JPS63272008A - Manufacture of anisotropic plastic magnet - Google Patents

Manufacture of anisotropic plastic magnet

Info

Publication number
JPS63272008A
JPS63272008A JP62104369A JP10436987A JPS63272008A JP S63272008 A JPS63272008 A JP S63272008A JP 62104369 A JP62104369 A JP 62104369A JP 10436987 A JP10436987 A JP 10436987A JP S63272008 A JPS63272008 A JP S63272008A
Authority
JP
Japan
Prior art keywords
powder
magnetic
temperature
magnetic field
plastic magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104369A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62104369A priority Critical patent/JPS63272008A/en
Publication of JPS63272008A publication Critical patent/JPS63272008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a plastic magnet having a high residual magnetic flux density even when a magnetic powder having a high coercive force is used as one of the materials by compression-molding the magnetic powder in a magnetic field after heating the powder at a temperature above a specific temperature. CONSTITUTION:A ferromagnetic powder is compression molded in a magnetic field after heating it at a temperature above 40 deg.C. The magnetic powder having a coercive force of above 10000 Oe is prepared with a fusion spinning technique, for example, by using an alloy consisting of 29 wt.% Nd, 0.5 wt.% B, 0.1 wt.% Si, 0.1 wt.% C, and the rest Fe. Then, the magnetic powder is compression molded under pressure of 7 tonf/cm<2> and an upset treatment is performed at a treating rate of 80 % after heating at a temperature of 690 deg.C in a vacuum. After that, the above compression molded product is pulverized into powder of -60 mech and 2 wt.% of epoxy resin is added and mixed to the above powder. The mixed powder is put in a metal mold that is heated at a temperature of 60 deg.C and it is held for half an hour and its powder is compression molded at 6 tonf/cm<2> press pressure and at 15 kOe impressed magnetic field. Then the resin is set by a heat treatment at a temperature of 85 deg.C and a plastic magnet is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は異方性プラスチック磁石の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing an anisotropic plastic magnet.

(従来技術及び発明が解決しようとする問題点)異方性
プラスチック磁石を製造する方法としては、例えば、所
要の組成を有する磁性粉末に樹脂を混合したのち通常2
0kOe程度の磁場中で圧縮成形する、或いは、磁性粉
末を上記磁場中で圧縮成形した後に樹脂を含浸させる方
法が知られている。
(Prior art and problems to be solved by the invention) As a method for manufacturing an anisotropic plastic magnet, for example, a resin is mixed with magnetic powder having a desired composition, and then
A method of compression molding in a magnetic field of about 0 kOe, or a method of compression molding magnetic powder in the magnetic field and then impregnating it with a resin is known.

ところが、原料となる磁性粉末として室温で高い保磁力
を有するものを使用した場合は、通常の磁場中プレス装
置で発生可能な磁場、即ち、上記した20kOa程度の
磁場では磁気的に飽和しないという問題があった。その
ため、磁化容易軸の磁界方向への配向性が良好な、即ち
、高い残留磁束密度を有する磁石を得ることが困難であ
った。
However, when using a magnetic powder that has a high coercive force at room temperature as a raw material, there is a problem that it does not become magnetically saturated in the magnetic field that can be generated by a normal magnetic field pressing device, that is, the above-mentioned magnetic field of about 20 kOa. was there. Therefore, it has been difficult to obtain a magnet with good orientation of the easy axis of magnetization in the direction of the magnetic field, that is, with a high residual magnetic flux density.

本発明は上記従来の問題点に鑑みてなされたもので、特
に、原料として高い保磁力を有する磁性粉末を使用した
場合も、高い残留磁束密度を有するプラスチック磁石を
製造することが可能な異方性プラスチック磁石の製造方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and in particular, it is possible to produce a plastic magnet having a high residual magnetic flux density even when magnetic powder having a high coercive force is used as a raw material. The purpose of the present invention is to provide a method for manufacturing a plastic magnet.

(問題点を解決するための手段及び作用)本発明は、磁
性粉末の保磁力(iHc)が温度に依存して変化する゛
ことに着目してなされたものである。具体的には、磁性
粉末を40〜150℃に加熱すると、室温(以下、20
〜30℃の温度範囲を室温という)における保磁力をそ
の95〜20%程度の値まで低下させることができるた
め、低い磁場、つまり通常の磁場プレス装置にて磁気的
に飽和させることができるとの認識に基づくものである
(Means and effects for solving the problems) The present invention was made by focusing on the fact that the coercive force (iHc) of magnetic powder changes depending on temperature. Specifically, when magnetic powder is heated to 40 to 150°C, it is heated to room temperature (hereinafter referred to as 20°C).
It is possible to reduce the coercive force to about 95 to 20% of that value (the temperature range of ~30°C is called room temperature), so it is possible to achieve magnetic saturation with a low magnetic field, that is, with a normal magnetic field press device. This is based on the recognition of

即ち、本発明の異方性プラスチック磁石の製造方法は、
強磁性粉末を40℃以上に加熱したのち、磁場中で圧縮
成形することとしたものである。
That is, the method for manufacturing an anisotropic plastic magnet of the present invention is as follows:
After heating the ferromagnetic powder to 40° C. or higher, it was compression molded in a magnetic field.

本発明の製造方法は、圧縮成形プラスチック磁石を製造
しうるちのであれば、如何なる強磁性粉末にも適用する
ことが可能であるが、特に、室温における保磁力が非常
に高く、且つ、圧縮成形したのちもこの高い保磁力を維
持するような強磁性粉末に適用した時に、極めて優れた
効果を奏する。
The manufacturing method of the present invention can be applied to any ferromagnetic powder as long as it can be used to manufacture compression-molded plastic magnets. When applied to ferromagnetic powders that maintain this high coercive force even after the application, extremely excellent effects can be achieved.

具体的には、室温における保磁力が10000(Oe)
以上の希土類−Fa−B系合金粉末、或いは、室温にお
ける保磁力が8000 (Oe)以上のSm−C。
Specifically, the coercive force at room temperature is 10,000 (Oe)
The above rare earth-Fa-B alloy powder or Sm-C having a coercive force of 8000 (Oe) or more at room temperature.

系合金わ)末をあげることができる。It is possible to raise the grade of alloys.

希土類−Fe−B系合金粉末は、Nd、 Pr、、Ce
、h% Sll、Y、↑b、 Ho等の希土類元素の中
から選択された1種もしくは2種以上、Fe、及びBを
主成分とするもので、これらに加えて、更にSi、 C
lGO%N等を含有したものを使用することもできる。
The rare earth-Fe-B alloy powder includes Nd, Pr, Ce.
, h% Sll, Y, ↑b, one or more selected from rare earth elements such as Ho, Fe, and B are the main components, and in addition to these, Si, C
It is also possible to use one containing lGO%N or the like.

又、Sm−Co系合金粉末は、Sm、Coを主成分とす
るもので、これらに加えて、更にF e s CIJ%
Zr%Ti、Hf、Nb、Ta、W等を含有したものを
使用することもできる。
In addition, the Sm-Co alloy powder has Sm and Co as its main components, and in addition to these, it also contains Fe s CIJ%
A material containing Zr%Ti, Hf, Nb, Ta, W, etc. can also be used.

本発明の製造方法は、磁性粉末に樹脂を混合した後に磁
場中で圧縮成形する工程によるもの、及、び磁性粉末を
磁場中で圧縮成形したのちに、当該圧縮成形体に樹脂を
含浸させる工程によるものの何れの場合にも適用するこ
とができる。
The manufacturing method of the present invention includes a step of mixing magnetic powder with a resin and then compression-molding it in a magnetic field, and a step of compression-molding the magnetic powder in a magnetic field and then impregnating the compression-molded body with a resin. It can be applied to any case.

以下に、上記2つの製造工程に、本発明の製造方法を適
用した場合について説明する。
Below, a case will be described in which the manufacturing method of the present invention is applied to the above two manufacturing steps.

本発明を前者の工程に適用した場合は、所要の組成を有
する磁性合金粉末を調製したのち、この合金粉末に所定
量の樹脂を混合し、得られた混合粉末を圧縮成形工程に
先立ち、40℃以上の温度に加熱する。この加熱温度が
40℃未満であると、上記磁性粉末の保磁力を充分に低
下させることができず、続く磁場中での圧縮工程におい
て磁気的に飽和させることが困難になってしまう、又、
上記加熱温度の上限は特に、限定されないが、磁性粉末
に混合した樹脂の硬化温度(例えば、エポキシ樹脂の場
合は85℃)以下に設定すると、樹脂が軟化状態となる
ため、続く圧縮工程において空孔の発生が激減し、高密
度で高磁気特性を有する磁石を得ることができる。この
工程において、好ましい加熱温度は、50〜60℃程度
である。この加熱工程終了後に、混合粉末を磁場中で圧
縮成形して所望の形状のプラスチック磁石を完成する。
When the present invention is applied to the former process, after preparing a magnetic alloy powder having a required composition, a predetermined amount of resin is mixed with this alloy powder, and the resulting mixed powder is Heat to a temperature above ℃. If this heating temperature is less than 40°C, the coercive force of the magnetic powder cannot be sufficiently lowered, and it becomes difficult to achieve magnetic saturation in the subsequent compression process in a magnetic field.
The upper limit of the above heating temperature is not particularly limited, but if it is set below the curing temperature of the resin mixed with the magnetic powder (e.g. 85°C in the case of epoxy resin), the resin will be in a softened state, so there will be no air in the subsequent compression process. The occurrence of holes is drastically reduced, and a magnet with high density and high magnetic properties can be obtained. In this step, the preferred heating temperature is about 50 to 60°C. After this heating step is completed, the mixed powder is compression molded in a magnetic field to complete a plastic magnet of a desired shape.

この工程には、通常の磁場中プレス装置を使用して行う
ことが可能である。
This step can be carried out using an ordinary magnetic field press device.

一方、後者の工程に本発明の製造方法を適用する場合は
、先ず、磁性粉末を単独で40℃以上の温度に加熱した
のち、上記した通常の磁場中圧縮成形を行う、磁性粉末
の熱処理温度を40℃以上とする理由は上述した通りで
ある。但し、この工程では、熱処理時に樹脂が混合され
ていないので、熱処理温度の上限については上記のよう
に樹脂の硬化温度を考慮する必要がない、具体的には、
熱処理温度は、例えば、磁性粉末のキエーリ一点以下の
温度であればよい、このようにして磁性粉末単独の圧縮
成形体を製造したのち、当該成形体に樹脂溶液を含浸さ
せてプラスチック磁石を完成する。
On the other hand, when applying the manufacturing method of the present invention to the latter step, first, the magnetic powder is heated alone to a temperature of 40°C or higher, and then the above-mentioned normal compression molding in a magnetic field is performed at the heat treatment temperature of the magnetic powder. The reason for setting the temperature to 40° C. or higher is as described above. However, in this process, since the resin is not mixed during heat treatment, there is no need to consider the curing temperature of the resin as described above for the upper limit of the heat treatment temperature. Specifically,
The heat treatment temperature may be, for example, a temperature below the Chieri point of the magnetic powder. After producing a compression molded body of magnetic powder alone in this way, the molded body is impregnated with a resin solution to complete a plastic magnet. .

(実施例) 大■舅上 重量%で、Nd:29%、B二〇、5%、St : 0
.1%、C+O,t%、及び、残部F−eよりなる組成
の合金を誘導炉にて製造した。この合金を溶融スピニン
グ法において、ロール回転法を種々に変化させることに
より、19600.14300 、10600.850
0、及び6300 (Oe)の各保磁力(iHc)を有
する5種の磁性粉末を調製した。
(Example) Weight% on the large leg: Nd: 29%, B20, 5%, St: 0
.. An alloy having a composition of 1%, C+O, t%, and the balance Fe was produced in an induction furnace. By varying the roll rotation method in the melt spinning method, this alloy was processed into 19600.14300, 10600.850.
Five types of magnetic powders having respective coercive forces (iHc) of 0 and 6300 (Oe) were prepared.

次いで、上記各磁性粉末を7 tonf/−の圧力で圧
縮成形したのち、真空中で690℃に加熱後、当該磁性
粉末に塑性変形による異方性を付与するため、加工率8
0%でアップセット加工を行った。このアップセット加
工後の保磁力は、夫々、18600.13400.10
300.9200、及び、6100となった。
Next, each of the above magnetic powders was compression molded at a pressure of 7 tonf/-, heated to 690°C in vacuum, and then processed at a processing rate of 8 in order to impart anisotropy through plastic deformation to the magnetic powder.
Upset processing was performed at 0%. The coercive force after this upset processing is 18600.13400.10, respectively.
It became 300.9200 and 6100.

しかるのち、上記の圧縮成形体を一60メツシュに粉砕
し、得られた粉末に対し、2重量%のエポキシ樹脂を添
加混合した。続いて、この混合粉末を60℃に加熱した
金型に入れて0.5時間保持したのち、プレス圧6 t
onf / C14、印加磁界15koeで圧縮成形し
た。これらの成形体を85℃で1時間熱処理することに
より樹脂を硬化させてプラスチック磁石を得た。これら
の磁気特性即ち、残留磁束密度Br、保磁力mHc 、
tHc 、最大エネルギー積(B−H)wax、並びに
、密度ρを夫々測定し、結果を第1表中に試験No、1
〜5として上段の数値で示した。尚、比較のために、磁
性粉末にエポキシ樹脂を混合した後の加熱処理を行ねな
す、室温で圧縮成形した点を除いては、上記と同様にし
てプラスチック磁石を製造し、同様の測定を行って第1
表中に夫々の試験No、について ゛下段の数値で示し
た。
Thereafter, the compression molded product was pulverized to 160 meshes, and 2% by weight of epoxy resin was added and mixed with the resulting powder. Subsequently, this mixed powder was put into a mold heated to 60°C and held for 0.5 hours, and then a press pressure of 6 t was applied.
onf/C14 and compression molding with an applied magnetic field of 15 koe. These molded bodies were heat treated at 85° C. for 1 hour to harden the resin and obtain plastic magnets. These magnetic properties, namely, residual magnetic flux density Br, coercive force mHc,
tHc, maximum energy product (B-H)wax, and density ρ were measured respectively, and the results are shown in Table 1 for Test No. 1.
~5 is shown in the upper row. For comparison, a plastic magnet was manufactured in the same manner as above, except that the magnetic powder was mixed with epoxy resin and then heat-treated and compression molded at room temperature. go first
In the table, each test number is shown as a numerical value in the lower row.

大隻■1 重量%で、Sm:24.0%、Fe:19.5%、Cu
:4%、Zr82.5%、及び残部COよりなる組成の
合金を誘導炉にて製造した。この合金に1170−11
90℃、1〜5時間の均質化処理を施したのち室温まで
急冷した(冷却速度:100℃/5in) 、 Lかる
のち、第2表に示したように、時効処理条件を種々に変
化させて、試験No、6〜9に示した各保磁力を有する
合金を得た。この時効処理条件は、表示の温度で表示の
時間保持したのに、何れも冷却速度1℃/■inで40
0℃まで徐冷することにより行った。
Large boat ■1 Weight%: Sm: 24.0%, Fe: 19.5%, Cu
:4%, Zr82.5%, and the balance CO was produced in an induction furnace. 1170-11 in this alloy
After homogenization treatment at 90°C for 1 to 5 hours, the material was rapidly cooled to room temperature (cooling rate: 100°C/5 in).After that, the aging treatment conditions were varied as shown in Table 2. As a result, alloys having respective coercive forces shown in Test Nos. 6 to 9 were obtained. The aging treatment conditions were maintained at the indicated temperature for the indicated time, but at a cooling rate of 1°C/inch and 40°C.
This was done by slowly cooling to 0°C.

次いで、これらの合金をジッークラッシャー、ボールミ
ルにより粉砕して、平均粒径25μmの磁性粉末を調製
した。この磁性粉末を100℃に加熱した金型にいれて
約1時間保持した後、圧力6tonf/aj、磁界15
kOeの条件で圧縮成形した。しかるのち、得られた成
形体を真空脱気し、アセトンに溶解したエポキシ樹脂を
含浸させたのち、室温にて24時間放置して樹脂を硬化
させることにより、プラスチック磁石を完成した。
Next, these alloys were crushed using a Zik crusher and a ball mill to prepare magnetic powder with an average particle size of 25 μm. This magnetic powder was placed in a mold heated to 100°C, held for about 1 hour, and then heated to a pressure of 6 tonf/aj and a magnetic field of 15°C.
Compression molding was performed under the conditions of kOe. Thereafter, the obtained molded body was vacuum degassed, impregnated with an epoxy resin dissolved in acetone, and then left at room temperature for 24 hours to harden the resin, thereby completing a plastic magnet.

これらの各磁石について、上記実施例1と同様に各特性
を測定し、その結果を第2表中に上段の数値で示した。
Each characteristic of each of these magnets was measured in the same manner as in Example 1 above, and the results are shown in the upper row of numbers in Table 2.

尚、比較のために、磁性粉末を100℃で加熱せず、室
温にて圧縮成形を行った点を除いては、上記と同様にし
てプラスチック磁石を製造し、その特性を第2表中に下
段の数値で示した。
For comparison, plastic magnets were manufactured in the same manner as above, except that the magnetic powder was not heated to 100°C but compression molded at room temperature, and its properties are shown in Table 2. It is shown in the numbers on the bottom row.

(以下余白) 第1表から明らかなように、希土[−Fs−B系合金粉
末を原料とした場合は、合金の保磁力が10000(O
e)以上の時に、残留磁束密度Brの値が著しく向上す
る(試験No、1〜3)、又、これらは、エポキシ樹脂
の軟化状態において圧縮成形を行っているため、密度ρ
も高い値となっている。
(Left below) As is clear from Table 1, when rare earth [-Fs-B alloy powder is used as raw material, the coercive force of the alloy is 10,000 (O
e) In the above cases, the value of the residual magnetic flux density Br increases significantly (Test No. 1 to 3), and since compression molding is performed in the softened state of the epoxy resin, the density ρ
The value is also high.

更に、第2表において、Sm−Co系合金粉末を原料と
した場合は、合金の保磁力が8000 (Oe)以上の
時に、残留磁束密度B「の値が著しく向上する(試験N
086〜8)ことが確認された。
Furthermore, in Table 2, when Sm-Co alloy powder is used as a raw material, the value of residual magnetic flux density B' increases significantly when the coercive force of the alloy is 8000 (Oe) or more (Test N
086-8) was confirmed.

(発明の効果) 以上説明したように本発明によれば、強磁性粉末を40
℃以上に加熱したのち、磁場中で圧縮成形することとし
たので、特に、通常の磁場中プレス装置では磁気的に飽
和させることが困難であった高い保磁力を有する磁性粉
末に適用すると、比較的低い磁場中であっても、磁気的
に飽和させることが可能となり、その残留磁束密度を著
しく向上することができるという利点を有する。
(Effects of the Invention) As explained above, according to the present invention, the ferromagnetic powder is
Since we decided to compress and mold the powder in a magnetic field after heating it to above ℃, it is especially effective when applied to magnetic powders with high coercive force, which is difficult to magnetically saturate using ordinary magnetic field press equipment. It has the advantage that it can be magnetically saturated even in a magnetic field with a low target, and its residual magnetic flux density can be significantly improved.

Claims (3)

【特許請求の範囲】[Claims] (1)強磁性粉末を40℃以上に加熱したのち、磁場中
で圧縮成形することを特徴とする異方性プラスチック磁
石の製造方法。
(1) A method for producing an anisotropic plastic magnet, which comprises heating ferromagnetic powder to 40° C. or higher and then compression molding it in a magnetic field.
(2)前記強磁性粉末が、室温で10000(Oe)以
上の保磁力を有する希土類−Fe−B系合金粉末である
ことを特徴とする特許請求の範囲第1項記載の異方性プ
ラスチック磁石の製造方法。
(2) The anisotropic plastic magnet according to claim 1, wherein the ferromagnetic powder is a rare earth-Fe-B alloy powder having a coercive force of 10,000 (Oe) or more at room temperature. manufacturing method.
(3)前記強磁性粉末が、室温で8000(Oe)以上
の保磁力を有するSm−Co系合金粉末であることを特
徴とする特許請求の範囲第1項記載の異方性プラスチッ
ク磁石の製造方法。
(3) Manufacturing an anisotropic plastic magnet according to claim 1, wherein the ferromagnetic powder is an Sm-Co alloy powder having a coercive force of 8000 (Oe) or more at room temperature. Method.
JP62104369A 1987-04-30 1987-04-30 Manufacture of anisotropic plastic magnet Pending JPS63272008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104369A JPS63272008A (en) 1987-04-30 1987-04-30 Manufacture of anisotropic plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104369A JPS63272008A (en) 1987-04-30 1987-04-30 Manufacture of anisotropic plastic magnet

Publications (1)

Publication Number Publication Date
JPS63272008A true JPS63272008A (en) 1988-11-09

Family

ID=14378891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104369A Pending JPS63272008A (en) 1987-04-30 1987-04-30 Manufacture of anisotropic plastic magnet

Country Status (1)

Country Link
JP (1) JPS63272008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116104A (en) * 1988-10-26 1990-04-27 Toshiba Corp Manufacture of resin-bonded permanent magnet
US5562782A (en) * 1993-10-06 1996-10-08 Kawasaki Teitoku Co., Ltd. Method for producing magnetically anisotropic permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116104A (en) * 1988-10-26 1990-04-27 Toshiba Corp Manufacture of resin-bonded permanent magnet
US5562782A (en) * 1993-10-06 1996-10-08 Kawasaki Teitoku Co., Ltd. Method for producing magnetically anisotropic permanent magnet

Similar Documents

Publication Publication Date Title
EP0898778A1 (en) Bonded magnet with low losses and easy saturation
JPH04328805A (en) Anisotropic configuration soft magnet alloy powder and manufacture thereof
JPS62177158A (en) Permanent magnet material and its production
JPS63272008A (en) Manufacture of anisotropic plastic magnet
JPS62177150A (en) Permanent magnet material and its production
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS58157118A (en) Manufacture of resin-bonded type rare earth cobalt magnet
JPS60254707A (en) Manufacture of permanent magnet
JP2564868B2 (en) Permanent magnet manufacturing method
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH11329826A (en) Manufacture of anisotropic permanent magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPS6355908A (en) Manufacture of rare-earth resin magnet
JPH05175025A (en) Rare earth permanent magnet
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet
JPH02260615A (en) Quasi-anisotropic permanent magnet and manufacture thereof
JPS61113736A (en) Manufacture of sintered magnet of rare earth-transition metal compound
JPS63121603A (en) Production of rare earth-iron plastic magnet
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPH02173246A (en) Permanent magnet alloy and its production
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material