JPS63272047A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63272047A
JPS63272047A JP10461787A JP10461787A JPS63272047A JP S63272047 A JPS63272047 A JP S63272047A JP 10461787 A JP10461787 A JP 10461787A JP 10461787 A JP10461787 A JP 10461787A JP S63272047 A JPS63272047 A JP S63272047A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
pad
film
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10461787A
Other languages
Japanese (ja)
Inventor
Fumio Sugawara
菅原 文雄
Hidetoshi Wakamatsu
若松 秀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10461787A priority Critical patent/JPS63272047A/en
Publication of JPS63272047A publication Critical patent/JPS63272047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To avoid the creation of steps or the like in a field oxide film and obtain the field oxide film of required form by a method wherein, after nitrogen ions are implanted into a pad silicon film formed on a silicon substrate beforehand to form a silicon nitride layer, an aperture is formed and then the field oxide film is grown in the aperture. CONSTITUTION:After a pad oxide film 2 and a pad silicon film 3 are successively formed on a silicon substrate 1, nitrogen ions are implanted into the pad silicon film 3 to form a silicon nitride layer 4 in the surface side of the pad silicon film 3. Then, at least the silicon nitride layer 4 is etched to form an aperture 5. A field oxide film 7 is grown in the aperture 5 in a high temperature oxidizing atmosphere. After that, the silicon nitride layer 4, the pad silicon film 3 and the pad oxide film 2 are removed by etching. For instance, after the aperture 5 is formed, channel stop implantation for avoiding inversion is applied to the aperture 5 side of the substrate 1 to form an impurity implanted layer 6 and then the field oxide film 7 is grown on the impurity ion implanted layer 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の製造方法に係り、特KX子分離領
域の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a KX isolation region.

〔従来の技術〕[Conventional technology]

従来、この種の素子分離領域の形成方法は、エルゼーク
ーイ等によって発表され比選択酸化法(LOCO8法)
を゛採用した「1984年電気化学学会898号、抜粋
84−1.MO8型VLSi7)ポリシリコン緩衝層に
よる絶縁層形成方法第334〜339頁、ニー・ピンハ
ン、ピングマ共IFJ 1ciA示されるものがあり、
これを第2図(a)乃至(f)に従来方法の工程図を示
して説明する。
Conventionally, a method for forming this type of element isolation region is the specific selective oxidation method (LOCO8 method) published by Elzekooy et al.
"1984 Electrochemical Society of Japan No. 898, Excerpt 84-1. MO8 type VLSi7) Insulating layer formation method using polysilicon buffer layer, pp. 334-339, Ni Pinghan, Pingma IFJ 1ciA ,
This will be explained with reference to FIGS. 2(a) to 2(f) showing process diagrams of the conventional method.

先ず、第2図(a)に示す如く、Pfi(100)シリ
コン基板(以下基板という)l上に尚0!酸化雰囲気中
にて/々ラッド化膜(Sing) 2 k 500λ成
黄形成する。次に、第2区(b)に示す如く、該パッド
酸化膜2上にLP−CVD法を以て、パッドシリコン膜
3を1500^成長堆積する。そして、第2図(c)に
示す如く、該ノ譬ツドシリコンgX3上に、同様ノLP
−CVD法を用いて、シリコン窒化膜4t−1500λ
堆積し友後、ホトリソグラフィー技術を以て、素子領域
(アクティグ領域)と素子分離憤域(フィールド領域)
とを形成する九めのレソストdターニングを行なう@し
かる後、第2図(d)に示す如く、このレソストをマス
クとして、前記パッドシリコン膜3及びシリコン窒化膜
4f、エツチングし、開口部5を形成後、反転防止用の
チャネルストップイングラを、例えばB+の加速′底圧
40KeV。
First, as shown in FIG. 2(a), 0! A radd film (Sing) 2k 500λ is formed in an oxidizing atmosphere. Next, as shown in the second section (b), a pad silicon film 3 is grown to a thickness of 1500^ on the pad oxide film 2 by the LP-CVD method. Then, as shown in FIG. 2(c), a similar LP was applied on the similar silicon gX3.
- Using CVD method, silicon nitride film 4t-1500λ
After the deposition, the element area (activating area) and element isolation area (field area) are created using photolithography technology.
Then, as shown in FIG. 2(d), using this resist as a mask, the pad silicon film 3 and silicon nitride film 4f are etched to form the opening 5. After formation, a channel stopper for preventing reversal is applied, for example, at a B+ acceleration bottom pressure of 40 KeV.

注入量I X 1013tons/cdの条件において
行ない、不純物イオン注入層6を形成する。次いで、第
2図(6)に示す如く、前記基板上の不純物イオン注入
層6上に、1ooo℃湿式高温酸化雰囲気中における酸
化を2時間8度行ない、フィールド酸化膜7を6000
^成長形成する。しかる後、第2図(f)に示す如く、
前記シリコン窒化11g4を熱リン酸によシ除去し、続
いて前記パッドシリコン膜3をドライ若しくはウェット
エツチング除去し友後、前記・セット酸化膜2をフッ酸
溶液によりウェットエツチング除去する。斯くして、素
子領域人並びにフィールド酸化膜7を有する素子分離領
域Bを夫々形成していた。
The impurity ion implantation layer 6 is formed by performing the implantation under the condition that the implantation amount is I x 1013 tons/cd. Next, as shown in FIG. 2(6), the impurity ion-implanted layer 6 on the substrate is oxidized 8 times for 2 hours in a wet high temperature oxidation atmosphere of 100°C to form a field oxide film 7 of 6000°C.
^Grow and form. After that, as shown in Figure 2(f),
The silicon nitride film 11g4 is removed using hot phosphoric acid, and then the pad silicon film 3 is removed by dry or wet etching. After that, the set oxide film 2 is removed by wet etching using a hydrofluoric acid solution. In this way, the element region and the element isolation region B having the field oxide film 7 were formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し乍ら、上述し几従米の素子分離領域の形成方法にお
いては%第2図(f)に示す如く、フィールド酸化膜7
の仕上り形状に段差部7aが生じるため、後工程で形成
するポリシリコン、シリサイド及びアルミニウム寺の配
線材料が前記段差部7aによって切れる、所謂段切れに
よシオープンになったり、或いはこれらの材料等金・イ
タ−ニア りfるホトリソグラフィ一工程において、段
差部7aでのフォーカスが合い難く所望寸法にならない
という問題点があった。勿論前記段差部7aを低減する
ために、前記パッド酸化j漠2を厚膜にすると共に、ノ
クツドシリコン腺3t−4膜にするか、若しくはシリコ
ン窒化膜4を薄膜にすれば良いが、これではLOCO8
法におけるバーズビークの発生により素子分離領域Bが
増大し、半導体集積回路の高集積化を妨げることになる
However, in the method for forming the element isolation region described above, as shown in FIG. 2(f), the field oxide film 7 is
Because the stepped portion 7a is formed in the finished shape, the polysilicon, silicide, and aluminum wiring materials to be formed in a later process may be cut by the stepped portion 7a, or become open due to so-called step breakage, or these materials, etc. In one step of photolithography using gold/Itania resin, there was a problem in that it was difficult to focus on the stepped portion 7a and the desired size could not be obtained. Of course, in order to reduce the stepped portion 7a, the pad oxide film 2 may be made thicker, and the silicon nitride film 4 may be made thinner. So LOCO8
Due to the occurrence of bird's beak in the method, the element isolation region B increases, which impedes higher integration of semiconductor integrated circuits.

本発明の目的は上述の問題点に鑑み、フィールド酸化膜
の段差部寺の発生を防止して、前記フィールド酸化膜を
所定形状に形成できる半導体素子の製造方法を提供する
ものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent the occurrence of stepped portions of a field oxide film and form the field oxide film into a predetermined shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述し比重的を達成するため、シリコン基板l
上にノ9ツド酸化膜2及びノ9ツドシリコン膜3を順次
形成する工程と、該パッドシリコン膜3内に窒素イオン
を注入して、前記/9ツドシリコン膜3の表面寄りに窒
化シリコン層4を形成する工程と、少なくとも該窒化シ
リコン層4をエツチングして、開口部5を形成する工程
と、高温酸化雰囲気において、前記開口部5にフィール
ド酸化膜7を成長形成する工程と、その後、前記窒化シ
リコン層4.前記/4′ツドシリコン膜3及び前記ノ9
ッド酸化膜2t−エツチング除去する工程とを含むもの
である。
In order to achieve the above-mentioned specific gravity, the present invention
A process of sequentially forming a 9-sided oxide film 2 and a 9-sided silicon film 3 thereon, and implanting nitrogen ions into the pad silicon film 3 to form a silicon nitride layer 4 near the surface of the 9-sided silicon film 3. a step of etching at least the silicon nitride layer 4 to form an opening 5; a step of growing a field oxide film 7 in the opening 5 in a high temperature oxidizing atmosphere; Silicon layer 4. Said /4' silicon film 3 and said No. 9
This process includes a step of removing the pad oxide film 2t by etching.

〔作用〕[Effect]

本発明においては、シリコン基板上に予め形成し九バン
ドシリコン膜内に窒素イオンを注入して。
In the present invention, nitrogen ions are implanted into a nine-band silicon film previously formed on a silicon substrate.

その表面寄りに窒化シリコン層を形成するので、該窒化
シリコン層の窒素イオンは前記ノ臂ツドシリコン、膜に
近づくに従って低缶度となる。又、前記・9ツドシリコ
ン膜は、次工程で形成し几開口部のフィールド酸化膜成
長時における横方向への拡散を抑制すると共に、前記・
々ラドシリコン膜及び窒化シリコン層の開口部側は酸化
剤を消費し酸化シリコン膜に転じる。
Since the silicon nitride layer is formed closer to the surface, the concentration of nitrogen ions in the silicon nitride layer decreases as it approaches the arm silicon layer. In addition, the 9-doped silicon film is formed in the next step to suppress lateral diffusion during the growth of the field oxide film in the opening, and
The opening side of the rad silicon film and silicon nitride layer consumes the oxidizing agent and turns into a silicon oxide film.

〔実施例〕〔Example〕

本発明の半導体素子の製造方法に係る一実施例を第1図
(a)乃至げ)に基づいて従来例と四−構成部分には同
一符号を付して説明する。尚、第1図(a)乃至(f)
は本発明方法の工程図である。
An embodiment of the method of manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. In addition, Fig. 1 (a) to (f)
1 is a process diagram of the method of the present invention.

先ず、第1図(a)に示す如く%P型(100)シリコ
ン基板(以下基板という)1上に、高温酸化雰囲気中に
おいて、・セット酸化膜2 t 3ooA成長形成する
。次に、第1図(b)に示す如く、LP−CVD法を以
て、前記パッド酸化膜2上にノ臂ツドシリコン膜3を1
200^堆積する。その後、第1図(c)に示す如く、
該ノ9ツドシリコン膜3内に、加速′螺圧20KeV、
注入ill X 1017ions/cj ノ条件Kj
!DW!4オンを注入する。而して、該窒素イオンとシ
リコン原子とは反応して、前記・臂ツドシリコン膜3の
表面寄りに窒化シリコン層4が形成される。ところで、
この窒化シリコン層4は必ずしも化学量論的(即ちSt
、N、)ではなく、更に、前記パッドシリコン膜3には
加速′電圧が設定され、前記窒素イオンが飛程を有する
友め、前記窒化シリコン層4は・ぐラドシリコン膜3の
裏面に近づくに伴い、窒素原子が少ない化合物となる。
First, as shown in FIG. 1(a), a set oxide film 2t3ooA is grown on a %P type (100) silicon substrate (hereinafter referred to as substrate) 1 in a high temperature oxidizing atmosphere. Next, as shown in FIG. 1(b), a silicon layer 3 is formed on the pad oxide film 2 using the LP-CVD method.
Deposit 200^. After that, as shown in Figure 1(c),
In the 9-sided silicon film 3, an acceleration screw pressure of 20 KeV,
Injection ill X 1017ions/cj conditions Kj
! DW! Inject 4 on. The nitrogen ions and silicon atoms react to form a silicon nitride layer 4 near the surface of the arm silicon film 3. by the way,
This silicon nitride layer 4 is not necessarily stoichiometric (i.e., St
, N, ), an accelerating voltage is set on the pad silicon film 3, and the nitrogen ions have a range, so that the silicon nitride layer 4 approaches the back surface of the pad silicon film 3. This results in a compound with fewer nitrogen atoms.

そして、第1図(d)に示す如く、ホトリソグラフィに
よってパターニングされた図示略すレジストをマスクと
して、前記の窒化シリコン層4及びパッドシリコン膜3
t−エツチングして、開口部5を形成する。続いて、基
板lの前記開口部5側に反転防止用のチャネルストラグ
イングラを、例えばB+の加速電圧40KeV。
Then, as shown in FIG. 1(d), the silicon nitride layer 4 and pad silicon film 3 are removed using a resist (not shown) patterned by photolithography as a mask.
T-etch to form openings 5. Subsequently, a channel straggler for preventing inversion is placed on the opening 5 side of the substrate 1 at a B+ acceleration voltage of 40 KeV, for example.

注入M I X 1013tons/−の榮件の下で行
ない、不純物イオン注入層6t−形成した後、前記レジ
ストを除去する。しかる後、第1図(e)に示す如<、
1000℃湿式高温酸化雰囲気中において、2時間程度
の酸化全行ない、前記不純物イオン注入層6上に2イー
ルド酸化膜7 fc6000^成長形成する。その後。
After the impurity ion implantation layer 6t- is formed by implantation under the conditions of 1013 tons/- of MI, the resist is removed. After that, as shown in FIG. 1(e),
The entire oxidation is carried out for about 2 hours in a wet high temperature oxidation atmosphere of 1000° C., and a 2-yield oxide film 7 fc6000^ is grown on the impurity ion implanted layer 6. after that.

第1図(f)に示す如く、前記窒化シリコン層4t−熱
リン酸によりエツチング除去しt後、前記パッドシリコ
ン膜3及び前記・卆ツド酸化膜2を順次ウェット或いは
ドライエツチングを以て、除去する。
As shown in FIG. 1(f), after the silicon nitride layer 4t is removed by etching with hot phosphoric acid, the pad silicon film 3 and the solid oxide film 2 are sequentially removed by wet or dry etching.

斯くして、前記基板1が露出した素子領域へ及びフィー
ルド酸化膜7が形成された素子分m幀域Bが夫々形成さ
れる。
In this way, a device-sized area B is formed in the device region where the substrate 1 is exposed and in which the field oxide film 7 is formed.

尚、パッドシリコン膜3は、真空蒸着法や高周波放電プ
ラズマCVD法又は光CVD法によるアモルファスシリ
コンでも良い。父、開口部5の形成時において、パッド
酸化1漠2又は基板1′f、エツチングしでも良く、逆
に窒化シリコン層4のみエツチングしても良い。更に、
/リーニングされた輩化シリコン層4をマスクとして下
層1fMをエツチングしても良い。
Note that the pad silicon film 3 may be made of amorphous silicon formed by vacuum evaporation, high-frequency discharge plasma CVD, or photo-CVD. When forming the opening 5, the pad oxide layer 2 or the substrate 1'f may be etched, or conversely, only the silicon nitride layer 4 may be etched. Furthermore,
The lower layer 1fM may be etched using the stripped silicon layer 4 as a mask.

〔発明の効果〕〔Effect of the invention〕

以上ff細に説明し文様に本発明によれば、シリコン基
板上にパッド酸化膜及びノ臂ツドシリコン膜を順次形成
した後、前記・9ツドシリコン膜内に窒素イオンを注入
して窒化シリ;ン層を形成後、次工程で形成し次間口部
にフィールドは化換金成長形成するので、該窒化シリコ
ン層の組成なシリコン基板に近づくに従って、窒素イオ
ン低密度且つシリコン高密度となる之め、応力の緩和が
できる。
As described above in detail, according to the present invention, after sequentially forming a pad oxide film and a pad silicon film on a silicon substrate, nitrogen ions are implanted into the 9-pad silicon film to form a silicon nitride layer. After forming the silicon nitride layer, the field is formed in the next step by chemical conversion growth, so as the composition of the silicon nitride layer gets closer to the silicon substrate, the nitrogen ion density becomes lower and the silicon density becomes higher. It can be relieved.

よって、前記シリフン基板における結晶欠陥の発生が防
止でき、半導体素子特性が向上できる・又。
Therefore, the occurrence of crystal defects in the silicon substrate can be prevented, and the characteristics of the semiconductor device can be improved.

前記・セットシリコン膜は、フィールド酸化膜成長時の
横方向への拡散を抑制すると共に、前記開口部側の・ぞ
ラドシリフン膜は酸化剤を消費し、酸化シリコン膜に転
じるため、フィールド酸化膜における横方向へのバーズ
ビークの発生が防止できると共に、変換差(仕上り寸法
とパターニング寸法との差)が低減でき、半導体集積回
路の尚密度化ができる。更に、開口部側の前記・9ツド
シリコン膜に近い窒化シリフン層もフィールド酸化膜形
成時において酸化されるので、滑らかな形状のフィール
ド酸化膜を形成できるため、後工程における配線材料の
段切れ防止ができると共に、ホトリングラフィにおける
ディフォーカスが防止できる等の特有の効果より前述の
問題を解決し得る。
The set silicon film suppresses lateral diffusion during field oxide film growth, and the set silicon film on the opening side consumes oxidizing agent and turns into a silicon oxide film, so The occurrence of bird's beak in the lateral direction can be prevented, and the conversion difference (difference between finished dimension and patterning dimension) can be reduced, and the density of semiconductor integrated circuits can be further increased. Furthermore, since the silicon nitride layer near the 9-doped silicon film on the opening side is also oxidized during the formation of the field oxide film, it is possible to form a field oxide film with a smooth shape, which prevents disconnection of the wiring material in the subsequent process. In addition, the above-mentioned problem can be solved due to its unique effects such as being able to prevent defocusing in photolithography.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(f)は本発明方法に係る一実施例を
示す工程図、第2図(a)乃至Cりは従来方法の工程幽
である。 1・・・シリコン基板(基板)、2・・・パッド酸化膜
、3・・・パッドシリコン膜、4・・・窒化シリコン層
、5・・・開口部、6・・・不純物イオン注入層、7・
・・フィールド酸化膜。 第1図 第2vA 第2図
FIGS. 1(a) to (f) are process diagrams showing one embodiment of the method of the present invention, and FIGS. 2(a) to (C) are process diagrams of the conventional method. DESCRIPTION OF SYMBOLS 1... Silicon substrate (substrate), 2... Pad oxide film, 3... Pad silicon film, 4... Silicon nitride layer, 5... Opening, 6... Impurity ion implantation layer, 7.
...Field oxide film. Figure 1 Figure 2vA Figure 2

Claims (1)

【特許請求の範囲】  シリコン基板上にパッド酸化膜及びパッドシリコン膜
を順次形成する工程と、 該パッドシリコン膜内に窒素イオンを注入して、前記パ
ッドシリコン膜の表面寄りに窒化シリコン層を形成する
工程と、 少なくとも該窒化シリコン層をエッチングして、開口部
を形成する工程と、 高温酸化雰囲気において、前記開口部にフィールド酸化
膜を成長形成する工程と、 その後、前記窒化シリコン層、前記パッドシリコン膜及
び前記パッド酸化膜をエッチング除去する工程とを含む
ことを特徴とする半導体素子の製造方法。
[Claims] A step of sequentially forming a pad oxide film and a pad silicon film on a silicon substrate, and implanting nitrogen ions into the pad silicon film to form a silicon nitride layer near the surface of the pad silicon film. a step of etching at least the silicon nitride layer to form an opening; a step of growing a field oxide film in the opening in a high temperature oxidizing atmosphere; A method for manufacturing a semiconductor device, comprising the step of etching away a silicon film and the pad oxide film.
JP10461787A 1987-04-30 1987-04-30 Manufacture of semiconductor device Pending JPS63272047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10461787A JPS63272047A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10461787A JPS63272047A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63272047A true JPS63272047A (en) 1988-11-09

Family

ID=14385403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10461787A Pending JPS63272047A (en) 1987-04-30 1987-04-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63272047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155829A (en) * 1990-10-18 1992-05-28 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155829A (en) * 1990-10-18 1992-05-28 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH04346229A (en) Method of separating element of semiconductor device
JP4150548B2 (en) Manufacturing method of semiconductor device
US5972777A (en) Method of forming isolation by nitrogen implant to reduce bird's beak
JPH0536601A (en) Manufacture of semiconductor device having growth layer on insulating layer
JP3385981B2 (en) Semiconductor device and manufacturing method thereof
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPH0324727A (en) Manufacture of semiconductor device
JPS63272047A (en) Manufacture of semiconductor device
JPH0473296B2 (en)
JPS5917865B2 (en) hand tai souchi no seizou houhou
US7632735B2 (en) Process for manufacturing silicon-on-insulator substrate
JP2620403B2 (en) Method for manufacturing semiconductor device
JP2788889B2 (en) Separation forming method in semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH065588A (en) Manufacture of semiconductor device
JPH0228929A (en) Locos method utilizing dry etching of polycrystalline silicon
JP3142303B2 (en) Manufacturing method of high-speed bipolar transistor
JPS63272048A (en) Manufacture of isolation region of semiconductor device
JPH04264754A (en) Manufacture of integrated circuit
JPH0362947A (en) Semiconductor device and manufacture thereof
JPS5950542A (en) Manufacture of semiconductor device
JPS6355962A (en) Manufacture of semiconductor device
KR950024298A (en) Method of manufacturing buried semiconductor device
JPH1187336A (en) Manufacture of semiconductor device
JPH06283676A (en) Manufacture of semiconductor device