JPS6327425B2 - - Google Patents

Info

Publication number
JPS6327425B2
JPS6327425B2 JP18225482A JP18225482A JPS6327425B2 JP S6327425 B2 JPS6327425 B2 JP S6327425B2 JP 18225482 A JP18225482 A JP 18225482A JP 18225482 A JP18225482 A JP 18225482A JP S6327425 B2 JPS6327425 B2 JP S6327425B2
Authority
JP
Japan
Prior art keywords
crucible
vacuum
evaporator
melting chamber
conduits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18225482A
Other languages
Japanese (ja)
Other versions
JPS58104179A (en
Inventor
Ietsushu Gyunteru
Erupukamu Uorufuganku
Zenfu Yoahimu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMUBINAATO BEBU ROKOMOTEIFUBAUUEREKUTOROTEHINITSUSHE UERUKE HANSU BAIMURERU
Original Assignee
KOMUBINAATO BEBU ROKOMOTEIFUBAUUEREKUTOROTEHINITSUSHE UERUKE HANSU BAIMURERU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMUBINAATO BEBU ROKOMOTEIFUBAUUEREKUTOROTEHINITSUSHE UERUKE HANSU BAIMURERU filed Critical KOMUBINAATO BEBU ROKOMOTEIFUBAUUEREKUTOROTEHINITSUSHE UERUKE HANSU BAIMURERU
Publication of JPS58104179A publication Critical patent/JPS58104179A/en
Publication of JPS6327425B2 publication Critical patent/JPS6327425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 蒸発物の再充填のための方法は、特に移動する
帯状の金属基質の積層のために継続的に作動する
高率の蒸発装置におけるアルミニウムの配量され
た再充填に使われる。
DETAILED DESCRIPTION OF THE INVENTION A method for the recharging of evaporates is particularly suitable for metered recharging of aluminum in continuously operating high rate evaporators for stacking of moving strip metal substrates. used.

既知の蒸発装置は、アルミニウム線ないし片が
るつぼに導かれ、そこで融解されることで、蒸発
が休止している間にるつぼが蒸発物で再充填され
るという原理に基いて作動する。蒸発が行なわれ
ている間の蒸発器るつぼへのAlのこの再充填は、
上から直接蒸発させるべき物質の表面であろうと
表面下のるつぼを通してであろうと、蒸発過程の
妨害という結果になる。(ドイツ民主共和国特許
第59981号明細書)。この欠陥は、Alの中で解放
されたガスは一部真空での融解の際、又一部は蒸
発温度約1850KへのAl融成物の加熱の際に遊離さ
れるということにより生じる。このガスは蒸発ス
テーシヨン全体での圧力上昇をもたらす。層の付
着力の減少や層表面の灰色化がその結果である。
それ以上の、望ましくない現象は、融解されたば
かりでまだ比較的冷たいAlによつて制約されて、
蒸発器るつぼ内の蒸発物の無指向性の流れによつ
て引き起こされる。そこから生じる不均等で時間
的に変化する蒸気放出面の温度配分は蒸発させる
べき帯の横方向と縦方向の層厚の変動をもたら
す。
The known evaporator works on the principle that an aluminum wire or piece is introduced into a crucible and melted there, so that during the evaporation pause the crucible is refilled with evaporated material. This refilling of Al into the evaporator crucible while evaporation is taking place is
Whether at the surface of the substance to be evaporated directly from above or through a crucible below the surface, this results in a disturbance of the evaporation process. (German Democratic Republic Patent No. 59981). This defect arises because the gas liberated in the Al is partly liberated during melting in vacuum and partly during heating of the Al melt to an evaporation temperature of about 1850 K. This gas causes a pressure increase across the evaporation station. The result is a decrease in the adhesion of the layer and a graying of the layer surface.
Further, undesirable phenomena are constrained by the freshly melted and still relatively cool Al.
Caused by the non-directional flow of evaporate within the evaporator crucible. The resulting uneven and time-varying temperature distribution on the vapor release surface leads to variations in the lateral and longitudinal layer thickness of the zone to be evaporated.

蒸発容器に液状の蒸発物が導管を通つて供給さ
れ、これは真空外で炉の中で融解され、液状に保
たれることも知られている(ドイツ連邦共和国出
願公開第19389992号公報)。その際、蒸発物は蒸
発器の表面下にもたらされる。この方法は、炉容
器中で融解されたAlは完全にはガス抜きをされ
ておらず、従つてこれは蒸発容器に達して融解物
から発生したガスによりすでに述べた障害が引き
起こされるという欠点をもつ。
It is also known (German Published Application No. 193 89 992) to supply the evaporation vessel with liquid evaporate through a conduit, which is melted in a furnace outside the vacuum and kept in liquid form. The vapor is then brought below the surface of the evaporator. This method has the disadvantage that the Al melted in the furnace vessel is not completely degassed, so that it reaches the evaporation vessel and the gases evolved from the melt cause the disturbances already mentioned. Motsu.

本発明の目的は、蒸発物、特にAlを、前記欠
点を除去し、継続操作で作動する巾の広い(>
500mm)帯の蒸発を可能にするよう、蒸発器るつ
ぼに追加供給することにある。
The object of the present invention is to improve evaporates, especially Al, with a wide range (>
500 mm) band to be additionally fed to the evaporator crucible.

Al蒸発器の追加供給のための方法とこの方法
を実施するための装置を造り出すという課題が本
発明の根底をなし、この方法は蒸発ステーシヨン
でほんの僅かなガス発生を惹起し、蒸発物表面の
温度配分はほとんど変化させず、又、Alの配量
された追加供給を可能にする。蒸発過程は追加供
給によつても、又、発生した酸化物層によつても
影響を受けることはない。
The problem of creating a method for the supplementary feeding of an Al evaporator and a device for carrying out this method forms the basis of the present invention, which method causes only a slight gas evolution in the evaporation station and the surface of the evaporator. The temperature distribution changes little and also allows metered additional feeding of Al. The evaporation process is not influenced by additional feeds or by the oxide layer generated.

本発明に従つてこの課題は、Alが蒸発ステー
シヨンの外で真空中で別個のるつぼ内で電子ビー
ムを用いて液化され、約1000〓に加熱されるのみ
で、液状のAlはるつぼから蒸発ステーシヨンの
中にある蒸発器るつぼ中にカスケード装置を経て
導かれ、その際全処理は真空で行われるというこ
とによつて解決される。蒸発物は経済的理由から
なまこ銑として供給され、これは電子ビームによ
つてすつかり溶かされ、るつぼに滴下する。溶融
池は同様に電子ビームによつて照射される。この
液化とるつぼ内のAlの加熱及びカスケード装置
への流出物の配量のために特別に制御された電子
ビームが用いられる。制御は、融解と加熱に必要
な性能に対応してなまこ銑やるつぼ上の電子ビー
ムの滞留時間が調節されるという方法で行われれ
る。なまこ銑やるつぼの間の電子ビームの交代は
数10ミリ秒で行われる。しかし、その長さが数秒
の範囲にある周期では電子ビームはるつぼ流出口
に焦点を絞られる。このことはこの領域内のAl
とAl2O3の局部的過熱を招くので、限界をほんの
僅か上回つただけですでに酸化層を破つて液状の
Alが突出することになる。その際僅かに流出し
たAlの量は、カスケード装置の中のAlが適正な
真空表面比に基き完全にガス抜きが行われるよう
に作用する。配量された“湯出し”の制御は電子
ビームの制御によつて行われる。Al2O3の誘導沈
澱部分は蒸発過程を妨害しない。Alの噴出や接
続された蒸発ステーシヨン内の圧力上昇を防止す
るために、いわゆる「アルミニウムの泡だち」に
よりアルミ融解の残りのガス化が続く。物質供給
のこの形態では融解の際まだ大量のAl2O3が装置
に装入される。この酸化物は溶融池の表面に堆積
する。たつた1000Kへの溶融池の加熱ではこの層
は破壊されない。それはすでにこの温度で存在す
るAlの蒸発が危険のない値にまで低減されると
いう長所をつ。この方法を実行するための装置は
1個の真空室でできており、そこにはゲートを通
してなまこ銑状のAlが導入される。予備融解室
と呼ばれるこの真空室では揺動可能のるつぼが、
融成分の物質が滴入するように配置されている。
るつぼには流出口が取り付けられている。予備融
解室には、電子ビームが固型の蒸発物、溶融池及
び流出口を照射できるように電子砲が配置されて
いる。るつぼ2の下側には融解して流動する材料
の流出口6がある。るつぼの上ではAlなまこ銑
3が融解し、そのとき既に最初のガス抜きが行な
われる。融解流動材料は導管7に流入し、導管9
中に落下し、蒸発器るつぼ10に到る。導管7と
9の間には管8があり、この管の中を流出中の融
解材料が通る。管7と9の間は、ガス抜き(発
泡)が行なわれるように少くとも100ミリメート
ルは離した方がよい。さらに導管装置を耐熱性
で、真空で出すガスが僅かで、又、Al抵抗性物
質、とくに珪素炭化物(SiC)で製作することが
適切である。
According to the present invention, this problem is solved by the fact that Al is liquefied outside the evaporation station using an electron beam in a separate crucible in vacuum and only heated to about 1000 m The solution is that the evaporator crucible in the evaporator crucible is introduced via a cascade device, the entire treatment being carried out under vacuum. For economical reasons, the evaporate is supplied as sea cucumber pig iron, which is completely melted by the electron beam and dripped into the crucible. The molten pool is likewise irradiated with an electron beam. A specially controlled electron beam is used for this liquefaction, heating of the Al in the crucible and metering of the effluent to the cascade device. Control is achieved in such a way that the residence time of the electron beam on the sea cucumber iron and crucible is adjusted in response to the required melting and heating performance. The exchange of electron beams between the sea cucumber pig irons and crucibles takes place in a few tens of milliseconds. However, for periods whose length is in the range of a few seconds, the electron beam is focused at the crucible outlet. This means that Al in this region
This leads to local overheating of Al 2 O 3 , so even if the limit is exceeded only slightly, the oxide layer is already broken and a liquid state is formed.
Al will stand out. The small amount of Al that flows out in this case serves to ensure that the Al in the cascade device is completely degassed based on the correct vacuum surface ratio. Control of the metered "boiling" is performed by electron beam control. The induced precipitation part of Al 2 O 3 does not interfere with the evaporation process. Gasification of the remainder of the aluminum melt continues by a so-called "aluminum bubble" to prevent Al blow-out and pressure build-up in the connected evaporation station. In this form of material supply, a large amount of Al 2 O 3 is still charged into the device during melting. This oxide is deposited on the surface of the weld pool. Heating the molten pool to 1000K does not destroy this layer. It has the advantage that the evaporation of Al already present at this temperature is reduced to non-hazardous values. The apparatus for carrying out this method consists of a single vacuum chamber, into which Al in the form of sea cucumber piglet is introduced through a gate. In this vacuum chamber, called the pre-melting chamber, a swingable crucible is placed.
It is arranged so that the substance of the molten component drips into it.
The crucible is equipped with an outlet. An electron gun is arranged in the pre-melting chamber so that the electron beam can irradiate the solid evaporated material, the molten pool and the outlet. On the underside of the crucible 2 there is an outlet 6 for the melted and flowing material. Above the crucible, the Al sea cucumber piglet 3 is melted and the first degassing takes place already. The molten flow material flows into conduit 7 and into conduit 9
It falls into the evaporator crucible 10. Between conduits 7 and 9 is a tube 8 through which the flowing molten material passes. It is recommended that there be a distance of at least 100 mm between the tubes 7 and 9 to allow for degassing (foaming). Furthermore, it is appropriate for the conduit device to be heat-resistant, emit little gas under vacuum, and to be made of Al-resistant material, in particular silicon carbide (SiC).

予備融解室1の中にるつぼ2があり、その中に
Alなまこ銑3が電子砲4で作られる電子ビーム
5により溶かされる。電子ビーム5はAlなまこ
銑3、るつぼ2及びるつぼ2の流出口6を照射す
る。るつぼ2は傾倒可能である。るつぼ2の傾傾
倒の際液状のAlは流出口6を通つて傾斜した導
管7に、そこから垂直な管8を通つて同じく傾斜
した導管9へ流れ込み、そこから次に蒸発器るつ
ぼ10へ達し、その蒸発器るつぼは本来の蒸発ス
テーシヨンにある。その際、カスケード式の導管
装置内の液状のAlは任意落下区間の一部に落下
する。そうすることによりAlの“泡立ち”とそ
れによる残余ガス抜きが行われる。
There is a crucible 2 in the pre-melting chamber 1, and in it
Al sea cucumber piggy bank 3 is melted by an electron beam 5 produced by an electron gun 4. The electron beam 5 irradiates the Al sea cucumber piglet 3, the crucible 2, and the outlet 6 of the crucible 2. The crucible 2 is tiltable. When the crucible 2 is tilted, the liquid Al flows through the outlet 6 into the inclined conduit 7 and from there through the vertical tube 8 into the also inclined conduit 9, from where it then reaches the evaporator crucible 10. , the evaporator crucible is located in the original evaporation station. At this time, the liquid Al in the cascade-type conduit device falls into a part of the arbitrary falling section. By doing so, "bubbling" of Al and the resulting removal of residual gas occur.

管9は蒸発器るつぼ10の上に載つており、他
端に蒸発器るつぼ10の昇降の際にその運動につ
いて行くための回転支承点を有する。こうして管
9からの出口の間隔は常に一定に保たれる。
The tube 9 rests on the evaporator crucible 10 and has at its other end a rotational bearing point to follow the movement of the evaporator crucible 10 as it is raised and lowered. The distance between the outlets from the tube 9 is thus always kept constant.

予備融解室1は前記各管の領域で一つの結合部
を介して蒸発ステーシヨン11に真空状態で結合
することができる。即ち予備融解室と蒸発ステー
シヨンの両者は圧力の一様な排気鐘を構成する。
しかし流出口6の領域に結合を解くために真空弁
を設けるのがよい。こうしてこの真空弁から流出
口6が突出し、流出口6は弁が閉まるとき引込
む。即ち管6は弁を閉じるために予め予備融解室
の中へ引込められる。それにより導管7と9の間
の落下高度が不適当に大きくなることを避けるた
めに導管8がその間に配置され、それにより、補
助的なカスケードが生じる。
The premelting chamber 1 can be connected in vacuum to the evaporation station 11 via a connection in the region of each tube. That is, both the pre-melting chamber and the evaporation station constitute a uniform pressure exhaust bell.
However, it is advisable to provide a vacuum valve in the area of the outlet 6 to release the connection. The outlet 6 thus projects from this vacuum valve and retracts when the valve is closed. That is, the tube 6 is previously withdrawn into the pre-melting chamber in order to close the valve. In order to thereby avoid an unduly large fall height between the conduits 7 and 9, the conduit 8 is arranged between them, thereby creating an auxiliary cascade.

Alの融解と加熱のための電子ビーム5は周期
的に数秒範囲でるつぼ2の流出口6に焦点を絞つ
て偏向させられ、この領域のAlとAl2O3の局部的
加熱を招く。
The electron beam 5 for melting and heating the Al is periodically deflected to focus on the outlet 6 of the crucible 2 over a period of several seconds, leading to local heating of the Al and Al 2 O 3 in this region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予備融解室の断面図、第2図は予備融
解室の蒸発ステーシヨンンの平面図である。 1……予備融解室、2……るつぼ、3……Al
なまこ銑、5……電子ビーム、6……流出口、
7,9……導管、10……蒸発器るつぼ、11…
…蒸発ステーシユヨン。
FIG. 1 is a sectional view of the pre-melting chamber, and FIG. 2 is a plan view of the evaporation station of the pre-melting chamber. 1... Preliminary melting chamber, 2... Crucible, 3... Al
Sea cucumber pig iron, 5...electron beam, 6...outlet,
7,9... Conduit, 10... Evaporator crucible, 11...
...Evaporation station.

Claims (1)

【特許請求の範囲】 1 Alを制御された電子ビームにより真空中で
融解し、るつぼ内で1000〓迄加熱し、るつぼから
電子ビームによつて真空でのカスケードを介して
蒸発ステーシヨンの蒸発器るつぼ中に導くことを
特徴とする、蒸発物を蒸発ステーシヨン外で融解
し、液状で供給する、Al蒸発器の再充填のため
の方法。 2 予備融解室1が真空方式で蒸発ステーシヨン
11と接続されており、予備融解室1中にはゲー
トを通つて導入されたAlなまこ銑3、流出口6
を有する傾倒可能のるつぼ2、蒸発物と溶融池と
流出口6を照射可能な電子ビーム5をもつ電子砲
4が配置され、流出口6の下部で始まり、蒸発ス
テーシヨン11の蒸発器るつぼ10で終る導管
7;9が配置されており、これらの導管7;9の
間に垂直管8があり、導管7と導管9の間が少く
とも100ミリメートルは離してあることを特徴と
する、蒸発ステーシヨンと接続された予備融解室
から成る装置。 3 蒸発ステーシヨン11と予備融解室1の間に
弁が配置されており、この領域で導管7が移動可
能である、特許請求の範囲2に記載の装置。 4 導管7;9が耐熱性で、真空中でほとんどガ
スを出さずアルミ抵抗物質、とくに珪素炭化物か
ら成る、特許請求の範囲2に記載の装置。
[Claims] 1. Al is melted in a vacuum by a controlled electron beam, heated to 1000℃ in a crucible, and transferred from the crucible to an evaporator crucible by an electron beam through a cascade in a vacuum to an evaporator crucible. A method for refilling an Al evaporator, characterized in that the evaporated material is melted outside the evaporation station and supplied in liquid form. 2 The pre-melting chamber 1 is connected to the evaporation station 11 in a vacuum manner, and into the pre-melting chamber 1 there is Al sea cucumber pig iron 3 introduced through the gate and an outlet 6.
A tiltable crucible 2 with An evaporation station characterized in that terminating conduits 7; 9 are arranged, and between these conduits 7; 9 there is a vertical conduit 8, with a separation of at least 100 mm between conduits 7 and 9. A device consisting of a pre-melting chamber connected to a 3. Device according to claim 2, characterized in that a valve is arranged between the evaporation station 11 and the pre-melting chamber 1, in which the conduit 7 is movable. 4. Device according to claim 2, in which the conduits 7; 9 are made of a heat-resistant, virtually gas-free in vacuum and aluminum resistive material, in particular silicon carbide.
JP18225482A 1981-10-19 1982-10-19 Method and apparatus for refilling al evaporator Granted JPS58104179A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD23C/234174 1981-10-19
DD23417481A DD200897A1 (en) 1981-10-19 1981-10-19 METHOD AND DEVICE FOR SUBSTITUTING AL-EVAPORATORS

Publications (2)

Publication Number Publication Date
JPS58104179A JPS58104179A (en) 1983-06-21
JPS6327425B2 true JPS6327425B2 (en) 1988-06-02

Family

ID=5534181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18225482A Granted JPS58104179A (en) 1981-10-19 1982-10-19 Method and apparatus for refilling al evaporator

Country Status (2)

Country Link
JP (1) JPS58104179A (en)
DD (1) DD200897A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976344B2 (en) * 2012-03-06 2016-08-23 株式会社アルバック Electrode film forming method for organic EL element, electrode film forming apparatus for organic EL element

Also Published As

Publication number Publication date
JPS58104179A (en) 1983-06-21
DD200897A1 (en) 1983-06-22

Similar Documents

Publication Publication Date Title
US2880483A (en) Vacuum casting
US2664852A (en) Vapor coating apparatus
US3219435A (en) Method and apparatus for producing metal blocks by electron beams
GB2139648A (en) Method of and apparatus for the coating of a substrate with material electrically transformed into a vapour phase
KR100287978B1 (en) MG evaporation method with increased evaporation rate
US4242175A (en) Silicon refining process
US2912311A (en) Apparatus for production of high purity elemental silicon
US3467058A (en) Apparatus for vaporizing metal
WO1990012485A2 (en) Multiple source evaporation for alloy production
JPS6327425B2 (en)
EP0429978B1 (en) Method of and apparatus for continuously discharging molten metal and slag
US2207746A (en) Apparatus for converting metals and the like
JPS589353B2 (en) Method and apparatus for melting and reducing fine-grained iron oxide-containing raw materials
US2239371A (en) Separation of metals by distillation
GB2117417A (en) Producing high-purity ceramics- free metallic powders
JPH04504283A (en) Medium pressure electron beam furnace
US3267529A (en) Apparatus for melting metals under high vacuum
RU2381990C1 (en) Method of vacuum cleaning of silicon
JPH10182130A (en) Refining of silicon
JP2969731B2 (en) Heating method of molten steel in tundish
JPH06346230A (en) Method and apparatus for forming chemical vapor deposition structure by means of chemical vapor deposition method
JPS59107755A (en) Heating method of molten steel in tundish
US1527847A (en) Heating liquids by introduction into molten metal
JP2000204473A (en) Raw gas feeder for chemical vapor deposition
JP2550720B2 (en) Ion beam assisted vapor deposition method