JPS6112055A - Capacity element - Google Patents

Capacity element

Info

Publication number
JPS6112055A
JPS6112055A JP13235784A JP13235784A JPS6112055A JP S6112055 A JPS6112055 A JP S6112055A JP 13235784 A JP13235784 A JP 13235784A JP 13235784 A JP13235784 A JP 13235784A JP S6112055 A JPS6112055 A JP S6112055A
Authority
JP
Japan
Prior art keywords
electrode
nitride film
silicon nitride
oxide film
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13235784A
Other languages
Japanese (ja)
Inventor
Katsumoto Soejima
副島 勝元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13235784A priority Critical patent/JPS6112055A/en
Publication of JPS6112055A publication Critical patent/JPS6112055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To produce a capacity element with large capacity per unit space and the minimum deterioration of withstand voltage between electrodes by a method wherein polysilicon is utilized as a lower electrode of capacity element and this electrode is selectively oxidized to form projections and recessions. CONSTITUTION:A polysilicon layer 3 as the first electrode is grown on a field oxide film on a semiconductor substrate 1 and then phosphorus is diffused therein at e.g. 930 deg.C to provide it with conductivity. After forming an oxide film 4 on the polysilicon layer 3 by means of oxidation process in the steam atmosphere at e.g. 900 deg.C, a silicon nitride film 5 is formed to be an oxidation resistant mask by means of pressure reduced vapor growing process. Later this silicon nitride film 5 is patterned to make e.g. the mask nitride film width 1.5mum and the gap 1.5mum utilizing photoresist. Next another oxide film 6 is formed at 950 deg.C. Finally the oxide films 4, 6 preliminarily formed by the preceding processes are removed by fluoric acid to bond a silicon nitride film 7 as a dielectric material by means of e.g. the pressure reduced vapor growing process and then the second electrode 8 may be formed to complete a capacity element.

Description

【発明の詳細な説明】 (1)発明の属する技術分野の説明 本発明は半導体基板表面に形成される。薄膜誘電体材料
を用いた容量に関するもので、特に大面積素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Description of the technical field to which the invention pertains The present invention is formed on the surface of a semiconductor substrate. It relates to capacitors using thin film dielectric materials, and in particular to large area devices.

(2)  従来技術の説明 従来、アナログ回路(D/A、A/D変換回路、オペレ
ージ、ナルアンプ)t1MO8型半導体集積回路によシ
実現しようとする場合、集積回路中のエレメントとして
は、MO8型トランジスタ、抵抗、容量等が必要となる
が、このうち、チップ上で最も大きな面積を占めるもの
は1通常は容量素子である。
(2) Description of the prior art Conventionally, when trying to implement an analog circuit (D/A, A/D conversion circuit, operation, null amplifier) using a t1MO8 type semiconductor integrated circuit, the elements in the integrated circuit are MO8 type. Transistors, resistors, capacitors, etc. are required, but among these, the one that occupies the largest area on the chip is usually a capacitive element.

例えば、シリコンチップ上に、 zopF’の容量素子
を形成するのに、従来のようにMOSFETのゲート酸
化膜(〜100OA)i誘電体として用いると、単位面
積当ルの容量は〜3.4X10−16F/Mm  テあ
るので、約6QOOOμm (〜245μm角に相当)
の面積が必要となる。このような大面積素子は、集積回
路の高集積度という観点から望ましいものではない。
For example, if a MOSFET gate oxide film (~100 OA) is used as a dielectric to form a zopF' capacitive element on a silicon chip, the capacitance per unit area is ~3.4X10- Since there is 16F/Mm, it is approximately 6QOOOμm (equivalent to ~245μm square)
area is required. Such large area devices are not desirable from the viewpoint of high integration density of integrated circuits.

この点を改善するために従来より試みられている方法は
、概ね、容量素子を構成する誘電体をより薄くするか、
もしくは、高誘電率を有する誘電体を導入するかして、
単位面積当シの容量値を大きくしようというものであっ
た。しかしながら、容量素子の誘電体を薄くしていくと
、容量電極間の耐圧が低下し、かつ、容量電極間のリー
ク電流は増大して−くので、電荷量の保持特性が劣化す
るという不都合が生じる。
The methods conventionally attempted to improve this point have generally been to make the dielectric that constitutes the capacitive element thinner, or to
Or, by introducing a dielectric material with a high dielectric constant,
The idea was to increase the capacitance value per unit area. However, as the dielectric of the capacitive element becomes thinner, the withstand voltage between the capacitive electrodes decreases and the leakage current between the capacitive electrodes increases, resulting in the inconvenience of deteriorating the charge retention characteristics. arise.

また、高誘電率の誘電体と云っても現在のシリコン・ウ
ェハプロセスとの整合性全考慮すれば、シリコン窒化膜
(3i3N4.g=約7)が使用可能であシ、これ以上
の高誘電率を有する誘電体の導入は、未だ実用化されて
いなho(3)  発明の目的 本発明の目的は5以上のような従来方法とは全く異なる
方法により、集積回路基板上に高集積度の容量素子を提
供することである。。
In addition, even though it is called a dielectric material with a high dielectric constant, silicon nitride film (3i3N4.g = approximately 7) can be used if compatibility with the current silicon wafer process is taken into account. The introduction of a dielectric material having a dielectric constant has not yet been put to practical use. An object of the present invention is to provide a capacitive element. .

(4)発明の構成 本発明は半導体基板上に厚い絶縁膜を介して形成された
第1のポリシリコン電極と、第1のポリシリコン電極上
に形成された少なくとも一種類似上の誘電材料と、第2
の電極として働く少なくとも一種類似上の導電材料とか
ら構成された容量素子において、前記第1のポリシリコ
ン電極表面を選択的に酸化することによシ、第1の電極
上に凹凸を形成することを特徴としている。
(4) Structure of the Invention The present invention provides a first polysilicon electrode formed on a semiconductor substrate via a thick insulating film, at least one similar dielectric material formed on the first polysilicon electrode, Second
In a capacitive element made of at least one similar conductive material that acts as an electrode, forming irregularities on the first electrode by selectively oxidizing the surface of the first polysilicon electrode. It is characterized by

(5)発明の原理と作用 第1のポリシリコン電極上に凸凹をつけることで、電極
間対向面積を平面積よフ大きくすることにより単位(ト
)面積当力の容量を大きくする。
(5) Principle and operation of the invention By providing unevenness on the first polysilicon electrode, the opposing area between the electrodes is made larger than the flat area, thereby increasing the capacitance per unit area.

(6)この発明の実施例 次に本発明の実施例について1図面を参照して説明する
(6) Embodiments of the present invention Next, embodiments of the present invention will be described with reference to one drawing.

第1図〜第4図は本発明の実施例を製造工程順に示した
断面図である。
FIGS. 1 to 4 are cross-sectional views showing embodiments of the present invention in the order of manufacturing steps.

実際の製造工iに於いては、同一半導体基板上にMOS
FET、 洛す子、抵抗素子を同時に形成するため、工
程が複雑となるが、ここでは、特に容量素子の形成につ
いての工程のみを示す。
In the actual manufacturing process, MOS
Since the FET, the capacitor, and the resistive element are formed at the same time, the process is complicated, but only the process for forming the capacitive element will be shown here.

第1図に於いて、半導体基板1上く約1,0μm厚膜の
厚いフィールド酸化膜2を形成する。この工程は、通常
のMOSプロセスの素子分離のためのフィールド酸化工
程と兼用できる。
In FIG. 1, a thick field oxide film 2 having a thickness of about 1.0 μm is formed on a semiconductor substrate 1. As shown in FIG. This process can also be used as a field oxidation process for element isolation in a normal MOS process.

次に、フィールド酸化膜上に第1の電極となるポリシリ
コン層3t−厚さ1.0μm成長し、導電性を与えるた
めに1例えば930″Oで20分リン拡散を行ない、ポ
リシリコン層のシート抵抗を約20Ω/口とする。
Next, a polysilicon layer 3t, which will become a first electrode, is grown to a thickness of 1.0 μm on the field oxide film, and in order to provide conductivity, phosphorus is diffused at, for example, 930″O for 20 minutes, and the polysilicon layer is The sheet resistance is approximately 20Ω/mouth.

第2図に於いて、ポリシリコン層3上に1例えば、90
0℃スチーム雰囲気中で酸化を行い500Aの厚さの酸
化膜4を形成した後、耐酸化マスクとして、減圧気相成
長法によシシリコン窒化膜5y1oooi成長する。し
かる後にこのシリコン窒化膜5を7オトレジストによル
51例えば、マスク窒化膜幅1.5μm1間隔1.5μ
mとなるようにパターニングする。
In FIG. 2, for example, 90
After oxidizing in a 0° C. steam atmosphere to form an oxide film 4 with a thickness of 500 A, a silicon nitride film 5y1oooi is grown as an oxidation-resistant mask by low pressure vapor phase growth. After that, this silicon nitride film 5 is coated with a 7-photoresist 51, for example, the mask nitride film width is 1.5 μm and the interval is 1.5 μm.
Pattern it so that it becomes m.

第3図に於いて、950℃スチーム雰囲気中で選択酸化
を行ない、酸化膜6を10μm形成する。この酸化膜に
は第2図のりすい酸化膜4も含まれている。
In FIG. 3, selective oxidation is performed in a 950 DEG C. steam atmosphere to form an oxide film 6 of 10 .mu.m. This oxide film also includes the prone oxide film 4 shown in FIG.

この時1図中のdoは酸化膜厚、dlは酸化されない領
域でのポリシリコン表面から、酸化された領域でのポリ
シリコン表面までの距離を示しており、通常d1〜−d
0である。
At this time, do in Figure 1 is the oxide film thickness, and dl is the distance from the polysilicon surface in the non-oxidized region to the polysilicon surface in the oxidized region, and usually d1 to -d
It is 0.

本実施例の場合は do=1.3μm であるがらd 
t = 0.5μmとなる。
In the case of this example, do=1.3μm, but d
t = 0.5 μm.

第4図に於いて、フッ酸等で前工程で付けた酸化膜を取
〃去り、誘電材料として例えば、減圧気相成長法により
シリコン窒化膜7を付着し。
In FIG. 4, the oxide film formed in the previous step is removed using hydrofluoric acid or the like, and a silicon nitride film 7 is deposited as a dielectric material, for example, by low pressure vapor deposition.

その後、第2の電極8’を形成すれば、容量素子が完成
する。
Thereafter, by forming the second electrode 8', the capacitive element is completed.

本実施例に施いては説明の簡略化のために、容量素子の
電極間の配線のための1層間絶縁膜形成工程、コンタク
ト孔の開孔、及びAI等による配線形成工程は省略しで
ある。
In this example, for the purpose of simplifying the explanation, the step of forming an interlayer insulating film for wiring between the electrodes of the capacitive element, the process of forming contact holes, and the step of forming wiring using AI, etc. are omitted. .

さて1本実施曲を用いた場合、容量素子の単位面積当〕
の容量は、従来の平担な構造に比べて、約1.3倍に達
する。これは、第1のポリシリコン電極上の凸凹によシ
、電極間の対向距離が、平担な構造の場合に較べて、1
ピッチ当り2Xdl=1.0μmだけ増えたためである
。より大きな効果を期待するには1例えば、第3図に於
ける選択酸化時の膜厚をもっと厚くするか。
Now, when using one performance song, per unit area of capacitive element]
The capacity is about 1.3 times that of the conventional flat structure. This is due to the unevenness on the first polysilicon electrode, and the opposing distance between the electrodes is 1
This is because the pitch increased by 2Xdl=1.0 μm. To expect a greater effect, 1. For example, the film thickness during selective oxidation shown in FIG. 3 should be made thicker.

あるいは、第2図に於ける耐酸化マスクシリコン窒化膜
のパターンピッチを小さくする、等の若干の修正を行な
えばよい。
Alternatively, slight modifications such as reducing the pattern pitch of the oxidation-resistant mask silicon nitride film in FIG. 2 may be made.

また1本発明によれば、第3図に示す如く。According to one aspect of the present invention, as shown in FIG.

第1のポリシリ電極上の凸凹の段部は、シャープな段で
はなく1選択酸化法の特徴である若干のテーパを持った
段となっている。この事は。
The uneven step portion on the first polysilicon electrode is not a sharp step, but a step with a slight taper, which is a characteristic of the one-selective oxidation method. This thing.

例えば、単位面積当力の容量を大きくするために誘電材
料を薄くしていった場合1段の角の部分に於ける電界集
中を緩和し、容量素子の電極間耐圧の劣化を防止するこ
とができる。
For example, if the dielectric material is made thinner in order to increase the capacitance per unit area, it is possible to alleviate the electric field concentration at the corner of the first stage and prevent deterioration of the withstand voltage between the electrodes of the capacitive element. can.

(7)発明の効果 本発明は1以上説明したように、容量素子の下部電極と
してポリシリコンす用い、この電極上に選択酸化を施す
ことによシ凹凸を形成することで、単位面積当りの容量
が大きく、かつ−電極間耐圧の劣化の少ない容量素子が
実現できる。
(7) Effects of the Invention As explained above, the present invention uses polysilicon as the lower electrode of a capacitive element, and forms unevenness by performing selective oxidation on this electrode, thereby increasing the surface area per unit area. A capacitive element with large capacity and less deterioration in voltage resistance between electrodes can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の実施例全製造工程順に示した
断面図である。 1・・・・・・半導体基板、2,4,6・・・胃酸化膜
、3・・・・・・第1のポリシリコン電極、5・・・・
・・マスクシリコン窒化膜、7・・・・・・誘電体シリ
コン窒化膜、8・・・・・・第2のポリシリコン電極。
FIGS. 1 to 4 are cross-sectional views showing the entire manufacturing process of an embodiment of the present invention in order. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2, 4, 6... Gastric oxide film, 3... First polysilicon electrode, 5...
. . . Mask silicon nitride film, 7 . . . Dielectric silicon nitride film, 8 . . . Second polysilicon electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に厚い絶縁膜を介して形成された第
1のポリシリコン電極と、第1のポリシリコン電極上に
形成された少なくとも一種類似上の誘電材料と、第2の
電極として働く少なくとも一種類以上の導電材料とから
構成された容量素子において、前記第1のポリシリコン
電極表面上に凹凸を有することを特徴とする容量素子。
(1) A first polysilicon electrode formed on a semiconductor substrate via a thick insulating film, at least one similar dielectric material formed on the first polysilicon electrode, and a second electrode. 1. A capacitive element made of at least one type of conductive material, characterized in that the first polysilicon electrode has irregularities on its surface.
(2)前記第1のポリシリコン電極表面の凹凸を、第1
のポリシリコンを選択的に酸化することにより形成する
ことを特徴とする特許請求の範囲第1項記載の容量素子
(2) The irregularities on the surface of the first polysilicon electrode are
2. The capacitive element according to claim 1, wherein the capacitive element is formed by selectively oxidizing polysilicon.
JP13235784A 1984-06-27 1984-06-27 Capacity element Pending JPS6112055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13235784A JPS6112055A (en) 1984-06-27 1984-06-27 Capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13235784A JPS6112055A (en) 1984-06-27 1984-06-27 Capacity element

Publications (1)

Publication Number Publication Date
JPS6112055A true JPS6112055A (en) 1986-01-20

Family

ID=15079469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13235784A Pending JPS6112055A (en) 1984-06-27 1984-06-27 Capacity element

Country Status (1)

Country Link
JP (1) JPS6112055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293648A (en) * 1988-05-23 1989-11-27 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293648A (en) * 1988-05-23 1989-11-27 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPH0465548B2 (en)
JPH06314775A (en) Dynamic ram cell and preparation thereof
JPH0574940B2 (en)
JPH09139479A (en) Manufacture of semiconductor device
KR930006729B1 (en) Semiconductor device and manufacturing method of the same
JPS6112055A (en) Capacity element
JP2000252422A (en) Semiconductor device and its manufacture
JPH039572A (en) Manufacture of semiconductor device
JPS5940571A (en) Semiconductor device
KR100268776B1 (en) A manufacturing method of semiconductor device
JPS6185857A (en) Manufacture of semiconductor memory
JPH01220856A (en) Semiconductor device
KR0157119B1 (en) Semiconductor device and its manufacture
JPH01192157A (en) Semiconductor device
JPH0464470B2 (en)
JPS5821355A (en) Semiconductor device
JPH10321801A (en) Semiconductor device and its manufacture
JPS62174922A (en) Semiconductor device
JPH05121652A (en) Manufacture of capacitor
JPS6312389B2 (en)
JPH0834309B2 (en) Method for manufacturing MOS semiconductor device
JPH0263154A (en) Manufacture of semiconductor device
JPH0294465A (en) Semiconductor integrated circuit and manufacture thereof
JPH01244659A (en) Semiconductor device
JPS62112359A (en) Manufacture of semiconductor device