JPS63272065A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63272065A
JPS63272065A JP10472887A JP10472887A JPS63272065A JP S63272065 A JPS63272065 A JP S63272065A JP 10472887 A JP10472887 A JP 10472887A JP 10472887 A JP10472887 A JP 10472887A JP S63272065 A JPS63272065 A JP S63272065A
Authority
JP
Japan
Prior art keywords
diffusion layer
recessed
grooves
resistance
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10472887A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sugiyama
杉山 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10472887A priority Critical patent/JPS63272065A/en
Publication of JPS63272065A publication Critical patent/JPS63272065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Abstract

PURPOSE:To obtain a semiconductor device in which formation of a high resistance is enabled without using a low impurity concentration diffusion layer with large dependence on temperature, by forming recessed and projecting grooves on a surface of a semiconductor substrate which is partitioned by an isolation insulating film and next by diffusing impurities on the surface of the grooves so that the resistance is composed to extend along the surface. CONSTITUTION:Recessed and projecting grooves 7 are formed on a surface of a semiconductor substrate 1 which is partitioned by an isolation insulating film 2, and impurities are diffused on a surface of the recessed and projecting grooves 7 so that a resistance 3 is composed to extend along the surface of the grooves 7. For example, a photo- etching or reactive ion etching method is used to form the recessed and projecting grooves 7 on the surface of the silicon substrate 1 which is surrounded with an isolation oxidizing film 2, and besides an impurity diffusion layer 3 is formed on the surface of the silicon substrate 1 on which the recessed and projecting grooves 7 are formed. Further, a silicon nitriding film 4 is formed on this impurity diffusion layer 3 which is formed on the surface of the silicon substrate 1. The photo-etching method is used to open contact holes 5 on both end parts of the silicon nitriding film 4, and aluminum electrodes 6 are formed on the holes to perform electrical connection to the impurity diffusion layer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に面積に比較して高抵抗
を得ることができる半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device that can obtain a high resistance compared to its area.

〔従来の技術〕[Conventional technology]

従来、半導体装置の一素子として半導体基板に形成され
る抵抗には、半導体基板内に他の素子領域と絶縁分離し
た不純物拡散層で構成したもの、又は半導体基板上の絶
縁膜上に多結晶シリコン層を形成してこれに不純物を導
入した構成のものが提案されている。これらの抵抗は一
般に平坦かつ一様な厚さの抵抗体を半導体基板に対し水
平方向に用いるのが普通であり、したがって抵抗値は抵
抗体の長さ1幅、不純物濃度を変えることにより決定さ
れる。
Conventionally, a resistor formed on a semiconductor substrate as an element of a semiconductor device is composed of an impurity diffusion layer insulated from other element regions in the semiconductor substrate, or a resistor made of polycrystalline silicon on an insulating film on the semiconductor substrate. A structure in which a layer is formed and impurities are introduced into the layer has been proposed. These resistors are generally made using a flat resistor with a uniform thickness in the horizontal direction with respect to the semiconductor substrate, so the resistance value is determined by changing the length, width, and impurity concentration of the resistor. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の抵抗は、金属薄膜を用いた抵抗と比較し
て抵抗値の温度依存性が大きく、特に抵抗体の不純物濃
度が低い場合にその傾向が顕著に現れる。このため集積
回路上で高抵抗を必要とする場合、不純物濃度を下げて
抵抗値を上げても、その大きな温度依存性により、抵抗
体の発熱もしくは外部からの温度変化に対して抵抗値の
変動が著しく、集積回路の動作不良等の問題が生じる原
因となっている。
The above-mentioned conventional resistor has a resistance value that has a greater temperature dependence than a resistor using a metal thin film, and this tendency is particularly noticeable when the impurity concentration of the resistor is low. Therefore, when high resistance is required on an integrated circuit, even if the impurity concentration is lowered and the resistance value is increased, the resistance value will fluctuate due to the heat generation of the resistor or external temperature changes due to its large temperature dependence. This is a significant cause of problems such as malfunction of integrated circuits.

このうち、抵抗体からの発熱の影響を避けるためには、
抵抗サイズを大きくすればよいが、これは集積回路の集
積度向上の点から不利である。また、温度依存性を避け
るため、不純物濃度を上げると、抵抗値を上げるために
長い抵抗体を形成する必要があり、これも集積度向上の
点から不利である。
Of these, in order to avoid the effects of heat generation from the resistor,
The size of the resistor can be increased, but this is disadvantageous in terms of increasing the degree of integration of integrated circuits. Furthermore, if the impurity concentration is increased to avoid temperature dependence, it is necessary to form a long resistor to increase the resistance value, which is also disadvantageous in terms of increasing the degree of integration.

現在の集積回路における高抵抗の用途として、バイポー
ラ型或いはMOS型のスタティックRAMのメモリセル
内に使用される抵抗が挙げられる。
High resistance applications in current integrated circuits include resistors used in memory cells of bipolar or MOS static RAMs.

しかし、温度依存性の問題が生じない層抵抗値の限界が
約100にΩ/曲程度であるため、集積度の向上ととも
に更に高い抵抗値が要求された場合にはこれを満足させ
ることは困難になる。
However, since the limit of layer resistance without temperature dependence problems is about 100Ω/curve, it is difficult to satisfy this when even higher resistance values are required as the degree of integration increases. become.

本発明は、温度依存性の大きな低不純物濃度の拡散層を
使うことなく高抵抗の形成を可能とした半導体装置を提
供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which high resistance can be formed without using a low impurity concentration diffusion layer that is highly temperature dependent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、分離絶縁膜により画成された半
導体基板の表面に凹凸の溝を形成するとともに、この凹
凸の溝の表面に不純物を拡散して溝の表面に沿って延在
する抵抗を構成し、平面面積を増大することなく抵抗の
実質長さを大きくし、高抵抗を得る構成としている。
In the semiconductor device of the present invention, an uneven groove is formed on the surface of a semiconductor substrate defined by an isolation insulating film, and an impurity is diffused into the surface of the uneven groove to form a resistor extending along the surface of the groove. The structure is such that the effective length of the resistor is increased without increasing the planar area, and high resistance is obtained.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の上面図であり、第2図は第
1図のAA線に沿う断面図である。
FIG. 1 is a top view of an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. 1.

これらの図において、シリコン基板1には公知のアイソ
プレーナ技術により分離領域である酸化膜2を形成して
いる。そして、この分離酸化膜2で囲まれたシリコン基
板1の表面には、写真蝕刻法及び反応性イオンエツチン
グによって凹凸の溝7を形成している。この凹凸の溝7
が形成されたシリコン基板1の表面には、不純物拡散法
を用いて不純物拡散層3を形成している。
In these figures, an oxide film 2, which is an isolation region, is formed on a silicon substrate 1 by a known isoplanar technique. On the surface of the silicon substrate 1 surrounded by the isolation oxide film 2, uneven grooves 7 are formed by photolithography and reactive ion etching. This uneven groove 7
An impurity diffusion layer 3 is formed on the surface of the silicon substrate 1 on which the impurity diffusion method is used.

更に、この不純物拡散層3を形成したシリコン基板1の
表面にはシリコン窒化114を形成して不純物拡散層3
の露呈を防いでいる。そして、シリコン窒化膜4の両端
部に夫々写真蝕刻法によりコンタクト孔5を開孔し、こ
の上にアルミニウム電極6を選択的に形成して前記不純
物拡散層3に電気的な接続を行っている。
Further, silicon nitride 114 is formed on the surface of the silicon substrate 1 on which the impurity diffusion layer 3 is formed, and the impurity diffusion layer 3 is formed.
prevents exposure. Then, contact holes 5 are formed at both ends of the silicon nitride film 4 by photolithography, and an aluminum electrode 6 is selectively formed thereon to electrically connect to the impurity diffusion layer 3. .

したがって、この構成によれば不純物拡散層3で構成さ
れる抵抗は、シリコン基板lの平面方向の長さに加えて
、凹凸の溝7の深さ方向の長さがプラスされるので、全
体としての長さは極めて長いものになる。本実施例にお
いて、溝7の深さを2μmとし、更に溝のピッチを2μ
mとした場合、従来の水平方向のみに抵抗を形成した構
造に比べ、同一平面面積で約2倍の抵抗値を実現するこ
とができる。なお、溝7を深くすれば更に高抵抗化が可
能であることはいうまでもない。
Therefore, according to this configuration, the resistance formed by the impurity diffusion layer 3 is the length of the silicon substrate l in the planar direction and the length of the uneven groove 7 in the depth direction, so that the resistance as a whole is is extremely long. In this example, the depth of the groove 7 is 2 μm, and the pitch of the groove is 2 μm.
m, it is possible to achieve about twice the resistance value in the same plane area compared to the conventional structure in which resistance is formed only in the horizontal direction. It goes without saying that if the groove 7 is made deeper, the resistance can be further increased.

このため、不純物拡散層3を低濃度化しても所望の高抵
抗を得ることが可能となり、また低濃度化により温度変
化による抵抗値の変動を抑制し、安定な抵抗を得ること
ができる。
Therefore, even if the concentration of the impurity diffusion layer 3 is lowered, it is possible to obtain a desired high resistance, and by lowering the concentration, fluctuations in resistance value due to temperature changes can be suppressed, and stable resistance can be obtained.

第3図は本発明の他の実施例の断面図であり、上面構造
は第1図と同じである。また、第3図において第1図及
び第2図と同−又は均等な部分には同一符号を付しであ
る。
FIG. 3 is a sectional view of another embodiment of the present invention, and the top structure is the same as that in FIG. 1. Further, in FIG. 3, the same or equivalent parts as in FIGS. 1 and 2 are given the same reference numerals.

第3図において、シリコン基板1には分離酸化膜2を形
成して絶縁分離領域を画成し、抵抗となるべきシリコン
基板1の表面に凹凸の溝7を形成し、その表面に不純物
拡散層3を形成している。
In FIG. 3, an isolation oxide film 2 is formed on a silicon substrate 1 to define an insulating isolation region, an uneven groove 7 is formed on the surface of the silicon substrate 1 to serve as a resistor, and an impurity diffusion layer is formed on the surface. 3 is formed.

そして、この上にシリコン窒化膜4を形成して被覆し、
コンタクト孔5を開設した上でアルミニウム電極6を電
気的に接続して抵抗を構成している。
Then, a silicon nitride film 4 is formed and covered on this,
A contact hole 5 is formed and an aluminum electrode 6 is electrically connected to form a resistor.

ここで、この実施例では、前記分離酸化膜2を次の工程
によって形成している。
In this embodiment, the isolation oxide film 2 is formed by the following process.

即ち、反応性イオンエツチングによって凹凸の溝7をエ
ツチングするのと同時に分離酸化膜2を形成する領域を
同時にエツチングしておき、その後凹凸の溝7を形成し
た基板表面のみをシリカ等の塗布膜で表面が平坦になる
ように形成する。更に、気相成長法によるシリコン酸化
膜を厚く形成した後、分離領域のみに酸化膜が残るよう
にエッチバック法によりエツチングを行う。更に、塗布
膜のみエツチングを行えば、第3図に示すようにシリコ
ン基板1の表面に対して平坦な分離酸化膜2を得ること
ができる。
That is, the region where the isolation oxide film 2 is to be formed is etched at the same time as the uneven groove 7 is etched by reactive ion etching, and then only the surface of the substrate on which the uneven groove 7 is formed is coated with a coating film of silica or the like. Form the surface so that it is flat. Furthermore, after forming a thick silicon oxide film by vapor phase growth, etching is performed by an etch-back method so that the oxide film remains only in the isolation region. Furthermore, by etching only the coating film, it is possible to obtain the isolation oxide film 2 that is flat with respect to the surface of the silicon substrate 1, as shown in FIG.

本実施例では第1実施例と同じ効果が得られるとともに
、更にアルミニウム電極6付近をより平坦化できる効果
が得られる。
In this embodiment, the same effect as in the first embodiment can be obtained, and also the effect that the vicinity of the aluminum electrode 6 can be further flattened can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板の表面に凹凸
の溝を形成するとともに、この凹凸の溝の表面に不純物
を拡散して溝の表面に沿って延在する抵抗を構成してい
るので、平面面積を大きくすることなく実効的に長い抵
抗を形成することが可能となり、集積回路にける集積度
の向上に伴う高抵抗を得ることができる。
As explained above, in the present invention, an uneven groove is formed on the surface of a semiconductor substrate, and impurities are diffused into the surface of the uneven groove to form a resistor extending along the surface of the groove. , it becomes possible to form an effectively long resistance without increasing the planar area, and it is possible to obtain high resistance as the degree of integration in integrated circuits increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の上面図、第2図は第1図の
AA線に沿う断面図、第3図は本発明の他の実施例の断
面図である。 ■・・・シリコン基板、2・・・分離酸化膜、3・・・
不純物拡散層、4・・・シリコン窒化膜、5・−コンタ
クト孔、6・・・アルミニウム電極、7・・・凹凸の溝
。 第1図 第3図
FIG. 1 is a top view of one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a cross-sectional view of another embodiment of the present invention. ■...Silicon substrate, 2...Isolation oxide film, 3...
Impurity diffusion layer, 4... silicon nitride film, 5... contact hole, 6... aluminum electrode, 7... uneven groove. Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)分離絶縁膜により画成された半導体基板の表面に
凹凸の溝を形成するとともに、この凹凸の溝の表面に不
純物を拡散して溝の表面に沿って延在する抵抗を構成し
たことを特徴とする半導体装置。
(1) An uneven groove is formed on the surface of a semiconductor substrate defined by an isolation insulating film, and an impurity is diffused into the surface of the uneven groove to form a resistor extending along the surface of the groove. A semiconductor device characterized by:
(2)凹凸の溝の表面に絶縁膜を形成し、この絶縁膜に
開設したコンタクト孔を通して電極と抵抗とを電気接続
してなる特許請求の範囲第1項記載の半導体装置。
(2) A semiconductor device according to claim 1, wherein an insulating film is formed on the surface of the uneven groove, and the electrode and the resistor are electrically connected through contact holes formed in the insulating film.
JP10472887A 1987-04-30 1987-04-30 Semiconductor device Pending JPS63272065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10472887A JPS63272065A (en) 1987-04-30 1987-04-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10472887A JPS63272065A (en) 1987-04-30 1987-04-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63272065A true JPS63272065A (en) 1988-11-09

Family

ID=14388556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10472887A Pending JPS63272065A (en) 1987-04-30 1987-04-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63272065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779335A (en) * 2012-10-18 2014-05-07 德州仪器公司 High-resistance thin-film resistor and method of forming the resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779335A (en) * 2012-10-18 2014-05-07 德州仪器公司 High-resistance thin-film resistor and method of forming the resistor

Similar Documents

Publication Publication Date Title
JPH05343406A (en) Semiconductor device
JPS63272065A (en) Semiconductor device
JPS63229744A (en) Semiconductor device
JPS5848438A (en) Semiconductor integrated circuit device
JPH03124047A (en) Integrated circuit device
JPS61225851A (en) Semiconductor device and manufacture thereof
KR960006339B1 (en) Fabricating method of semiconductor device
JPH02288361A (en) Semiconductor device
JP2603088B2 (en) Semiconductor device
JPS58170030A (en) Manufacture of semiconductor device
JPS6312389B2 (en)
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPS62145761A (en) Semiconductor device
JPH02143452A (en) Semiconductor device
JPH0464470B2 (en)
JPS6118350B2 (en)
JPS6120154B2 (en)
JPS6148957A (en) Manufacture of mos capacitor
JPH0729711A (en) Forming method of resistor
JPH0373137B2 (en)
JPS6295869A (en) Semiconductor device
JPS62177957A (en) Semiconductor integrated circuit device
JPH0322432A (en) Semiconductor device
JPS6112055A (en) Capacity element
JPH0831599B2 (en) Semiconductor device