JPS62145761A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62145761A
JPS62145761A JP28554485A JP28554485A JPS62145761A JP S62145761 A JPS62145761 A JP S62145761A JP 28554485 A JP28554485 A JP 28554485A JP 28554485 A JP28554485 A JP 28554485A JP S62145761 A JPS62145761 A JP S62145761A
Authority
JP
Japan
Prior art keywords
film
groove
capacitor
type
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28554485A
Other languages
Japanese (ja)
Inventor
Itaru Ogiwara
荻原 到
Toru Kaga
徹 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP28554485A priority Critical patent/JPS62145761A/en
Publication of JPS62145761A publication Critical patent/JPS62145761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To achieve a groove type capacitor structure having high reliability by using a dense conductor layer which can be readily controlled at its sheet resistance value and stably formed as compared with an impurity diffused layer on the inner surface of the groove. CONSTITUTION:After an N-type diffused layer 301 is formed on a P-type silicon substrate 31, a silicon oxide film 32 and a silicon nitride film 33 are formed, etched by a normal photo-etching method and an anisotropic dry etching method to form a groove 310 to become a capacitor. Then, a polycrystalline silicon film 34 to which an N-type impurity is added is formed on the entire surface by a chemical vapor-phase growing method. Thereafter, a resin film 35 is buried in the groove to flatten the surface, the surface of the film 34 is etched to remain it only in the groove 310. After etching the film 35, the film 33 and the film 32 are removed, and a silicon oxide film 36 is formed on the entire surface. Thereafter, when the polycrystalline silicon film to become a capacitor electrode is buried and flattened and then patterned, a groove type capacitor structure is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に関し、特に高い制御性で安定に製
造することができ、高信頼度化に好適な溝型キャパシタ
を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a trench type capacitor that can be stably manufactured with high controllability and is suitable for high reliability.

〔発明の背景〕[Background of the invention]

第2図に従来の半導体装置に用いられる溝型キャパシタ
(特公昭58−12739 )の断面構造を示す。
FIG. 2 shows a cross-sectional structure of a trench type capacitor (Japanese Patent Publication No. 58-12739) used in a conventional semiconductor device.

第2図において、記号21はシリコン基板、26は絶縁
膜、27はキャパシタ電極、201および202はn型
拡散層を、それぞれ表わす。
In FIG. 2, the symbol 21 represents a silicon substrate, 26 an insulating film, 27 a capacitor electrode, and 201 and 202 an n-type diffusion layer.

この構造によれば、キャパシタ面積は溝の内壁の面積で
設定されるため、狭い平面領域内でも大容量のキャパシ
タを形成できるという利点があった。
According to this structure, since the capacitor area is set by the area of the inner wall of the groove, there is an advantage that a large capacitance capacitor can be formed even within a narrow plane area.

しかし、溝内壁のn型拡散層202を形成する際、その
拡散深さお韮び不純物濃度の制御は技術的に困難であっ
た。すなわち、溝の内壁に不純物を拡散する方法として
、従来は熱拡散法が用いられていたが、熱拡散法の場合
拡散雰囲気の微妙な温度変化などによって拡散深さや不
純物濃度が変動し易く、また、特に側面における拡散深
さや不純濃度の測定が困難であった。そのため、キャパ
シタの特性を決める一因子である不純物拡散層202の
シート抵抗値の制御が困難であり、溝型キャパシタの高
倍調度化の障害となっていた。
However, when forming the n-type diffusion layer 202 on the inner wall of the trench, it is technically difficult to control the diffusion depth and impurity concentration. In other words, thermal diffusion has traditionally been used as a method for diffusing impurities into the inner walls of grooves, but with thermal diffusion, the diffusion depth and impurity concentration tend to fluctuate due to subtle temperature changes in the diffusion atmosphere. However, it was difficult to measure the diffusion depth and impurity concentration, especially on the sides. Therefore, it is difficult to control the sheet resistance value of the impurity diffusion layer 202, which is one factor that determines the characteristics of the capacitor, and this has been an obstacle to increasing the multiplication ratio of the trench type capacitor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題を解決し、高い信頼性
を有する半導体装置を提供することである。
An object of the present invention is to solve the above-mentioned conventional problems and provide a highly reliable semiconductor device.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、溝内面において不
純物拡散層よりもシート抵抗値の制御が容易で、かつ安
定に形成できる導電体層を用いることにより、信頼性の
高い溝型キャパシタ構造を実現するものである。すなわ
ち、第2図に示した不純物拡散層202に代えて、第1
図に示すように導電体層14を化学気相成長法によって
形成し、上記問題を解決した。この導電体層14のシー
ト抵抗値はその膜厚と不純物の添加量によって決まり、
化学気相成長法によればこれらの制御が容易にできるた
め、溝型キャパシタの電気特性も安定に制御でき、信頼
度を高めることができる。
In order to achieve the above object, the present invention provides a highly reliable trench capacitor structure by using a conductive layer on the inner surface of the trench whose sheet resistance value can be more easily controlled than an impurity diffusion layer and which can be formed more stably. It is something that will be realized. That is, instead of the impurity diffusion layer 202 shown in FIG.
The above problem was solved by forming the conductor layer 14 by chemical vapor deposition as shown in the figure. The sheet resistance value of this conductive layer 14 is determined by its film thickness and the amount of impurities added.
Since these controls can be easily performed using chemical vapor deposition, the electrical characteristics of the trench capacitor can also be stably controlled and reliability can be increased.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.

実施例1 第3図は、本実施例による溝型キャパシタの製造工程を
示したもので、第1図の断面構造を形成するための工程
を示しである。
Embodiment 1 FIG. 3 shows the manufacturing process of a trench type capacitor according to this embodiment, and shows the process for forming the cross-sectional structure of FIG. 1.

第3図(a)HP型シリコン基板31上にn型拡散層3
01を形成した後、シリコン酸化膜32およびシリコン
窒化11133を形成する。
FIG. 3(a) N-type diffusion layer 3 on HP-type silicon substrate 31
After forming 01, a silicon oxide film 32 and silicon nitride 11133 are formed.

第3図(b);通常のフォトエツチング法によりシリコ
ン窒化膜33およびシリコン酸化膜32の所望部分を選
択的にエツチングし、さらにシリコン基板31を異方性
ドライエツチング法によりエツチングして、キャパシタ
となる溝310を形成する。
FIG. 3(b): Desired portions of the silicon nitride film 33 and silicon oxide film 32 are selectively etched using a normal photoetching method, and the silicon substrate 31 is further etched using an anisotropic dry etching method to form a capacitor. A groove 310 is formed.

第3図(C);化学気相成長法により、n型不純物を添
加した多結晶シリコン膜34を全面に形成する。このと
き、多結晶シリコン膜層34のシート抵抗値は、膜中に
添加する不純物の濃度と、膜厚とに依存し、化学気相成
長法によればこれらの値は成長反応雰囲気中の反応ガス
の流量比や反応時間などにより容易に制御できる。
FIG. 3(C): A polycrystalline silicon film 34 doped with n-type impurities is formed over the entire surface by chemical vapor deposition. At this time, the sheet resistance value of the polycrystalline silicon film layer 34 depends on the concentration of impurities added to the film and the film thickness, and according to the chemical vapor deposition method, these values depend on the reaction in the growth reaction atmosphere. It can be easily controlled by the gas flow rate ratio, reaction time, etc.

その後、溝部に樹脂膜35を埋め込み表面を平坦化する
Thereafter, a resin film 35 is buried in the groove and the surface is planarized.

第3図(d);多結晶シリコン膜34の表出部分をエツ
チングして溝310の内部にのみ残す。
FIG. 3(d): The exposed portion of the polycrystalline silicon film 34 is etched, leaving only the inside of the groove 310.

エツチング後、樹脂膜35を取り除く。After etching, the resin film 35 is removed.

第3図(e);シリコン窒化膜33およびシリコン酸化
膜32を取り除き、全面にシリコン酸化膜36を形成す
る。
FIG. 3(e): The silicon nitride film 33 and the silicon oxide film 32 are removed, and a silicon oxide film 36 is formed on the entire surface.

その後、キャパシタ電極となる多結晶シリコン膜を埋め
込み平坦化した後、通常のフォトエツチング法によりパ
ターニングすると、第1図に示すような溝型キャパシタ
構造が得られる。
Thereafter, a polycrystalline silicon film that will become a capacitor electrode is buried and planarized, and then patterned by a normal photoetching method to obtain a trench-type capacitor structure as shown in FIG.

なお、本実施例の中で用いた多結晶シリコン層34を、
不純物を添加したエピタキシャル・シリコン層に代えて
も同様の構造及び効果が得られる。
Note that the polycrystalline silicon layer 34 used in this example is
A similar structure and effect can be obtained by replacing it with an epitaxial silicon layer doped with impurities.

また、第3図(b)において溝310の内壁のシリコン
面にのみ選択的に多結晶シリコン膜またはエピタキシャ
ルシリコン膜を成長する方法を用いれば、第3図(c)
で示した製造工程は省略してもよい。
Furthermore, if a method is used in which a polycrystalline silicon film or an epitaxial silicon film is selectively grown only on the silicon surface of the inner wall of the groove 310 in FIG. 3(b), FIG. 3(c) can be obtained.
The manufacturing steps shown in can be omitted.

また、シリコン酸化lll36の代わりにシリコン窒化
膜、または酸化タンタル膜等の高誘電率材料およびこれ
らの組み合せにより形成した多層膜材料を用いてもよい
。また第1図のキャパシタ電極17としては、不純物を
添加した多結晶シリコンのみではなく、モリブテンシリ
サイド等の金属硅化物やタングステン等の金属、あるい
はこれらの組み合せからなる多層材料なども用いること
ができる。
Further, instead of the silicon oxide llll36, a high dielectric constant material such as a silicon nitride film or a tantalum oxide film, or a multilayer film material formed from a combination thereof may be used. Furthermore, as the capacitor electrode 17 shown in FIG. 1, not only polycrystalline silicon doped with impurities, but also metal silicides such as molybdenum silicide, metals such as tungsten, or multilayer materials made of a combination thereof can be used.

実施例2 本実施例では、本発明の溝型キャパシタを1トランジス
タ一1キヤパシタ型MOSダイナミック型ランダム・ア
クセス・メモリC以下D−RAMと略す)に適用した場
合について説明する。
Embodiment 2 In this embodiment, a case will be described in which the trench capacitor of the present invention is applied to a one-transistor-one-capacitor type MOS dynamic random access memory (hereinafter abbreviated as D-RAM).

第4図は、本実施例のD−RAMのセル断面を示すもの
である。
FIG. 4 shows a cell cross section of the D-RAM of this embodiment.

ゲート電極となる多結晶シリコン46と、ゲート絶縁膜
となるシリコン酸化膜49と、ソース・ドレイン領域と
なるn型不純物拡散層402とで、トランジスタが構成
されており、キャパシタ電極となる多結晶シリコン45
と、キャパシタ絶縁膜となるシリコン酸化膜4Bと、n
型不純物を添加した多結晶シリコン層44とで、本発明
の溝型キャパシタが構成されている。また、多結晶シリ
コン層44とn型拡散層402とは、n型拡散層401
で電気的に接続されている。
A transistor is composed of polycrystalline silicon 46 that becomes a gate electrode, a silicon oxide film 49 that becomes a gate insulating film, and an n-type impurity diffusion layer 402 that becomes a source/drain region, and polycrystalline silicon that becomes a capacitor electrode. 45
, a silicon oxide film 4B serving as a capacitor insulating film, and n
The trench type capacitor of the present invention is constituted by the polycrystalline silicon layer 44 doped with type impurities. Furthermore, the polycrystalline silicon layer 44 and the n-type diffusion layer 402 are different from each other.
electrically connected.

この構造によれば、多結晶シリコン層44のシート抵抗
値は化学気相成長工程での不純物添加量とその膜厚とで
容易に制御できるため、キャパシタの信頼度が高くなり
、かつ本祷造のD−RAMの信頼度も高くできる。
According to this structure, the sheet resistance value of the polycrystalline silicon layer 44 can be easily controlled by the amount of impurity added in the chemical vapor deposition process and its film thickness, so the reliability of the capacitor is increased and The reliability of the D-RAM can also be increased.

なお、本実施例において、キャパシタ電極45およびキ
ャパシタ絶縁膜43は、実施例1と同様に他の材料を用
いることができ、多結晶シリコン層44についてエピタ
キシャル・シリコン層や選択成長層をを用いても同様の
効果が得られる。
In this example, the capacitor electrode 45 and the capacitor insulating film 43 can be made of other materials as in Example 1, and the polycrystalline silicon layer 44 can be made of an epitaxial silicon layer or a selectively grown layer. A similar effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

一ヒ記説明から明らかなように、本発明によれば大容量
を有する溝形キャパシタを有する半導体装置へ信頼性を
著るしく向上することができ、製造の際の制御性を向−
ヒするので、実用−L極めて有利である。
As is clear from the above description, according to the present invention, the reliability of a semiconductor device having a trench capacitor having a large capacity can be significantly improved, and the controllability during manufacturing can be improved.
It is extremely advantageous for practical use because of its low heat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溝型キャパシタの構造を示す断面図、
第2図は従来の溝型キャパシタの構造を示す断面図、第
3図は本発明の一実施例を示す図、第4図は本発明の他
の実施例を示す断面図である91 ]、、 21.、3
 ]、、 41・・・シリコン基板、14゜34.33
・・・化学気相成長によって形成し、同時に不純物を添
加した多結晶シリコン膜、16゜26.36.43・・
・キャパシタ絶+1#膜、17゜27.37,45・・
・キャパシタ電極、32・・・シリコン酸化膜、33・
・・シリコン窒化膜、35・・・樹脂膜、42・・・フ
ィールド酸化膜、46・・・ゲート電極、47・・・層
間絶縁膜、48・・・アルミニウム配線、49・・・ゲ
ート絶縁膜、101,201,202゜301.401
,402・・・n型不純物拡散層、310・・・溝部。
FIG. 1 is a sectional view showing the structure of the trench type capacitor of the present invention;
FIG. 2 is a sectional view showing the structure of a conventional trench capacitor, FIG. 3 is a sectional view showing one embodiment of the present invention, and FIG. 4 is a sectional view showing another embodiment of the present invention. , 21. ,3
],, 41...Silicon substrate, 14°34.33
...Polycrystalline silicon film formed by chemical vapor deposition and doped with impurities at the same time, 16°26.36.43...
・Capacitor isolation + 1# film, 17°27.37,45...
・Capacitor electrode, 32...Silicon oxide film, 33・
...Silicon nitride film, 35...Resin film, 42...Field oxide film, 46...Gate electrode, 47...Interlayer insulating film, 48...Aluminum wiring, 49...Gate insulating film ,101,201,202゜301.401
, 402...n-type impurity diffusion layer, 310... groove portion.

Claims (1)

【特許請求の範囲】[Claims] 第1導電形を有する半導体基板に形成された溝と、該溝
の表面上に形成された上記第1導電形を有する第1の導
電体層および該第1の導電体層上に積層して形成された
絶縁膜と第2の導電体層を少なくとも有する容量をそな
えたことを特徴とする半導体装置。
a groove formed in a semiconductor substrate having a first conductivity type; a first conductor layer having the first conductivity type formed on the surface of the groove; and laminated on the first conductor layer. A semiconductor device comprising a capacitor including at least an insulating film and a second conductor layer.
JP28554485A 1985-12-20 1985-12-20 Semiconductor device Pending JPS62145761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28554485A JPS62145761A (en) 1985-12-20 1985-12-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28554485A JPS62145761A (en) 1985-12-20 1985-12-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62145761A true JPS62145761A (en) 1987-06-29

Family

ID=17692910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28554485A Pending JPS62145761A (en) 1985-12-20 1985-12-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62145761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727258B2 (en) 2010-01-21 2014-05-20 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Webbing winding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727258B2 (en) 2010-01-21 2014-05-20 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Webbing winding device

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
US5175118A (en) Multiple layer electrode structure for semiconductor device and method of manufacturing thereof
US4757028A (en) Process for preparing a silicon carbide device
US5436188A (en) Dram cell process having elk horn shaped capacitor
KR920005320B1 (en) Capacitor and method for manufacturing thereof
KR910001426B1 (en) A method of manufacturing semiconductor device
JPH0465548B2 (en)
JPH1197629A (en) Semiconductor device and manufacture thereof
KR930009016B1 (en) Wiring contact structure of semiconductor device and manufacturing method
US4425379A (en) Polycrystalline silicon Schottky diode array
US5079617A (en) Multiple layer electrode structure for semiconductor device and method of manufacturing thereof
KR960012573B1 (en) Semiconductor device and manufacturing method thereof
US4628339A (en) Polycrystalline silicon Schottky diode array
JP2002170941A (en) Semiconductor device and manufacturing method thereof
JPS62145761A (en) Semiconductor device
US5204281A (en) Method of making dynamic random access memory cell having a trench capacitor
JPH0228956A (en) Semiconductor integrated circuit device
JPS61225851A (en) Semiconductor device and manufacture thereof
JPH11330375A (en) Semiconductor device and manufacture thereof
JPH01220856A (en) Semiconductor device
JPS6237543B2 (en)
KR960000963B1 (en) Semiconductor integrated circuit device fabrication process
JP2556155B2 (en) Method for manufacturing semiconductor device
JPH0621479A (en) Semiconductor device and fabrication thereof
JPH0758290A (en) Manufacture of semiconductor device