JPH05175025A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPH05175025A
JPH05175025A JP3356295A JP35629591A JPH05175025A JP H05175025 A JPH05175025 A JP H05175025A JP 3356295 A JP3356295 A JP 3356295A JP 35629591 A JP35629591 A JP 35629591A JP H05175025 A JPH05175025 A JP H05175025A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
magnet
weight
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3356295A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
雅亮 徳永
Makoto Shinoda
誠 篠田
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3356295A priority Critical patent/JPH05175025A/en
Publication of JPH05175025A publication Critical patent/JPH05175025A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain a large size anisotropic permanent magnet by warm setting process using raw material obtained by roughly milling thin plates of rapidly solidified R2Fe14B alloy (R is a rare earth element including Y). CONSTITUTION:A rare earth permanent magnet obtained by the warm process has the main phase of R2Fe14B (R is a rare earth element including Y), the maximum energy product of 30MGOe or more and weight of 500g or more. This rare earth magnet uses thin plates of rapidly solidified material manufactured by a single roll method under inactive atmosphere and is formed by roughly milling these thin plates into the particles having grain size of 300mum or less and then forming a mold of such particle with a press under the normal temperature. Thereafter, the formed material is densed in the temperature range of about 700 deg.C and is then set also in the temperature range of about 8700 deg.C. Thereby, an integrated and heavy weight anisotropic permanent magnet having no magnetic gap can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異方性を有する一体物
でその重量が500g以上である高性能大型希土類永久
磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance large rare earth permanent magnet which is an anisotropy and has a weight of 500 g or more.

【0002】[0002]

【従来の技術】最近、自由電子レーザやシンクロトロン
放射光装置の加速器等に、永久磁石を多数連続配置して
使用している。この種の加速器等では、電子ビームの通
路を挟んで両側に複数個の永久磁石を連続配置させ、各
永久磁石は隣接するものと対向するものとが互いに逆極
になるように構成され、通過する電子ビームに横方向の
周期的磁場を付与させるものがある。あるいは、パーマ
ロイ等と組み合わせた所謂ハイブリッブタイプと呼ばれ
る形式のものもある。加速器等に使用する永久磁石は磁
気特性の高いものが要求され、Sm−Co系やNd−F
e−B系の異方性希土類永久磁石が使用されている。こ
れら永久磁石は、磁石原料粉末を成形した後、焼結して
作製されるが、金型で成形する場合に、金型の外周に磁
場印加手段を設けて成形体に異方性を付与させている。
しかし、成形体の全体に有効に磁場を作用させるために
は、成形体をあまり大きくすることができず、永久磁石
を大きな形状に作成することができなかった。最近では
より大きな能力の加速器等が望まれており、そのような
場合、大型の永久磁石が必要であるので、複数個のブロ
ック磁石を接着剤で組立接着して大きな形状にして使用
している。また大型のクリアーモーターの磁気回路にお
いても大型化の傾向が見られ、本用途においても大型の
磁石が要求されている。
2. Description of the Related Art Recently, a large number of permanent magnets are continuously arranged and used in accelerators of free electron lasers and synchrotron radiation devices. In this type of accelerator, etc., a plurality of permanent magnets are continuously arranged on both sides of the passage of the electron beam, and each permanent magnet is constructed such that the adjacent magnet and the opposed magnet have opposite polarities. There is one that applies a lateral periodic magnetic field to the electron beam. Alternatively, there is a so-called hybrid type in combination with permalloy or the like. Permanent magnets used in accelerators and the like are required to have high magnetic properties, and Sm-Co and Nd-F
An eB anisotropic rare earth permanent magnet is used. These permanent magnets are manufactured by molding magnet raw material powder and then sintering it. However, when molding with a mold, magnetic field applying means is provided on the outer periphery of the mold to impart anisotropy to the molded body. ing.
However, in order to effectively apply the magnetic field to the entire compact, the compact could not be made too large, and the permanent magnet could not be formed in a large shape. Recently, there is a demand for an accelerator having a larger capacity, and in such a case, a large permanent magnet is required. Therefore, a plurality of block magnets are assembled and bonded with an adhesive to be used in a large shape. .. In addition, there is a tendency for the magnetic circuit of a large clear motor to become large, and a large magnet is required for this application.

【0003】[0003]

【発明が解決しようとする課題】従来、異方性永久磁石
を大きな形状に作製する場合、複数個のブロック磁石を
接着剤で接着させているので次のような問題があった。
接着剤が各ブロック磁石の相互間に介在して磁気的空隙
を形成するため、その部分で磁束密度が低下し、全体と
して磁気特性が不均一となり、それを使用した装置の性
能が低下してしまう。また大型の異方性永久磁石が自由
電子レーザ等に組込まれたときには、高真空および紫外
線の存在する環境におかれるので、永久磁石に使用した
接着剤が紫外線による光化学反応により樹脂の高分子構
造が破壊されるため劣化することが多い。さらに複数の
ブロック磁石を接着剤で組立て接着する作業は、煩雑で
あって、作製時間を多く要し、均一な品質のものを供給
することが困難であった。また前記永久磁石は磁石原料
粉末を成形した後、焼結して作製されるが、大きな異方
性永久磁石を作製しようとすると、焼結時に収縮し、そ
の際に割れやそりが生じることもあった。小型磁石に比
べて大型磁石の場合には特に割れやそりが大きい。ま
た、焼結磁石で磁気異方性のものを製造しようとする
と、磁場中での配向工程が必須となり、その為に、大型
の金型の中に原料粉末を充填して磁場を付与するのであ
るが、そのために磁場を発生する磁気回路が複雑、大容
量になるという問題点もあった。そこで本発明は、磁気
的空隙を生じない一体物で大重量の異方性永久磁石を提
供することを目的とする。
Conventionally, when an anisotropic permanent magnet is manufactured in a large shape, there are the following problems because a plurality of block magnets are bonded with an adhesive.
Since the adhesive intervenes between the block magnets to form a magnetic gap, the magnetic flux density decreases in that part, and the magnetic characteristics become non-uniform as a whole, and the performance of the device using it deteriorates. I will end up. Also, when a large anisotropic permanent magnet is incorporated into a free electron laser, etc., it is exposed to a high vacuum and an environment in which ultraviolet rays are present, so the adhesive used for the permanent magnets has a polymer structure of resin due to a photochemical reaction by ultraviolet rays. Is often destroyed because it is destroyed. Furthermore, the work of assembling and adhering a plurality of block magnets with an adhesive is complicated, requires a lot of production time, and it is difficult to supply a product of uniform quality. Further, the permanent magnet is produced by molding a magnet raw material powder and then sintering it. However, when a large anisotropic permanent magnet is produced, it shrinks during sintering, and cracks or warpage may occur at that time. there were. Cracks and warpage are particularly large in the case of large magnets as compared to small magnets. Further, when trying to manufacture a magnetically anisotropic sintered magnet, an orientation process in a magnetic field is essential, and therefore a raw material powder is filled in a large mold to apply a magnetic field. However, there is a problem that the magnetic circuit for generating a magnetic field is complicated and has a large capacity. Therefore, an object of the present invention is to provide a large-weight anisotropic permanent magnet that is a unitary body and does not generate a magnetic gap.

【0004】[0004]

【課題を解決するための手段】本発明の希土類永久磁石
は、 R2Fe14B(RはYを含む希土類元素)を主相
とする永久磁石であって、その最大エネルギー積および
重量がそれぞれ30MGOe以上および500g以上で
あることを特徴とする温間加工によって得られる希土類
永久磁石である。また、本発明に係る永久磁石は、最短
辺が5mm以上重量が500g以上であり磁気異方性温
間加工磁石の一体品であることを特徴とする希土類永久
磁石である。本発明の希土類磁石は不活性雰囲気中で単
ロール法によって作製される超急冷薄片を原料として用
いる。これら薄片を粗粉砕により300μm以下とし、
常温において成形体をプレスにより作製する。この際、
磁場印加は行わない。得られた成形体を700℃程度の
温度域で圧密化し、ほぼ理論密度に近いバルクを得る。
次に本バルクを同じく700℃程度の温度域で据込み加
工を行う。加工率は60〜75%である。本据込み加工
により据込み方向に平行に異方性化が進行する。このよ
うな製造方法を採用することによって、磁場中での配向
工程、焼結工程が不要であり、従来の焼結磁石では困難
であった単重500gr以上の大型磁石が容易に得られ
る。永久磁石の異方性方向の厚みを5mm以上にしたの
はそれ未満では強度が弱く、取りあつかいにくいためで
ある。本系永久磁石はR−Fe−B系であり、希土類元
素としてはNd,Pr,Dy,Tb等が用いられ、Fe
の一部はCo,Ni等で置換可能である。さらに添加物
としてV,Nb,W,Mo,Ga,Cu,Zn,Sn,
Al等を用いることもiHc向上のために有効である。
The rare earth permanent magnet of the present invention is a permanent magnet whose main phase is R 2 Fe 14 B (R is a rare earth element containing Y), and its maximum energy product and weight are It is a rare earth permanent magnet obtained by warm working, characterized in that it is 30 MGOe or more and 500 g or more. Further, the permanent magnet according to the present invention is a rare earth permanent magnet characterized in that the shortest side is 5 mm or more and the weight is 500 g or more and is an integrated product of a magnetic anisotropic warm-worked magnet. The rare earth magnet of the present invention uses, as a raw material, ultra-quenched flakes produced by a single roll method in an inert atmosphere. These flakes are coarsely crushed to 300 μm or less,
A molded body is manufactured by pressing at room temperature. On this occasion,
No magnetic field is applied. The obtained molded body is consolidated in a temperature range of about 700 ° C. to obtain a bulk having a density close to the theoretical density.
Next, this bulk is similarly upset processed in a temperature range of about 700 ° C. The processing rate is 60 to 75%. By this upsetting, anisotropy progresses parallel to the upsetting direction. By adopting such a manufacturing method, an orientation step and a sintering step in a magnetic field are unnecessary, and a large magnet having a unit weight of 500 gr or more, which is difficult with a conventional sintered magnet, can be easily obtained. The thickness of the permanent magnet in the anisotropic direction is set to 5 mm or more because if it is less than that, the strength is low and it is difficult to handle. The permanent magnet of this system is an R-Fe-B system, and Nd, Pr, Dy, Tb, etc. are used as rare earth elements.
Can be partially replaced with Co, Ni or the like. Further, as additives, V, Nb, W, Mo, Ga, Cu, Zn, Sn,
Using Al or the like is also effective for improving iHc.

【0005】[0005]

【作用】本発明の永久磁石は、焼結法によることがな
く、機械的な塑性変形過程で付与される磁気異方性を利
用するため、大型のものを製造することは、磁気的な構
造が伴わないために、簡単である。金型を機械的に大型
化し、プレスの大型のものを用いるだけでよいからであ
る。また、本発明の永久磁石は超急冷法と温間据込み加
工によって得られるので、結晶粒径が1μm以下で、含
有酸素量も少ないため高性能な磁気特性を有する。さら
に放射線の存在する環境における用途に対して、放射線
照射に起因する磁束の低下が焼結磁石よりも少ない。C
o置換に関しても超急冷据込み磁石では焼結磁石に見ら
れるようなNdCo2ラーベス相の生成が生じないた
め、高保磁力をCo置換量20at%まで維持すること
が可能であるので、高キュリー点化が容易である。本発
明の永久磁石は500g以上の大きな形状に一体物で形
成されるので、磁気特性が全体に均一となり、自由電子
レーザの加速器に使用した場合、性能のよい加速器とな
る。超急冷据込み磁石は保磁力発現のために焼結磁石で
用いられている加熱、急冷という熱処理が不要であり、
重量2500gの磁石の製造も容易である。
The permanent magnet of the present invention utilizes the magnetic anisotropy imparted during the mechanical plastic deformation process without using the sintering method. It's easy because there is no. This is because it is only necessary to mechanically enlarge the mold and use a large press. Further, since the permanent magnet of the present invention is obtained by the ultra-quenching method and warm upsetting, it has a crystal grain size of 1 μm or less and a small oxygen content, and thus has high performance magnetic characteristics. Furthermore, for applications in the environment where radiation is present, the decrease in magnetic flux due to radiation exposure is less than in sintered magnets. C
With respect to o substitution as well, since the NdCo 2 Laves phase, which is seen in sintered magnets, does not occur in the ultra-quenched upset magnet, it is possible to maintain a high coercive force up to a Co substitution amount of 20 at%, and thus a high Curie point. It is easy to convert. Since the permanent magnet of the present invention is integrally formed into a large shape of 500 g or more, the magnetic characteristics are uniform throughout, and when used as an accelerator for a free electron laser, the accelerator has good performance. The ultra-quench upset magnet does not require the heat treatment of heating and quenching that is used in sintered magnets to develop coercive force.
It is easy to manufacture a magnet weighing 2500 g.

【0006】[0006]

【実施例】【Example】

(実施例1)原子比でNd13.8FebalCo7.
5B6Ga0.75なる組成を有する合金を高周波溶解
によって作製し、インゴットに鋳造した。得られたイン
ゴットを再溶解し、回転する単ロール上において超急冷
した。ロール周速は20m/sec、得られた超急冷薄
片の厚みは30μmであった。本超急冷粉を35メッシ
ュ以下に粗粉砕した後、0.5wt%のジエチレングリ
コールと混合し、1500grの原料を準備した。本原
料を用いて常温で金型成形し、73×50×75(m
m)の成形体を得た。本成形体を750℃で圧密加工し
た。得られた圧密体の寸法は52.8×50×75(m
m)であった。また密度は平均で7.59g/ccであ
った。本圧密体を据込み速度0.1mm/sec、据込
み温度750℃の条件で据込み、13.2×150×1
00の据込み磁石を得た(異方性方向は13.2mmの
方向である)。重量は、1500grであった。この磁
石から13.0×10×10のテストピースを切り出し
て、得られた磁気特性は Br=12.7kG, b
Hc=12.2kOe iHc=15.7kOe,
(BH)max=38.8MGOeと優れたものであっ
た。比較例として、同一組成で10×22×30(m
m)の寸法の焼結磁石を製造したところ、また、単重は
50grしかないので30個もの接着をしなければなら
ず、継ぎ目での表面磁束密度分布は乱れてしまい大型リ
ニアモータに組み込んでも特性が不十分であったが、本
発明に係る永久磁石では、そのようなことはなく、リニ
アモータが円滑に動作した。
(Example 1) Nd13.8FebalCo7.
An alloy having a composition of 5B6Ga0.75 was produced by high frequency melting and cast into an ingot. The resulting ingot was redissolved and ultraquenched on a rotating single roll. The roll peripheral speed was 20 m / sec, and the thickness of the obtained ultraquenched flakes was 30 μm. This ultra-quenched powder was roughly crushed to 35 mesh or less, and then mixed with 0.5 wt% of diethylene glycol to prepare 1500 gr of raw material. Molded at room temperature using this raw material, 73 x 50 x 75 (m
A molded body of m) was obtained. The compact was compacted at 750 ° C. The dimensions of the obtained consolidated body are 52.8 × 50 × 75 (m
m). The density was 7.59 g / cc on average. This compact was installed at a swaging speed of 0.1 mm / sec and a swaging temperature of 750 ° C., 13.2 × 150 × 1
00 upsetting magnets were obtained (the anisotropic direction is 13.2 mm). The weight was 1500 gr. A 13.0 × 10 × 10 test piece was cut out from this magnet, and the obtained magnetic characteristics were Br = 12.7 kG, b
Hc = 12.2 kOe iHc = 15.7 kOe,
(BH) max = 38.8 MGOe, which was excellent. As a comparative example, 10 × 22 × 30 (m
When a sintered magnet with a size of m) was manufactured, and since the unit weight was only 50 gr, it was necessary to bond as many as 30 pieces, and the surface magnetic flux density distribution at the joint was disturbed, so even if it was incorporated into a large linear motor. Although the characteristics were insufficient, in the permanent magnet according to the present invention, this was not the case, and the linear motor operated smoothly.

【0007】(実施例2)原子比でNd14.3Feb
alCo7.5B6Ga1.25なる組成を有する超急
冷薄片を(実施例1)と同様の方法で作製した。2kg
の超急冷薄片を粗粉砕し、35メッシュ以下に調整し
た。調整後、0.8wt%のジエチレングリコールを混
合し、70×70×74の成形体を得た。本成形体を7
30℃で圧密化し、53.6×70×70の圧密体を得
た。密度は7.60g/ccである。本圧密体を据込み
速度0.3mm/sec、据込み温度730℃の条件で
据込み加工した。得られた据込み磁石の形状は111×
111×21.4(磁気異方性は21.4mmの方向)
であった。本大型磁石より10×10×21.0(磁気
異方性は21.0mmの方向)のテストピースを切り出
し、磁気特性を評価した。得られた磁気特性は Br=12.4kG,bHc=12.0kOe iHc=19kOe,(BH)max=37.0MGO
e であり、実施例1と同様、大型で高性能な磁石の得られ
ることがわかる。 (実施例3)表1に示す組成の超急冷薄片を作製し、粗
粉砕後0.3wt%のジエチレングリコールを混合し、
成形体を得た後、750℃で圧密、据込み加工を行い1
00×100×13.2(mm)単重1003gの据込
み磁石を作製した。磁気異方性の方向は13.2mmの
方向である。加工率は75%である。本大型磁石より1
0×10×13.0(異方性方向は13.0mmの方
向)のテストピースを切り出し、磁気特性を評価した。
結果を表2に示す。
(Example 2) Nd14.3Feb in atomic ratio
Ultra-quenched flakes having a composition of alCo7.5B6Ga1.25 were produced in the same manner as in (Example 1). 2 kg
The ultra-quenched flakes of No. 3 were coarsely crushed and adjusted to 35 mesh or less. After the adjustment, 0.8 wt% of diethylene glycol was mixed to obtain a 70 × 70 × 74 compact. This molded body is 7
It was consolidated at 30 ° C. to obtain a consolidated body of 53.6 × 70 × 70. The density is 7.60 g / cc. The compact was subjected to upsetting at an upsetting speed of 0.3 mm / sec and an upsetting temperature of 730 ° C. The shape of the obtained upset magnet is 111 ×
111 x 21.4 (magnetic anisotropy is 21.4 mm)
Met. A test piece of 10 × 10 × 21.0 (with a magnetic anisotropy of 21.0 mm) was cut out from the large magnet to evaluate the magnetic characteristics. The obtained magnetic characteristics are Br = 12.4 kG, bHc = 12.0 kOe iHc = 19 kOe, (BH) max = 37.0 MGO
Thus, it can be seen that a large, high-performance magnet can be obtained as in Example 1. (Example 3) Ultra-quenched flakes having the composition shown in Table 1 were prepared, coarsely crushed, and mixed with 0.3 wt% of diethylene glycol,
After obtaining a molded body, consolidate at 750 ° C and perform upsetting 1
An upset magnet having a unit weight of 00 × 100 × 13.2 (mm) and 1003 g was manufactured. The direction of magnetic anisotropy is the direction of 13.2 mm. The processing rate is 75%. 1 from this large magnet
A 0 × 10 × 13.0 (anisotropy direction is 13.0 mm direction) test piece was cut out and magnetic properties were evaluated.
The results are shown in Table 2.

【表1】 No. 組成 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 Nd13.5FebalCo7.5B6Ga0.75 2 Nd7.5Pr6FebalB6Ga0.4 3 Nd10Pr3Ce2FebalB6 4 Nd13.5Dy1.5FebalCo5B6Ga0.5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [Table 1] No. Composition ------------------------------------ 1 Nd13.5FebalCo7.5B6Ga0.75 2 Nd7.5Pr6FebalB6Ga0.43 Nd10Pr3Ce2FebalB6 4 Nd13. .5Dy1.5FebalCo5B6Ga0.5 ------------------------.

【表2】 No. Br bHc iHc (BH)max (kG) (kOe) (kOe) (MGOe) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 13.7 13.2 14.5 44.2 2 13.5 13.0 14.0 43.7 3 12.4 11.9 13.0 37.2 4 12.5 12.0 21.5 38.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 本結果によれば超急冷据込み磁石においては40MGO
eを超える高性能な1kgの大型磁石が得られる。
[Table 2] No. Br bHc iHc (BH) max (kG) (kOe) (kOe) (MGOe) ---------- ---------- 1 13.7 13.2 14.5 44.2 2 13.5 13.0 14.0 43.7 3 12.4 11.9 13.0 37.2 4 12.5 12 .0 21.5 38.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Is 40 MGO
A high-performance 1 kg large magnet exceeding e can be obtained.

【0008】[0008]

【発明の効果】本発明の希土類磁石は接着剤を用いず、
500g以上の一体物の希土類磁石が得られ、接着剤の
紫外線劣化もなく、又放射線損傷にも強いため、自由電
子レーザーの大型加速器に使用して性能の向上をはかる
ことができる。さらには大型リニアーモーターの磁気回
路においても(BH)max〜44MGOeの磁気特性
を生かせばその軽量化をはかることが可能となる。
The rare earth magnet of the present invention does not use an adhesive,
Since an integrated rare earth magnet of 500 g or more can be obtained, and the adhesive is not deteriorated by ultraviolet rays and is resistant to radiation damage, it can be used in a large accelerator for a free electron laser to improve the performance. Further, even in the magnetic circuit of a large linear motor, if the magnetic characteristics of (BH) max to 44 MGOe are utilized, the weight can be reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R2Fe14B(RはYを含む希土類元
素)を主相とする永久磁石であって、その最大エネルギ
ー積および重量がそれぞれ30MGOe以上および50
0g以上であることを特徴とする温間加工によって得ら
れる希土類永久磁石。
1. A permanent magnet having a main phase of R 2 Fe 14 B (R is a rare earth element containing Y), the maximum energy product and weight of which are 30 MGOe or more and 50, respectively.
A rare earth permanent magnet obtained by warm working, characterized in that it is 0 g or more.
【請求項2】 R2Fe14B(RはYを含む希土類元
素)を主相とする永久磁石であって、その最大エネルギ
ー積および据込み方向の厚みがそれぞれ30MGOe以
上および5mm以上であることを特徴とする請求項1記
載の希土類永久磁石。
2. A permanent magnet having R 2 Fe 14 B (R is a rare earth element containing Y) as a main phase, and having a maximum energy product and a thickness in the upsetting direction of 30 MGOe or more and 5 mm or more, respectively. The rare earth permanent magnet according to claim 1, wherein:
【請求項3】 最短辺が5mm以上重量が500g以上
であり磁気異方性温間加工磁石の一体品であることを特
徴とする希土類永久磁石。
3. A rare earth permanent magnet, characterized in that the shortest side is 5 mm or more and the weight is 500 g or more and is an integrated product of a magnetically anisotropic warm-worked magnet.
【請求項4】 重量が1000g以上である請求項3に
記載の希土類永久磁石。
4. The rare earth permanent magnet according to claim 3, which has a weight of 1000 g or more.
【請求項5】 重量が1500g以上である請求項3に
記載の希土類永久磁石。
5. The rare earth permanent magnet according to claim 3, which has a weight of 1500 g or more.
【請求項6】 重量が2000g以上である請求項3に
記載の希土類永久磁石。
6. The rare earth permanent magnet according to claim 3, which has a weight of 2000 g or more.
【請求項7】 重量が2500g以上である請求項3に
記載の希土類永久磁石。
7. The rare earth permanent magnet according to claim 3, which has a weight of 2500 g or more.
JP3356295A 1991-12-24 1991-12-24 Rare earth permanent magnet Pending JPH05175025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3356295A JPH05175025A (en) 1991-12-24 1991-12-24 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3356295A JPH05175025A (en) 1991-12-24 1991-12-24 Rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH05175025A true JPH05175025A (en) 1993-07-13

Family

ID=18448321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3356295A Pending JPH05175025A (en) 1991-12-24 1991-12-24 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH05175025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2023112894A1 (en) * 2021-12-13 2023-06-22 国立研究開発法人物質・材料研究機構 HOT-WORKED R-Fe-B MAGNET FOR VARIABLE-MAGNETIC-FORCE MOTOR, VARIABLE-MAGNETIC-FORCE MOTOR, AND ELECTRONIC DEVICE FOR VEHICLE AND HOUSEHOLD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
WO2023112894A1 (en) * 2021-12-13 2023-06-22 国立研究開発法人物質・材料研究機構 HOT-WORKED R-Fe-B MAGNET FOR VARIABLE-MAGNETIC-FORCE MOTOR, VARIABLE-MAGNETIC-FORCE MOTOR, AND ELECTRONIC DEVICE FOR VEHICLE AND HOUSEHOLD

Similar Documents

Publication Publication Date Title
JPWO2008132801A1 (en) R-T-B system sintered magnet and manufacturing method thereof
JPS60254708A (en) Manufacture of permanent magnet
JPS60221549A (en) Rare earth permanent magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2021130840A (en) Rare-earth magnet powder and method for producing the same
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH05175025A (en) Rare earth permanent magnet
JPS62177158A (en) Permanent magnet material and its production
EP2645381A2 (en) R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH0440842B2 (en)
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH1126272A (en) Manufacture of laminated permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPH044383B2 (en)
JPS62291903A (en) Permanent magnet and manufacture of the same
JPH04143221A (en) Production of permanent magnet
JP2591845B2 (en) Manufacturing method of bonded magnet
JPH01234518A (en) Production of rare earth permanent magnet stock
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPS6271201A (en) Bond magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050706

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090805

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees