JPS63270354A - Sintered pyroelectric ceramics - Google Patents

Sintered pyroelectric ceramics

Info

Publication number
JPS63270354A
JPS63270354A JP62104408A JP10440887A JPS63270354A JP S63270354 A JPS63270354 A JP S63270354A JP 62104408 A JP62104408 A JP 62104408A JP 10440887 A JP10440887 A JP 10440887A JP S63270354 A JPS63270354 A JP S63270354A
Authority
JP
Japan
Prior art keywords
pyroelectric
oxide
parts
nisno3
infrared detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62104408A
Other languages
Japanese (ja)
Other versions
JPH0471028B2 (en
Inventor
Kazuo Sasazawa
笹沢 一雄
Kazuyuki Oshima
大嶋 一幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62104408A priority Critical patent/JPS63270354A/en
Publication of JPS63270354A publication Critical patent/JPS63270354A/en
Publication of JPH0471028B2 publication Critical patent/JPH0471028B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a calcined pyroelectric ceramic giving a sensor having excellent infrared detection capability, by adding NiSnO3 and MnO2 and/or Cr2O3 to a specific ternary oxide at specific ratios. CONSTITUTION:Raw materials necessary for giving an oxide of formula [0.55<=x<=0.79; 0.2<=y<=0.35; 0.01<=z<=0.1; (x+y+z=1)] are weighed and mixed. The mixture is mixed with 2-15mol. of NiSnO3 (based on 100mol. of the oxide) and 0.1-3pts.wt. of MnO2 and/or Cr2O3 (based on 100pts.wt. of the sum of NiSnO3 and the oxide of formula). The mixture is formed and calcined to obtain the objective pyroelectric ceramics. Since an infrared detection element produced by using the above ceramics has excellent infrared detection sensitivity and high Curie point, no deterioration in the function of the element occurs even by the heat of soldering.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、人や動物の接近、物体の有無などを検知する
ときに使用する赤外線センサーなどの検知素子として好
適な焦電性磁器焼成体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fired pyroelectric porcelain body suitable as a sensing element such as an infrared sensor used to detect the approach of a person or animal, the presence or absence of an object, etc.

従来の技術 人や動物が特定区域に侵入した場合にこれを検知してそ
の侵入を知ることができるようなシステムを例えば住居
等に用いることが行なわれているが、これには人や動物
が発する赤外線を検知することができる赤外線センサー
が用いられている。
Conventional Techniques Systems that can detect when a person or animal has invaded a specific area and notify the user of the intrusion have been used in, for example, a residence. An infrared sensor is used that can detect the emitted infrared rays.

また、物体が発する赤外線を検知してその有無や移動を
知ることができる、いわゆる非接触温度測定にも赤外線
センサーが用いられている。
Infrared sensors are also used for so-called non-contact temperature measurement, which detects infrared rays emitted by objects to determine their presence and movement.

このような赤外線センサーには、半導体の光伝導や光起
電力を利用した量子型のもの、例えばHgCdTeやP
bSを利用したものが知られており、これらは感度が良
く応答性に優れているが、使用に際して極低温に冷却す
る必要がありその取扱性に問題があることと、赤外線の
波長によりその感度が異なるという問題点もあり、汎用
性に欠ける。
Such infrared sensors include quantum type sensors that utilize semiconductor photoconduction and photovoltaic force, such as HgCdTe and P
Products using bS are known, and these have good sensitivity and excellent response, but they have problems with handling as they need to be cooled to an extremely low temperature before use, and their sensitivity is limited due to the wavelength of infrared rays. There is also the problem that they are different, so they lack versatility.

一方、焦電型赤外線センサーが開発され、これは感度な
どの性能面で上記のセンサーより劣るが、特に冷却を必
要とすることもなく、また感度の波長依存性もないなど
の点で優れている。
On the other hand, a pyroelectric infrared sensor has been developed, and although it is inferior to the above sensors in terms of performance such as sensitivity, it is superior in that it does not require cooling and its sensitivity is not wavelength dependent. There is.

この焦電型赤外線センサーとして使用される焦電性磁器
焼成体としては、(pbl−Xcax )Ti03(た
だし、Xは0.1〜0.4の数値)で示される複合ペロ
ブスカイト構造の酸化物にMnO、NiO−、NbzO
sの内から選ばれた一種を重量比で0.01〜2%添加
配合してなる焼成体が知られている。一般に焦電型赤外
線センサーの性能は、その焦電効果により発生する電圧
に対する評価指数Fv=P/ C,・ε(C・am/J
)  (ここで、P (C/co? ・”C)は焦電係
数、Cv(J/、ffl・℃)は定積比熱、εは誘電率
を表す〕で判定されるが、これに上記の焦電性磁器焼成
体を当てはめると、F v=3.5〜5.5(XIO−
” C−Cl1l/J)、P=2〜6(×1O−IC/
cI112・℃)、ε=190〜450である。この焦
電型赤外線センサーは、赤外線検出装置に組み込まれる
が、この際回路基板に半田付けするときに、溶融半田の
熱が伝わるのでキュリ一温度が高いことが望まれる。上
記焦電性磁器焼成体のキュリ一点は、200〜400℃
であり、特に評価指数の最も高いところで、 F  v =5.5(XIO−”  C・cm/J) 
 、P  =3.5(XIO−’C/d・℃)、ε=1
90であり、そのキュリ一点は250″Cである。
The fired pyroelectric porcelain body used in this pyroelectric infrared sensor is an oxide with a composite perovskite structure represented by (pbl-Xcax)Ti03 (where X is a numerical value of 0.1 to 0.4). MnO, NiO-, NbzO
A fired body is known in which 0.01 to 2% by weight of one selected from s is added and blended. In general, the performance of a pyroelectric infrared sensor is determined by the evaluation index Fv=P/C,・ε(C・am/J) for the voltage generated by its pyroelectric effect.
) (Here, P (C/co?・”C) is the pyroelectric coefficient, Cv (J/, ffl・℃) is the constant volume specific heat, and ε is the dielectric constant.) When applying the pyroelectric porcelain fired body of F v = 3.5 to 5.5 (XIO-
"C-Cl1l/J), P=2~6(x1O-IC/
cI112·°C), ε=190 to 450. This pyroelectric infrared sensor is incorporated into an infrared detection device, but when soldering to a circuit board, the heat of the molten solder is transferred, so a high Curie temperature is desirable. The temperature of the above pyroelectric porcelain fired body is 200 to 400℃.
In particular, at the highest evaluation index, F v = 5.5 (XIO-"C cm/J)
, P = 3.5 (XIO-'C/d・℃), ε=1
90, and its curri point is 250″C.

発明が解決しようとする問題点 近年、インテリジェントビルが非常に多く建造されるよ
うになり、建物への不法侵入を防止する警報器が多く使
用されるようになってきた。しかしながら、上記の焦電
型赤外線センサーを用いた警報器では誤動作が多い。こ
の原因の主なものは、警報器内において赤外線センサー
が赤外線を検知して警報を発生するときの発生信号を数
十デシベル程度感度を上げて使用していることにより、
ノイズにより動作するためである。
Problems to be Solved by the Invention In recent years, a large number of intelligent buildings have been constructed, and many alarms have been used to prevent unauthorized entry into the buildings. However, alarm devices using the above-mentioned pyroelectric infrared sensors often malfunction. The main reason for this is that the infrared sensor inside the alarm device detects infrared rays and uses the generated signal with increased sensitivity of several tens of decibels to generate an alarm.
This is because it operates due to noise.

これを解決するためには、評価指数Fvを大きくして赤
外線検知能力を高め、警報発生信号の感度を大きくしな
くても良いようにすることが考えられ、これには焦電係
数Pを高く、比誘電率εを小さくするとともに、赤外線
センサーを組み込むときの半田の熱よりキュリ一温度を
高くする工夫が望まれる。
In order to solve this problem, it is possible to increase the evaluation index Fv to increase the infrared detection ability so that the sensitivity of the alarm signal does not need to be increased. It is desirable to reduce the dielectric constant ε and to raise the Curie temperature higher than the heat of solder when incorporating an infrared sensor.

本発明の目的は、評価指数Fvが例えば6.0×10−
 ” (C−cm/J)以上であって、キュリ一温度を
250℃以上にすることができる焦電性磁器焼成体を提
供することにある。
The purpose of the present invention is that the evaluation index Fv is, for example, 6.0×10−
(C-cm/J) or more, and the Curie temperature can be made to be 250°C or more.

問題点を解決するための手段 本発明は、上記問題点を解決するために、一般式 %式%: (ただし、X +y +z =1) である酸化物と、この酸化物100モル部に対してN1
5n032〜15モル部と、このN15nO,及び上記
酸化物の総和100重量部に対しMnO□及びCr、0
3の内の少なくとも一種を0.1〜3.0重量部含有す
ることを特徴とする焦電性磁器焼成体を提供するもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an oxide having the general formula %: (where X + y + z = 1) and Te N1
5n032 to 15 mol parts, this N15nO, and 100 parts by weight of the above oxide, MnO□ and Cr, 0
The object of the present invention is to provide a fired pyroelectric porcelain body characterized by containing 0.1 to 3.0 parts by weight of at least one of the following.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明においては、PbTi0+  CaTi0=  
PbCu+/Jbz/:+03の三元系酸化物を含有す
るが、PbCuIyxNbty*Oxが存在することに
より焦電係数Pが大となり、これによりFvを大すにす
ることができる。また、このPを大にすることによりキ
ュリ一点を250℃以上にすることができる。上記各酸
化物の割合は、PbTiO3が55モル%以上79モル
%以下、CaTi0zが20モル%以上35モル%以下
、PbCu 17*Nbzyx03が1モル%以上10
モル%以下であり、PbCu+zJbzzz03の使用
割合が上記範囲の下限未満、あるいはこの範囲の上限を
越えるとFvを6以上にすることができない。また、P
bTi0aが55モル%未満であるとキュリ一点が25
0℃未満になってしまう。
In the present invention, PbTi0+ CaTi0=
Although it contains a ternary oxide of PbCu+/Jbz/:+03, the presence of PbCuIyxNbty*Ox increases the pyroelectric coefficient P, thereby increasing Fv. In addition, by increasing this P, the temperature of a single point of Curie can be increased to 250° C. or higher. The proportions of each of the above oxides are as follows: PbTiO3 is 55 mol% or more and 79 mol% or less, CaTi0z is 20 mol% or more and 35 mol% or less, PbCu 17*Nbzyx03 is 1 mol% or more and 10
If the proportion of PbCu+zJbzz03 used is less than the lower limit of the above range or exceeds the upper limit of this range, Fv cannot be increased to 6 or more. Also, P
When bTi0a is less than 55 mol%, one curri point is 25
The temperature will drop below 0℃.

このようなPbTi03CaTi03  PbCu+/
3Nbz/zO:+の三元系酸化物にN15nO+を加
えるが、これは比誘電率εを下げる作用があり、これに
よりFvをさらに大きくすることができる。
Such PbTi03CaTi03 PbCu+/
N15nO+ is added to the ternary oxide of 3Nbz/zO:+, which has the effect of lowering the dielectric constant ε, thereby making it possible to further increase Fv.

また、MnO□、Cr2O2は少なくとも一種、すなわ
ちいずれか一方又は両方が用いられるが、これらが用い
られることにより焼結性を向上させることができる。そ
の使用割合は、上記の三元系酸化物100重量部に対し
て0.1〜3.0重量部であり、。
Further, at least one type of MnO□ and Cr2O2, that is, one or both of them, can be used, and by using these, the sinterability can be improved. The proportion used is 0.1 to 3.0 parts by weight per 100 parts by weight of the above ternary oxide.

0.1より少ないと焼結性が悪くなり、センサー用素子
として使用できない。また、3.0より多くなると、異
常な粒子の成長を起こし、Fvが6.0未満となり焦電
作用が悪くなる。
If it is less than 0.1, the sinterability will be poor and it cannot be used as a sensor element. On the other hand, if it exceeds 3.0, abnormal particle growth occurs, Fv becomes less than 6.0, and the pyroelectric effect deteriorates.

本発明の焦電性磁器焼成体を製造するには、上記の各成
分粉末をアルミナポア)ミル等の粉砕手段を用いて混合
する。この際例えば水とともに湿式混合し、この混合後
説水、乾燥を行ってもよい。
To produce the fired pyroelectric porcelain body of the present invention, the above-mentioned component powders are mixed using a pulverizing means such as an alumina pore mill. At this time, for example, the mixture may be wet-mixed with water, and after this mixing, water and drying may be performed.

この後この混合物を例えば800〜900℃で1〜2時
間仮焼した後上記粉砕手段により粉砕して原料粉末とし
、これをプレスによりシート化してもよく、また上記混
合物をポリビニルアルコールの如き樹脂と混合して造粒
し、ついでこれをシートに成形しても良い。
Thereafter, this mixture is calcined for 1 to 2 hours at 800 to 900°C, and then pulverized by the above-mentioned pulverizing means to obtain a raw material powder, which may be formed into a sheet by pressing, or the above-mentioned mixture may be mixed with a resin such as polyvinyl alcohol. They may be mixed and granulated, and then formed into a sheet.

これらのシートから所定形状の円板を打ち抜き、これを
例えばマグネシア製容器に入れ、例えば1100℃〜1
250℃で0.5〜4時間焼成し、得られた円板の両面
を研磨し、この研磨面に銀等の金属を蒸着させて蒸着膜
を設け、これを電極とする。
A disk of a predetermined shape is punched out from these sheets, placed in a container made of magnesia, and heated at 1100°C to 100°C, for example.
After firing at 250° C. for 0.5 to 4 hours, both surfaces of the obtained disk are polished, and a metal such as silver is deposited on the polished surfaces to form a deposited film, which is used as an electrode.

また、上記シートに例えば銀ペーストを塗布・乾燥し、
電極塗膜を形成させた後例えば600〜800℃で焼成
しても良い。
In addition, for example, silver paste is applied to the sheet and dried,
After forming the electrode coating film, it may be baked at, for example, 600 to 800°C.

このように電極を形成された焼成体は、例えばシリコー
ン油等の絶縁物に浸漬されて、一定時間電圧を印加され
て分極処理を施され、さらにエージング処理を施される
。この後、例えば31×3鰭の角片に切り出され、赤外
線検出素子としての焦電型赤外線センサーができあがる
The fired body with electrodes formed thereon is immersed in an insulator such as silicone oil, subjected to a polarization treatment by applying a voltage for a certain period of time, and further subjected to an aging treatment. Thereafter, it is cut into a 31×3 fin corner piece, for example, to complete a pyroelectric infrared sensor as an infrared detection element.

この焦電型赤外線センサーを例えば警報器に組み込んで
使用すると、赤外線検出素子の分極が赤外線の熱により
変化し、電位差を発生するのでこれを検出して赤外線の
有無及びその強度を知ることができる。
When this pyroelectric infrared sensor is used by incorporating it into an alarm, for example, the polarization of the infrared detection element changes due to the heat of the infrared rays, generating a potential difference, which can be detected to determine the presence or absence of infrared rays and its intensity. .

実施例 次に本発明の詳細な説明する。Example Next, the present invention will be explained in detail.

実施例l PbTiOx 187.92g(62モル部) 、Ca
TiO344,87g(33モル部) 、PbCu1/
xNbzisOx 16.92g(5モル部)、N15
nOz 22.54g(10モル部) 、Mn0z 1
.39g(0,5重量%)を水500m lとともにボ
ールミルにて20時間攪拌混合し、ついで脱水、乾燥を
行った。この乾燥して得た粉末100重量部にポリビニ
ルアルコールの10重量%水溶液を20重量部加え、プ
レスにより造粒後直径10m、厚さ0.5mmの円板を
成形し、これを1100℃、2時間大気中で焼成するこ
とにより、直径8.5龍、厚さ0.43flの磁器基板
を得た。
Example 1 PbTiOx 187.92g (62 mol parts), Ca
TiO344,87g (33 mole parts), PbCu1/
xNbzisOx 16.92g (5 mole parts), N15
nOz 22.54g (10 mole parts), MnOz 1
.. 39 g (0.5% by weight) was stirred and mixed with 500 ml of water in a ball mill for 20 hours, and then dehydrated and dried. 20 parts by weight of a 10% by weight aqueous solution of polyvinyl alcohol was added to 100 parts by weight of the powder obtained by drying, and after granulation with a press, a disk with a diameter of 10 m and a thickness of 0.5 mm was formed. By firing in the atmosphere for an hour, a ceramic substrate with a diameter of 8.5 mm and a thickness of 0.43 fl was obtained.

この磁器基板を厚さ0.2 flまで研磨し、表裏両面
に銀ペースト(銀粉末11重量部に対して鉛、硼素、珪
素系ガラスフリットを2重量部、ブチルカルピトールア
セテートとエチルセルローズを9=1に混合した有機ビ
ヒクルを20重置部含有する組成物)を塗布し、650
℃、10分間焼付けを行った。
This ceramic substrate was polished to a thickness of 0.2 fl, and silver paste (11 parts by weight of silver powder, 2 parts by weight of lead, boron, silicon-based glass frit, 9 parts by weight of butyl calpitol acetate and ethyl cellulose) was applied to both the front and back surfaces. A composition containing 20 parts of an organic vehicle mixed with
Baking was performed at ℃ for 10 minutes.

このようにして電極を形成した磁器基板を100℃、1
0分間シリコンオイル中に800vで分極処理を行い、
カッターを用いて3fl角に切断して焦電型赤外線セン
サーを作成し、キュリ一点の測定を行うとともに、焦電
係数P、比誘電率εを測定してFvを算出し、これらを
表2に示す。計算に当たってはC,=3.I J/cl
 −℃を採用した。
The ceramic substrate on which electrodes were formed in this way was heated at 100°C for 1
Perform polarization treatment at 800V in silicone oil for 0 minutes,
A pyroelectric infrared sensor was created by cutting it into 3 fl square pieces using a cutter, and one Curie point was measured.The pyroelectric coefficient P and relative permittivity ε were also measured to calculate Fv, and these are shown in Table 2. show. For calculation, C, = 3. I J/cl
−℃ was adopted.

なお、測定方法は次の通りである。The measurement method is as follows.

まず、比誘電率εはJIS C−5102に基づく静電
容量の測定から計算式で求め、キュリ一点は恒温槽にて
各温度レベルにおける静電容量の変化を調べ、最も高い
静電容量のところをさがすことにより求めた。次に焦電
係数Pは、等速昇温5(℃/分)で発生した電流値をピ
コアンメータで読み、その値の0〜150℃の範囲の変
化値を求めることによって得られた。
First, the relative dielectric constant ε is calculated from capacitance measurements based on JIS C-5102, and the Curie point is determined by examining the change in capacitance at each temperature level in a constant temperature bath, and determining the highest capacitance. This was determined by searching for . Next, the pyroelectric coefficient P was obtained by reading the current value generated at a constant temperature increase of 5 (° C./min) with a picoammeter and determining the change in the value in the range of 0 to 150° C.

実施例2〜16 実施例1において、PbTiO311CaTi03、P
bCu + 7ffNbz/30s、NiSnO3、M
n0z及び/又はCrzChを表1に示す使用割合にし
た以外は同様にしてそれぞれ赤外線センサーを作製し、
これを実施例1と同様に処理して各項目について測定し
た結果及び算出した結果を表2に示す。
Examples 2 to 16 In Example 1, PbTiO311CaTi03, P
bCu + 7ffNbz/30s, NiSnO3, M
Infrared sensors were produced in the same manner except that n0z and/or CrzCh were used in the proportions shown in Table 1,
This was processed in the same manner as in Example 1, and the results of measuring each item and the calculated results are shown in Table 2.

なお、上記実施例のPbTi0.、CaTiOx、Pb
Cu+7Jbz/:+Ozの組成を各実施例No、に対
応させて図の三角ダイヤグラムに示す。
Note that PbTi0. , CaTiOx, Pb
The composition of Cu+7Jbz/:+Oz is shown in the triangular diagram in the figure in correspondence with each example number.

表1(実於散I配合) 表2 上記結果より、実施例のものはいずれもFvが6以上で
あり、キュリ一温度が260℃以上であることがわかる
Table 1 (Jitsusan I formulation) Table 2 From the above results, it can be seen that all of the examples had an Fv of 6 or more and a Curie temperature of 260° C. or more.

発明の効果 本発明によれば、PbTi0z−CaTiO,−PbC
u、zJbzz、、0:+系にNiSnO3を加え、さ
らにMnO2、Crz02の少なくとも一種を主成分と
して含有する磁器焼成体を提供できるので、PbTi0
:+  CaTi0z系のものよりもさらに評価指数F
vを大きく、それだけ赤外線の検 。
Effects of the Invention According to the present invention, PbTiOz-CaTiO, -PbC
By adding NiSnO3 to the u, zJbzz, 0:+ system, it is possible to provide a fired porcelain body containing at least one of MnO2 and Crz02 as a main component.
:+ Evaluation index F even higher than that of CaTi0z series
The larger v is, the more infrared light will be detected.

出感度を高くできるので、これを警報器に使用した場合
にその警報信号のゲインを高くする必要がなく、ノイズ
により警報器の誤動作を少なくできる。また、キュリ一
温度も250℃以上であり、これは半田付は時の温度よ
り高(できるので、赤外線センサーとしての機能を損な
うようなこともないようにできる。
Since the output sensitivity can be increased, when this is used in an alarm, there is no need to increase the gain of the alarm signal, and malfunctions of the alarm due to noise can be reduced. Furthermore, the Curie temperature is 250°C or higher, which means that soldering can be done at a higher temperature than normal, so it can be done without impairing the function as an infrared sensor.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例の焦電性磁器焼成体のPbTiOs
、CaTi0.、PbCu+zzNbz/J3の3成分
の組成を示す三角ダイヤグラムである。 ・ 図中の数字は実施例の番号を示す。 昭和62年04月30日
The figure shows a PbTiOs pyroelectric porcelain fired body according to an example of the present invention.
, CaTi0. , PbCu+zzNbz/J3 is a triangular diagram showing the composition of the three components. - The numbers in the figure indicate the numbers of the examples. April 30, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 xPbTiO_3−yCaTiO_3−zPbCu_1
_/_3Nb_2_/_3O_3で表され、x、y、z
が 0.55≦x≦0.79 0.20≦y≦0.35 0.01≦z≦0.10 (ただし、x+y+z=1) である酸化物と、この酸化物100モル部に対してNi
SnO_32〜15モル部と、このNiSnO_3及び
上記酸化物の総和100重量部に対しMnO_2及びC
r_2O_3の内の少なくとも一種を0.1〜3.0重
量部含有することを特徴とする焦電性磁器焼成体。
(1) General formula xPbTiO_3-yCaTiO_3-zPbCu_1
_/_3Nb_2_/_3O_3, x, y, z
is 0.55≦x≦0.79 0.20≦y≦0.35 0.01≦z≦0.10 (however, x+y+z=1) and per 100 mole parts of this oxide. Ni
MnO_2 and C for a total of 100 parts by weight of SnO_32 to 15 mol parts, this NiSnO_3 and the above oxide.
A fired pyroelectric ceramic body characterized by containing 0.1 to 3.0 parts by weight of at least one of r_2O_3.
JP62104408A 1987-04-30 1987-04-30 Sintered pyroelectric ceramics Granted JPS63270354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104408A JPS63270354A (en) 1987-04-30 1987-04-30 Sintered pyroelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104408A JPS63270354A (en) 1987-04-30 1987-04-30 Sintered pyroelectric ceramics

Publications (2)

Publication Number Publication Date
JPS63270354A true JPS63270354A (en) 1988-11-08
JPH0471028B2 JPH0471028B2 (en) 1992-11-12

Family

ID=14379888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104408A Granted JPS63270354A (en) 1987-04-30 1987-04-30 Sintered pyroelectric ceramics

Country Status (1)

Country Link
JP (1) JPS63270354A (en)

Also Published As

Publication number Publication date
JPH0471028B2 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JPS63270354A (en) Sintered pyroelectric ceramics
JPS63270357A (en) Sintered pyroelectric ceramics
JPS63270356A (en) Sintered pyroelectric ceramics
JPS63270355A (en) Sintered pyroelectric ceramics
JPS6229008A (en) Dielectric ceramic composition
JPH0862038A (en) Infrared detection element and production thereof
JP2531231B2 (en) Thermal infrared sensor
JPS60191051A (en) Pyroelectric type infrared ray decting element
JPS60191052A (en) Pyroelectric type infrared ray decting element
JPS60191053A (en) Pyroelectric type infrared ray decting element
JP2571658B2 (en) Pyroelectric porcelain composition
JPH04342459A (en) Lead titanate piezoelectric ceramic material
KR100295992B1 (en) Volimeter-type infrared sensor composition
KR100328867B1 (en) Composition of pyroelectric ceramics for infrared sensor
JPH06100505B2 (en) Temperature sensor and temperature detector using the same
JPH01261876A (en) Pyroelectric porcelain composition
JPS6191528A (en) Pyroelectric type infrared rays detecting element
KR840000260B1 (en) Temperature-responsive element
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPS60191054A (en) Pyroelectric type infrared ray decting element
JPH05182523A (en) Dielectric porcelain composition
JP2571386B2 (en) High dielectric constant dielectric porcelain composition
JP2833751B2 (en) Porcelain composition for pyroelectric elements
KR0146004B1 (en) Pyroelectric infrared sensor ceramic sintering and the manufacturing method thereof
CN117986013A (en) BNT-based leadless pyroelectric ceramic material and preparation method and application thereof