定配管無しで計量した液を配給することが出
来るので、受波容器を少くして設備の融通性が出来る。
Furthermore, by providing a moving device for the wave receiving container, (1) the supply liquid piping for each supply liquid container can be simplified without using a connecting pipe, reducing the need for cleaning and simplifying the equipment. ■Since the wave receiving container (measuring tank or measuring pot) is movable, measured liquid can be distributed to all adjustment tanks without fixed piping, so the number of wave receiving containers can be reduced and equipment flexibility can be achieved.

従って多品種の製造を行う場合、受波容器側の設備の遊
休を無くすることが出来るし、処決変更等に対しても設
備の増設を極力減らして対応することが出来る。■又受
波容器(計量ポット)の移動により計量サイクルを早く
することが出来るので、少量液調製により経時変化を少
くおさえることが出来る。■供給液容器よりの液の計量
タンクに撹拌機を取り付は反応タンクとして用いること
も出来る〔実施態様〕 本発明の実施態様を図によって更に詳しく説明する。
Therefore, when manufacturing a wide variety of products, it is possible to eliminate idle equipment on the receiving vessel side, and it is also possible to respond to changes in treatment and the like by minimizing the need to add equipment. (2) Also, since the measurement cycle can be sped up by moving the wave receiving container (measuring pot), changes over time can be suppressed by preparing a small amount of liquid. (1) A stirrer is attached to the tank for measuring the liquid from the supply liquid container, which can also be used as a reaction tank [Embodiment] The embodiment of the present invention will be explained in more detail with reference to the drawings.

第1図に示す様に、累積液間の汚染等が問題とならない
液のグループとしてMグループあり、その中にそれぞれ
N個の薬品がある場合について考える。製造する品種数
が多数あるとするが、どの製造品種においても薬品の使
用総数は、MXNXN下である。従来の製造システムで
は、移動式、固定式を問わず、計量範囲、計量時間、計
量精度から、同種であっそも製造品種専用に薬品の供給
液容器1、計量装置5を必要としMXNXN上の装置台
数になった。しかし、本発明では、流速可変のクローズ
ドループの計量制御装置を採用し、かつ該計量制御装置
がファジィ制御するため、計量範囲、計量時間、計量精
度に対する心配は不要になり供給液容器1は、MXN個
の台数で良く、計量装置5は液の汚染の問題がなければ
、搬送能力から決定した非常に少ない台数で良い。
As shown in FIG. 1, let us consider the case where there are M groups of liquids in which accumulated contamination among liquids is not a problem, and each group contains N chemicals. Assume that there are a large number of products to be manufactured, but the total number of chemicals used for each product is below MXNXN. Conventional manufacturing systems, whether mobile or fixed, require a chemical supply liquid container 1 and a measuring device 5 exclusively for the same type of product, due to the measuring range, measuring time, and measuring accuracy. The number of devices has increased. However, in the present invention, a closed-loop metering control device with variable flow rate is adopted, and since the metering control device performs fuzzy control, there is no need to worry about the metering range, metering time, and metering accuracy. The number of measuring devices 5 may be MXN, and as long as there is no problem of liquid contamination, the number of measuring devices 5 may be very small determined based on the conveyance capacity.

ここでは、A、82台の計量装置5(ロードセル)を想
定する。供給液容器1については、MXN個の台数で良
いが、計量装置5の数は薬品調製時間、品種の製造スケ
ール等から判断して決定されるため、供給容器1の台数
はそれ以上の台数を必要とする場合がある。
Here, A, 82 weighing devices 5 (load cells) are assumed. The number of supply liquid containers 1 may be MXN, but since the number of measuring devices 5 is determined based on the chemical preparation time, manufacturing scale of the product, etc., the number of supply containers 1 may be larger than that. It may be necessary.

各計量装置は、第2図に示す制御ブロックの内容の計量
制御装置6を有しており、該計量制御装置の出力は切替
装置7の切替により複数の開度調整弁2(1〜N)に選
択出力される。つまり同一の制御アルゴリズムにて多数
の薬品(1〜N)の計量が同一の受波容器4(計量ポッ
ト)にて行われる。
Each metering device has a metering control device 6 having the contents of the control block shown in FIG. is selected and output. That is, a large number of chemicals (1 to N) are measured in the same wave receiving container 4 (measuring pot) using the same control algorithm.

前記開度調整弁2(1〜N)は、第3図に図示する如く
、それぞれの流量特性がイコールパーセント特性を有す
ると共に、弁開度0%近傍で全閉とし、lO%程度近傍
から液が流れ出す特性を有している。
As shown in FIG. 3, the opening adjustment valves 2 (1 to N) each have an equal percentage flow rate characteristic, and are fully closed when the valve opening is around 0%, and the liquid starts to flow from around 10%. It has the property of flowing out.

前記計量制御装置6は、フィルタ演算部61゜ファジィ
制御部62及び駆動制御部63とから構成されており、
前記開度調整弁2(1〜N)の流量特性、計量装置5に
より得られる計量値及び計量設定値とに基づいてファジ
ィ制御を行い、前記開度調整弁2(1〜N)の弁開度を
制御する。
The metering control device 6 includes a filter calculation section 61, a fuzzy control section 62, and a drive control section 63.
Fuzzy control is performed based on the flow rate characteristics of the opening adjustment valves 2 (1 to N), the measured value obtained by the metering device 5, and the measurement set value, and the opening of the opening adjustment valves 2 (1 to N) is performed. Control the degree.

次に、本発明の液体計量混合装置の動作プロセスを説明
する。
Next, the operation process of the liquid measuring and mixing device of the present invention will be explained.

上位の製造制御装置より、移動させるための例えば無人
搬送車9に対し、受波容器4の計量ポットAをステーシ
ョン1に移載する指示が出される。
The higher-level manufacturing control device issues an instruction to, for example, an automatic guided vehicle 9 to transfer the weighing pot A of the wave receiving container 4 to the station 1.

更に、計量装置5(ロードセルA)に対し、所定の供給
液容器1 (例えばタンク12)の薬品を計量する指示
が出される。切替装置7は系統選択信号により切替り、
選択された前記タンク12の開度調整弁2(12)及び
閉止弁3(12)が計量制御装置6により制御可能に設
ける。
Further, an instruction is issued to the measuring device 5 (load cell A) to measure the chemical in a predetermined supply liquid container 1 (for example, tank 12). The switching device 7 switches according to the system selection signal,
The opening adjustment valve 2 (12) and the shutoff valve 3 (12) of the selected tank 12 are provided so as to be controllable by the metering control device 6.

また、上位の製造制御装置より、付帯装置である供給液
容器の結合装置12が、受波容器4(計量ポットA)の
結合装置部と結合する指示が出される。このような初期
状態を通じて、計量準備が確認できると、上位から計量
開始が指示される。
Further, the higher-level manufacturing control device issues an instruction to connect the coupling device 12 of the supply liquid container, which is an auxiliary device, to the coupling device section of the wave receiving container 4 (measuring pot A). When preparation for weighing is confirmed through such an initial state, a command to start weighing is given from a higher level.

計量開始指令により、前記閉止弁3(12)が開となり
、前記開度調整弁2(12)が、予め定められた開度と
なるように、計量制御装置6から位置指令が伝送され、
前記タンク12の駆動モータ8(12)を駆動して指示
された位置に開度調整弁2(12)の弁ボートを設定し
て、開度を調整し、原材料の流れを引き起こす、この際
、弁の初期開度は、弁の流量特性と計量設定値とにより
、計量制御装置のファジィ制御部62がファジィルール
に基づいて算出する。これにより、前記タンク12の原
材料は、受波容器4に移送され始める。
In response to the measurement start command, the shutoff valve 3 (12) is opened, and a position command is transmitted from the measurement control device 6 so that the opening adjustment valve 2 (12) has a predetermined opening degree.
Driving the drive motor 8 (12) of the tank 12 and setting the valve boat of the opening adjustment valve 2 (12) at the indicated position to adjust the opening and cause the flow of the raw material; The initial opening degree of the valve is calculated by the fuzzy control unit 62 of the metering control device based on the flow rate characteristics of the valve and the metering setting value based on fuzzy rules. As a result, the raw material in the tank 12 begins to be transferred to the wave receiving container 4.

前記タンク12の計量装置!5(ロードセルA)は、移
送された原材料の重量を検知し、その値を計量制御装置
6にフィードバックする。
Measuring device for the tank 12! 5 (load cell A) detects the weight of the transferred raw material and feeds back the value to the weighing control device 6.

前記計量制御装置6は、フィードバックされた供給液計
量値から、ファジィ制御部62が計量設定値との偏差、
偏差の時間変化量を演算すると共に、これら量にローパ
スフィルタ処理を施した値を算出する。前記ファジィ制
御部62はこの算出された値をもとに、ファジィルール
に基づく推論演算を行い、次の制御周期において適切な
流速となる弁開度を得る。
In the metering control device 6, the fuzzy control unit 62 calculates the deviation from the metering set value from the fed-back measured value of the supply liquid.
In addition to calculating the amount of change over time in the deviation, a value obtained by performing low-pass filter processing on these amounts is calculated. The fuzzy control unit 62 performs inference calculations based on fuzzy rules based on this calculated value, and obtains a valve opening that will provide an appropriate flow velocity in the next control cycle.

この際、ファジィ推論によるメンバーシップ関数は、偏
差量及び偏差時間変化量の各物理量に対応する軸の分割
が、物理量の小さい区間を細かくした例えば片対数とす
る第4図のような形を有する。これは、計量精度向上並
びに短時間計量を目的とするためであり、偏差量が大で
あれば、制御性の良い事は必要なく、偏差量が小である
場合に制御精度を向上させる必要があるからである。こ
のことは、−次フィルタ処理機能にも当てはまり、偏差
量等が小さい場合に一次フィルタの偏差量等を使用し、
計量検出器の動特性を緩和して計量精度を向上させる。
At this time, the membership function based on fuzzy inference has a shape as shown in Figure 4, in which the division of the axes corresponding to the physical quantities of the deviation amount and the deviation time change amount is, for example, semi-logarithm, in which the sections of small physical quantities are finely divided. . This is for the purpose of improving measurement accuracy and short-time measurement.If the amount of deviation is large, it is not necessary to have good controllability, but if the amount of deviation is small, it is necessary to improve control accuracy. Because there is. This also applies to the -order filter processing function, which uses the deviation amount, etc. of the first-order filter when the deviation amount, etc. is small,
Weighing accuracy is improved by relaxing the dynamic characteristics of the weighing detector.

計量開始後、計量偏差が小さくなると、開度調整弁2(
12)は開度を絞り、微小流速となる。
After the measurement starts, when the measurement deviation becomes small, the opening adjustment valve 2 (
In 12), the opening degree is narrowed down to a minute flow velocity.

計量偏差、計量偏差の時間変化量が小さくなり、計量偏
差がある値以下になると、計量停止し、閉止弁3 (1
2)は全閉方向に移動する。このとき、流速は微小であ
り、流れ込み量は微小である。よって、計量停止後の流
れ込み量は小さくなり、計量精度は、流速変動に依存せ
ず向上する。また、前記開度調整弁2(12)は、第3
図の流量特性を有することにより、偏差0近傍にて弁開
度約10%程度をファジィ推論演算に基づき推移する。
When the measurement deviation and the time change amount of the measurement deviation become small and the measurement deviation becomes less than a certain value, the measurement is stopped and the shutoff valve 3 (1
2) moves in the fully closed direction. At this time, the flow velocity is minute and the amount of inflow is minute. Therefore, the amount of flow after the metering is stopped becomes small, and the metering accuracy is improved regardless of the flow velocity fluctuation. Further, the opening adjustment valve 2 (12) has a third opening adjustment valve 2 (12).
By having the flow rate characteristics shown in the figure, the valve opening changes at about 10% based on fuzzy inference calculations when the deviation is near 0.

従って、弁の機械的ガタ等があっても、このデッドゾー
ン及びファジィ制御方式により、ガタ等の悪影響を吸収
し、高精度の計量が出来る。更に、計量範囲において、
計量設定値とかプロセスの系により開度調整弁の動作が
変わり、計量設定値の大小を問わず同一計量装置にて計
量ができ、計量範囲が拡大する。又、計量時間において
も、前記開度調整弁の動作パターンが変化し、計量設定
値の大小を問わず、はぼ同一の短時間の計量ができる。
Therefore, even if there is mechanical backlash of the valve, the dead zone and fuzzy control system absorb the negative effects of the backlash and allow highly accurate metering. Furthermore, in the measurement range,
The operation of the opening adjustment valve changes depending on the measurement setting value and the process system, and regardless of the size of the measurement setting value, measurement can be performed with the same measuring device, expanding the measurement range. Also, during the measurement time, the operation pattern of the opening adjustment valve changes, and regardless of the magnitude of the measurement setting value, almost the same short-time measurement can be performed.

以上の内容の動作を品種内容に従い、実行し、品種内の
全薬品を計量すると、下流工程の調製タンクに移液する
動作に移る。
After performing the above-mentioned operations according to the product type and measuring all the chemicals in the product type, the process moves to the operation of transferring the liquid to the preparation tank in the downstream process.

上位からステーション3への移動指示が出されると、無
人搬送車9は、受波容器4(計量ポットA)をステーシ
ョン3に搬送する。゛そして、配管接続装置に結合され
る。調整タンク10が第1図のような移動装置であれば
、この調整タンク10も移動して、配管接続装置の下部
に結合される。
When an instruction to move to station 3 is issued from the higher level, the automatic guided vehicle 9 transports the wave receiving container 4 (weighing pot A) to the station 3. ``Then, it is connected to the piping connection device. If the adjustment tank 10 is a moving device as shown in FIG. 1, this adjustment tank 10 will also be moved and connected to the lower part of the pipe connection device.

結合が確認されたのち受波容器4(計量ボッ・)A)の
底弁が搬送制御装置にて制御され、開となり液が移液さ
れる。
After the connection is confirmed, the bottom valve of the wave receiving container 4 (measuring box) A) is controlled by the transfer control device, opens, and the liquid is transferred.

第1図はステーション1.2に計量装置5を配置(ロー
ドセルを配置)して、所定の位置での計量システムで無
人搬送車9で搬送する形式であるが、第4図の如く受波
容器4(計量ポット)そのものが計量装置4と車輪10
0付の搬送機能をもつ形式のものでもよい。このように
構成することにより、第1図に比べ結合装置がステーシ
ョンに固定されない、但し、各結合位置に位置検知セン
サー等の電気関係の接続装置を必要とする。
In Fig. 1, a weighing device 5 is placed at a station 1.2 (a load cell is placed), and the weighing system is carried at a predetermined position by an automatic guided vehicle 9. 4 (the measuring pot) itself is the measuring device 4 and the wheel 10
It may also be of a type that has a zero carrying function. With this configuration, compared to FIG. 1, the coupling device is not fixed to the station, however, an electrical connection device such as a position detection sensor is required at each coupling position.

第5図のように受波容器4(計量ポット)に攪拌機10
1翼部を付加し、該受波容器4が攪拌機ステーション1
02に搬送されることにより、受波容器4に混合、反応
等の機能を持たせて調整タンクとして位置付けると、よ
り効率の良いシステムとなる。
As shown in Figure 5, a stirrer 10 is placed in the wave receiving container 4 (measuring pot).
1 blade section is added, and the wave receiving vessel 4 is agitator station 1.
If the wave receiving vessel 4 is provided with functions such as mixing and reaction and positioned as a regulating tank, a more efficient system can be achieved.

計量のための計量装置4として、前記実施態様では、ロ
ードセルを例として挙げたが、他のタンク計量式計量器
を用いても同様である。特に、第4図、第5図において
タンクに差圧伝送器等を使用すると、受波容器(計量ポ
ット)を自走車に固定することが出来、受波容器の製作
が容易となり、振動等の影響が無くなる。
In the embodiment described above, a load cell was used as an example of the weighing device 4 for weighing, but the same effect can be applied even if other tank weighing type weighing devices are used. In particular, if a differential pressure transmitter or the like is used in the tank in Figures 4 and 5, the wave receiving container (measuring pot) can be fixed to the mobile vehicle, making it easier to manufacture the wave receiving container, and reducing vibrations. The influence of will disappear.

受波容器4(計量ポット)に右ける加算計量と更に供給
液容器1 (タンク)に計量装置をつけて減算計量との
機能をもつ計量制御装置を使用すると、より広範囲な精
密計量が可能となる。
By using a metering control device that has the functions of additive metering in the receiving vessel 4 (measuring pot) and subtractive metering by attaching a metering device to the supply liquid container 1 (tank), a wider range of precise metering is possible. Become.

〔発明の効果〕〔Effect of the invention〕

本発明の複数の供給液容器より複数液を累積計量して受
波容器に受け混合する装置であって、該供給液容器が供
給液配管に開度調整弁を有し、供給液容器からの液の計
量装置を受波容器側に有し、供給液計量制御装置が各供
給液計量値に対応し前記それぞれの開度調整弁の開度を
ファジィ推論により変化させ供給液流速を変化させて計
量するクローズドループ制御の切替装置付精密計量制御
装置であり、更に受波容器の移動装置を有することを特
徴とする液体計量混合装置により、本発明の制御装置の
採用によるシステムにおいては、外乱による流速変動に
影響されない高精度な計量が実現出来1.また広範囲な
計量範囲でも計量時間が短時間で迅速に、可能になる。
A device according to the present invention that cumulatively measures a plurality of liquids from a plurality of supply liquid containers and receives and mixes them in a wave receiving vessel, wherein the supply liquid container has an opening adjustment valve in the supply liquid piping, and the liquid from the supply liquid container is A liquid measuring device is provided on the receiving vessel side, and the feed liquid metering control device changes the opening degree of each of the opening adjustment valves according to each measured value of the feed liquid by fuzzy reasoning to change the flow rate of the feed liquid. The system employing the control device of the present invention is a precision metering control device equipped with a switching device for closed-loop control for metering, and further includes a moving device for a receiving vessel. Highly accurate measurement that is unaffected by flow rate fluctuations can be achieved.1. In addition, even in a wide measurement range, the measurement time can be shortened and quickly made possible.

更に、設備の簡単化と計量装置台数の低減となり、大規
模設備であっても製造能力が増大し、大規模調製による
製品品質の向上と原材料のロスの低減を実現出来た。そ
れによってイニシャルコストダウン、メンテナンスコス
トダウン、ランニングコストダウン、信転性の向上を得
た。
Furthermore, the equipment has been simplified and the number of weighing devices has been reduced, increasing manufacturing capacity even with large-scale equipment, improving product quality through large-scale preparation, and reducing loss of raw materials. This resulted in lower initial costs, lower maintenance costs, lower running costs, and improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液体計量混合装置の1実施例のフロー
シート、第2図は本発明に係わるクローズドループ制御
のブロック図、第3図は開度調整弁の流量特性図、第4
図、第5図は本発明の他の実施例を示すフローシート、
第6図はファジィ制御のメンバーシップ関数を説明する
図、第7図、第8図は従来の液体計量混合装置の1実施
例のフローシートである。 1・・・供給液容器  2・・・開度調整弁3・・・閉
止弁    4・・・受波容器5・・・計量装置   
6・・・計量制御装置7・・・切替装置   8・・・
駆動モータ9・・・無人搬送車 10・・・調整タンク 代理人 弁理士(8107)  佐々木 清隆第6図
Fig. 1 is a flow sheet of one embodiment of the liquid metering and mixing device of the present invention, Fig. 2 is a block diagram of closed loop control according to the present invention, Fig. 3 is a flow rate characteristic diagram of the opening adjustment valve, and Fig. 4
5 is a flow sheet showing another embodiment of the present invention,
FIG. 6 is a diagram explaining the membership function of fuzzy control, and FIGS. 7 and 8 are flow sheets of one embodiment of a conventional liquid metering and mixing device. 1... Supply liquid container 2... Opening adjustment valve 3... Closing valve 4... Wave receiving container 5... Measuring device
6... Metering control device 7... Switching device 8...
Drive motor 9...Automated guided vehicle 10...Adjustment tank Agent Patent attorney (8107) Kiyotaka Sasaki Figure 6

Claims (1)

【特許請求の範囲】[Claims] 複数の供給液容器より複数液を累積計量して受波容器に
受け混合する装置であって、該供給液容器が供給液配管
に開度調整弁を有し、供給液容器からの液の計量装置を
受波容器側に有し、供給液計量制御装置が各供給液計量
値に対応し前記それぞれの開度調整弁の開度をファジィ
推論により変化させ供給液流速を変化させて計量するク
ローズドループ制御の切替装置付精密計量制御装置であ
り、更に受波容器の移動装置を有することを特徴とする
液体計量混合装置。
A device for cumulatively measuring multiple liquids from a plurality of supply liquid containers and receiving and mixing them in a receiving vessel, the supply liquid container having an opening adjustment valve in the supply liquid piping, and measuring the liquid from the supply liquid container. A closed system in which a device is provided on the wave receiving vessel side, and a supply liquid metering control device changes the opening degree of each of the opening adjustment valves according to each measured value of the supply liquid by fuzzy reasoning to change the flow rate of the supply liquid and perform measurement. 1. A liquid measuring and mixing device, which is a precision metering control device with a switching device for loop control, and further includes a moving device for a wave receiving container.
JP62115891A 1987-05-01 1987-05-14 Liquid metering and mixing apparatus Pending JPS63283730A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62115891A JPS63283730A (en) 1987-05-14 1987-05-14 Liquid metering and mixing apparatus
DE19883877815 DE3877815T2 (en) 1987-05-01 1988-04-29 METHOD AND DEVICE FOR MEASURING LIQUID.
EP19880106920 EP0290889B1 (en) 1987-05-01 1988-04-29 Method of and apparatus for measuring liquid
CN88103592A CN1016116B (en) 1987-05-01 1988-04-30 Be used to measure the method and apparatus of fluid
US07/188,987 US4872763A (en) 1987-05-01 1988-05-02 Method of and apparatus for measuring liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115891A JPS63283730A (en) 1987-05-14 1987-05-14 Liquid metering and mixing apparatus

Publications (1)

Publication Number Publication Date
JPS63283730A true JPS63283730A (en) 1988-11-21

Family

ID=14673753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115891A Pending JPS63283730A (en) 1987-05-01 1987-05-14 Liquid metering and mixing apparatus

Country Status (1)

Country Link
JP (1) JPS63283730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351737B1 (en) * 1995-08-08 2002-02-26 Paul Nicholas Williams Measurement apportionment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351737B1 (en) * 1995-08-08 2002-02-26 Paul Nicholas Williams Measurement apportionment system

Similar Documents

Publication Publication Date Title
EP0289048B1 (en) Measuring mixer for liquids and powders
EP0304093B1 (en) Liquid measuring apparatus
EP0290889B1 (en) Method of and apparatus for measuring liquid
US4880142A (en) Powder weighing mixer and method thereof
US11768099B2 (en) Calibration method for liquid flowmeter
CA1115585A (en) Method and apparatus suitable for the preparation of agx-emulsions
CN201974701U (en) Electronic scale flow control system
US4031912A (en) Reactants addition and concentration control system
JPS63283731A (en) Liquid and powder metering and mixing apparatus
CN109634104A (en) The intelligent optimal control device and its control method of cement raw mix proportioning process
JPS63283730A (en) Liquid metering and mixing apparatus
JPS63274440A (en) Liquid and powder weighing and mixing apparatus
JPS63283732A (en) Liquid-powder metering and mixing apparatus
JPS63283734A (en) Powder material metering and mixing apparatus
JPS63278538A (en) Device for weighing and mixing liquid
JPH01100613A (en) Liquid measuring, mixing and distributing device
JPH01159040A (en) Method and apparatus for measuring, mixing and distributing liquid
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
JPS63274442A (en) Powder weighing and mixing apparatus
JP2587236B2 (en) Powder weighing method
JPH0612493B2 (en) Liquid metering and mixing device
JPS63273013A (en) Measurement of liquid
CN107149890A (en) A kind of plasterboard starch addition control method and system
EP0885659A1 (en) Continuous dispensing system for liquids
JPH01100615A (en) Liquid/powder measuring, mixing and distributing device