JPH01261876A - Pyroelectric porcelain composition - Google Patents

Pyroelectric porcelain composition

Info

Publication number
JPH01261876A
JPH01261876A JP63092194A JP9219488A JPH01261876A JP H01261876 A JPH01261876 A JP H01261876A JP 63092194 A JP63092194 A JP 63092194A JP 9219488 A JP9219488 A JP 9219488A JP H01261876 A JPH01261876 A JP H01261876A
Authority
JP
Japan
Prior art keywords
pyroelectric
porcelain
composition
curie temperature
subcomponent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092194A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ito
信宏 伊藤
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63092194A priority Critical patent/JPH01261876A/en
Publication of JPH01261876A publication Critical patent/JPH01261876A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain dense composition wherein mechanical strength is large, pyroelectricity evaluation index is large, and Curie temperature is comparatively high, by using compound with a specified composition as main component, and containing Mn as subcomponent. CONSTITUTION:Main component is compound shown by the following general expression; (Pb1-xCax) [(Ni1/3Nb2/3)yTi1-y]O3 (where 0.25<=x<=0.35, 0.01<=y<=0.06). Subcomponent is porcelain composition containing Mn of 0.3-2.5atom%. After Pb3O4, CaCO3, NiO, NbO3, TiO2 and MnO2, as original material, are weighted and wet-mixed, these are dried and calcinated. After the calcinated material is grinded, and granulated by mixing organic binder, they are dried, ordered, press-molded, baked, and a porcelain circular plate is obtained. The relative permittivity of the porcelain composition is adequately 200-360, and the S/N ratio estimation index (FD) is improved. Further the Curie temperature also is high, and the anti-deflection strength also is increased by a factor of 1.6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は焦電性磁器組成物に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to pyroelectric porcelain compositions.

(従来の技術) 焦電体は、赤外放射エネルギーを吸収して温度変化を生
じると、自発分極の変化により表面に電荷を生じること
がら焦電型赤外線センサーとして利用されているが、そ
の焦電体材料としては、LiT ao s、LiNbO
5、硫酸グリシン(TGS)、S rxBat−xNb
*o*(S B N)、チタン酸鉛系磁器、チタン酸ジ
ルコン酸鉛系磁器、ゲルマニウム酸鉛系磁器等が知られ
ている。
(Prior art) Pyroelectric materials are used as pyroelectric infrared sensors because when they absorb infrared radiation energy and cause a temperature change, a charge is generated on the surface due to a change in spontaneous polarization. As electric material, LiTaos, LiNbO
5. Glycine sulfate (TGS), S rxBat-xNb
*o* (S B N), lead titanate-based porcelain, lead zirconate titanate-based porcelain, lead germanate-based porcelain, etc. are known.

通常、これらの材料を用いた焦電型赤外線センサーは、
焦電体に電極を形成した焦電素子そのものではインピー
ダンスが高すぎて実用的でないため、一般には、電界効
果トランジスタで適当なインピーダンスに変換して出力
させるようにしたものが実用に供されている。この赤外
線センサーの良否は、出力電圧感度に対する材料評価指
数(Fv)、及びノイズを含めた比検出率(D)に対す
る材料評価指数(F 、、以下、S/N比評価指数と記
す。)で評価されるが、これらの評価指数は、焦電体の
焦電係数をλ、比熱をCp、密度をd1比誘電率をε1
、誘電正接をtanδとすると、それぞれ次式で与えら
れる。
Typically, pyroelectric infrared sensors using these materials are
Since the impedance of a pyroelectric element itself, which is made by forming electrodes on a pyroelectric material, is too high for practical use, it is generally put into practical use that uses a field effect transistor to convert the impedance to an appropriate impedance before outputting it. . The quality of this infrared sensor is determined by the material evaluation index (Fv) for output voltage sensitivity and the material evaluation index (F, hereinafter referred to as S/N ratio evaluation index) for specific detection rate (D) including noise. These evaluation indices are: λ for the pyroelectric coefficient, Cp for the specific heat, d1 for the density, and ε1 for the relative dielectric constant.
, and the dielectric loss tangent is given by the following equations.

Fv=λ/Cp−d・ε、     ・・・・・・(1
)F0=λ/Cp−d−、/””T;ηITフ′ ・・
・・・・(2)従って、センサーとしてはFvおよびF
oの値が大きいほど優れていることから、焦電体材料と
しては、(1)式および(2)式から、焦電体の温度変
化に対する自発分極の変化、即ち、焦電体の焦電係数(
λ)が大きく、また、比誘電率が小さく、誘電圧接が小
さいことが要求される。しかし、比誘電率が小さくなる
ほど、センサーが外部回路の浮遊容量の影響を受は易(
なって、センサーのノイズが大きくなるため、比誘電率
はある程度大きいことが要求され、実用上200以上で
あることが望まれる。
Fv=λ/Cp-d・ε, ・・・・・・(1
)F0=λ/Cp-d-,/""T;ηITF'...
...(2) Therefore, as a sensor, Fv and F
Since the larger the value of o, the better the pyroelectric material, from equations (1) and (2), the change in spontaneous polarization with respect to temperature change of the pyroelectric material, that is, the pyroelectricity of the pyroelectric material coefficient(
λ) is required to be large, the relative dielectric constant is small, and the dielectric voltage junction is required to be small. However, the smaller the dielectric constant, the more susceptible the sensor is to the stray capacitance of external circuits (
As a result, the noise of the sensor becomes large, so that the dielectric constant is required to be relatively large, and is practically desired to be 200 or more.

また、センサーの温度安定性の観点から、焦電体はその
焦電性が消失する温度、即ち、キュリー温度が少なくと
も150°C以上あることが望ましい。
Further, from the viewpoint of temperature stability of the sensor, it is desirable that the pyroelectric substance has a temperature at which its pyroelectricity disappears, that is, a Curie temperature of at least 150°C or higher.

しかしながら、前記公知焦電体材料のうち硫酸グリシン
やSBNは、比誘電率が30〜50と小さいため、材料
評価指数の点からは好ましいが、焦電素子の電極面積が
小さい場合、素子容量が外部回路の浮遊容量より小さ(
なり、センサーのノイズが太き(なるという欠点があり
、また、LiTag、、LiNbO5、ゲルマニウム酸
鉛系磁器は、比誘電率が約60以下で硫酸グリシンやS
BNと同様にノイズが大きくなるという欠点がある他、
前二者は比較的高価であり、後者はキュリー温度が低い
ため焦電素子の性能の温度安定性に劣るという欠点があ
った。さらに、チタン酸鉛系磁器は、キュリー温度が4
70℃と高いが、比誘電率が200以下と小さく、焼結
しにくいという欠点がある。このため、現在では、チタ
ン酸ジルコン酸鉛系磁器が汎用されている。
However, among the known pyroelectric materials, glycine sulfate and SBN have a small dielectric constant of 30 to 50, so they are preferable from the viewpoint of material evaluation index, but when the electrode area of the pyroelectric element is small, the element capacitance is Smaller than the stray capacitance of the external circuit (
LiTag, LiNbO5, and lead germanate-based porcelain have a relative dielectric constant of about 60 or less, making it difficult to use glycine sulfate or S.
In addition to the disadvantage of increased noise like BN,
The former two are relatively expensive, and the latter has a low Curie temperature, so the temperature stability of the pyroelectric element performance is poor. Furthermore, lead titanate-based porcelain has a Curie temperature of 4
Although it is as high as 70°C, it has the disadvantage that it has a small dielectric constant of 200 or less and is difficult to sinter. For this reason, lead zirconate titanate-based porcelain is now widely used.

(発明が解決しようとする課題) しかしながら、チタン酸ジルコン酸鉛系磁器、例えば、
Pb (Sn+ztSblzt)03−PbT 10、
−PbZrO,からなる主成分に、副成分としてMnO
,、Coo、Cr、O,などを添加含有させたものは、
実用上比較的良好な焦電性能を示すが、キュリー温度が
200°C以下と低く、しかも、抗折強度が小さいため
、電極を形成する際あるいは分極の際にワレや欠けを生
じ易いという問題があった。
(Problem to be solved by the invention) However, lead zirconate titanate-based porcelain, for example,
Pb (Sn+ztSblzt)03-PbT 10,
-PbZrO, as a main component, and MnO as a subcomponent.
,,Coo, Cr, O, etc. are added.
Although it shows relatively good pyroelectric performance in practical use, its Curie temperature is low at 200°C or less, and its bending strength is low, so it tends to crack or chip when forming electrodes or polarizing. was there.

従って、本発明は、緻密で機械的強度が大きく、焦電評
価指数が高くキュリー温度が比較的高い焦電性磁器組成
物を得ることを目的とする。
Therefore, an object of the present invention is to obtain a pyroelectric porcelain composition that is dense, has high mechanical strength, has a high pyroelectric evaluation index, and has a relatively high Curie temperature.

(課題を解決するための手段) 本発明は、前記問題点を解決する手段として、一般式: %式%) y≦鉤06である。)で示される組成を有する化合物を
主成分とし、副成分としてMnを0.3〜2゜5原子%
含有することを特徴とする焦電性磁器組成物を提供する
ものである。
(Means for Solving the Problems) The present invention provides a general formula: % formula %) y≦hook06 as a means for solving the above-mentioned problems. ) is the main component, and Mn is 0.3 to 2.5 at% as a subcomponent.
The object of the present invention is to provide a pyroelectric ceramic composition characterized by containing:

(作用) 本発明に係る焦電性磁器組成物を前記成分組成の範囲に
限定した理由について、それらの成分の作用と共に説明
する。
(Function) The reason why the pyroelectric ceramic composition according to the present invention is limited to the range of the above-mentioned component composition will be explained together with the function of those components.

前記一般式におけるX、即ち、(p b+ −xc a
x)サイトにおけるCaのモル分率が0.25未満では
分極が困難で、比誘電率が200未満となってセンサー
のノイズが大きくなり、また、Xが0.35を越えると
、比誘電率が400を越え焦電評価指数が小さくなり、
しかも、キュリー温度が190°C以下に低下して使用
可能温度範囲が狭くなるので、Xは0.25〜0.35
とした。
X in the general formula, that is, (p b+ -xc a
x) If the mole fraction of Ca at the site is less than 0.25, polarization will be difficult and the relative permittivity will be less than 200, resulting in large sensor noise; if X exceeds 0.35, the relative permittivity will be exceeds 400 and the pyroelectric evaluation index decreases,
Moreover, since the Curie temperature drops below 190°C and the usable temperature range narrows, X is 0.25 to 0.35.
And so.

また、y1即ち、[(NLz3Nbtzs)yT I 
+−y]サイトにおける(NLzsNbtz3)のモル
分率が0゜01未満ではtanδが急激に増大し、S/
N比評価指数が悪くなり0.06を超えると、焼結性が
悪くなると共に、tanδが大きくなるので前記範囲と
した。
Also, y1, that is, [(NLz3Nbtzs)yT I
+-y] When the molar fraction of (NLzsNbtz3) at the site is less than 0°01, tanδ increases rapidly and S/
If the N ratio evaluation index deteriorates and exceeds 0.06, the sinterability deteriorates and the tan δ increases, so it was set in the above range.

Mnは誘電損失(tanδ)を抑制する効果があるが、
その含有量が0.3原子%未満では十分な効果が得られ
ず、2.5原子%を越えると、その効果がなくなるので
0.3〜2.5原子%とした。
Mn has the effect of suppressing dielectric loss (tanδ), but
If the content is less than 0.3 at%, a sufficient effect cannot be obtained, and if it exceeds 2.5 at%, the effect disappears, so it is set at 0.3 to 2.5 at%.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例) 素原料としてpb、o、、Ca COs、Nip、Nb
O3、Tie、及びM n O、を用い、それぞれ第1
表に示す組成になるように秤量し、各混合原料を約16
時間湿式混合した後、乾燥させ、850°Cで3時間仮
焼した。この仮焼物を粉砕し、2〜5重量%の有機バイ
ンダと共に10〜20時間湿式混合して造粒した後、乾
燥させ60メツシユのふるいを用いて整粒した。得られ
た粉末を750〜1000kg/cm”の圧力で、直径
12mm、厚さ1.3mmの円板に乾式プレスで成形し
、1100〜1200°Cで2時間焼成して磁器円板を
得た。
(Example) Raw materials: pb, o, , Ca COs, Nip, Nb
O3, Tie, and MnO, respectively, the first
Weigh out the composition shown in the table, and add approximately 16% of each mixed raw material.
After wet mixing for an hour, it was dried and calcined at 850°C for 3 hours. This calcined product was pulverized and granulated by wet mixing with 2 to 5% by weight of an organic binder for 10 to 20 hours, then dried and sized using a 60 mesh sieve. The obtained powder was dry-pressed into a disc with a diameter of 12 mm and a thickness of 1.3 mm at a pressure of 750 to 1000 kg/cm'', and was fired at 1100 to 1200°C for 2 hours to obtain a porcelain disc. .

前記磁器円板の両面にAg電極を焼き付け、温度150
’C1印加電圧4.Okv/mmで30分分極処理を施
して試料とした。
Ag electrodes were baked on both sides of the porcelain disk at a temperature of 150°C.
'C1 applied voltage 4. The sample was subjected to polarization treatment at Okv/mm for 30 minutes.

各試料について比誘電率(εr)、誘電圧接(tanδ
)、焦電係数(λ)、体積比熱(Cv)、キュリー温度
、抗折強度を測定し、出力電圧感度に対する材料評価指
数(F V)およびS/N比評価指数(F、)を求めた
。それらの結果を第1表に示す。第1表中、*を付した
試料は本発明の範囲外の組成のものである。
For each sample, relative dielectric constant (εr), dielectric voltage junction (tanδ
), pyroelectric coefficient (λ), volumetric specific heat (Cv), Curie temperature, and bending strength were measured, and the material evaluation index (FV) and S/N ratio evaluation index (F, ) for output voltage sensitivity were determined. . The results are shown in Table 1. In Table 1, samples marked with * have compositions outside the scope of the present invention.

(比較例) 従来公知の下記組成の焦電体の特性を第2表に示す。(Comparative example) Table 2 shows the properties of conventionally known pyroelectric materials having the following compositions.

第1表 第2表 第1表及び第2表の結果から明らかなように、本発明に
係る焦電性磁器組成物は、比誘電率が200〜360と
適度であり、従来のPZT系のものに比べてS/N比評
価指数(F、)が10〜30%も向上している。また、
キュリー温度も約200°C以上と高く、抗折強度も従
来のPZT系のものに比べて約1,6倍に向上している
As is clear from the results in Tables 1 and 2, the pyroelectric ceramic composition according to the present invention has a moderate dielectric constant of 200 to 360, which is higher than that of the conventional PZT system. The S/N ratio evaluation index (F,) is improved by 10 to 30% compared to the previous model. Also,
The Curie temperature is as high as about 200°C or more, and the bending strength is about 1.6 times higher than that of conventional PZT-based materials.

(効果) 以上の説明から明らかなように、本発明によれば、焦電
係数が高く、また、キュリー点が200℃以上で温度安
定性の良い高感度の焦電素子が得られる。また、本発明
の焦電性磁器組成物を焦電型赤外線センサーに適用する
と、比誘電率が200〜360と適度であるため、電極
面積を小さくしても外部浮遊容量の影響を受けず、ノイ
ズが小さく、高感度で応答性が良い焦電素子を得ること
ができる。また、緻密で機械的強度が高いため歩留まり
を向上させることができるなど、優れた効果が得られる
(Effects) As is clear from the above description, according to the present invention, a highly sensitive pyroelectric element having a high pyroelectric coefficient, a Curie point of 200° C. or higher, and good temperature stability can be obtained. Furthermore, when the pyroelectric ceramic composition of the present invention is applied to a pyroelectric infrared sensor, it has a moderate dielectric constant of 200 to 360, so it is not affected by external stray capacitance even if the electrode area is reduced. A pyroelectric element with low noise, high sensitivity, and good response can be obtained. Further, since it is dense and has high mechanical strength, excellent effects such as improved yield can be obtained.

特許出願人 株式会社村田製作所 代理人弁理士 青 山 葆 はか1名Patent applicant: Murata Manufacturing Co., Ltd. Representative patent attorney: Haka Aoyama, 1 person

Claims (1)

【特許請求の範囲】[Claims] (1)一般式: (Pb_1_−_xCa_x)〔(Ni_1_/_3N
b_2_/_3)_yTi_1_−_y〕O_3(但し
、x、yは0.25≦x≦0.35、0.01≦y≦0
.06である。)で示される組成を有する化合物を主成
分とし、副成分としてMnを0.3〜2.5原子%含有
することを特徴とする焦電性磁器組成物。
(1) General formula: (Pb_1_−_xCa_x) [(Ni_1_/_3N
b_2_/_3)_yTi_1_-_y]O_3 (However, x and y are 0.25≦x≦0.35, 0.01≦y≦0
.. It is 06. ) A pyroelectric porcelain composition characterized in that it contains a compound having the composition shown in the following formula as a main component and 0.3 to 2.5 at % of Mn as a subcomponent.
JP63092194A 1988-04-12 1988-04-12 Pyroelectric porcelain composition Pending JPH01261876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092194A JPH01261876A (en) 1988-04-12 1988-04-12 Pyroelectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092194A JPH01261876A (en) 1988-04-12 1988-04-12 Pyroelectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH01261876A true JPH01261876A (en) 1989-10-18

Family

ID=14047636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092194A Pending JPH01261876A (en) 1988-04-12 1988-04-12 Pyroelectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH01261876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125664A1 (en) 2006-04-28 2007-11-08 Murata Manufacturing Co., Ltd. Pyroelectric ceramic composition, pyroelectric element, and infrared detector
US8129889B2 (en) 2006-12-26 2012-03-06 Murata Manufacturing Co., Ltd. Piezoelectric ceramic compositions and piezoelectric elements
JP2020012791A (en) * 2018-07-20 2020-01-23 日本セラミック株式会社 Surface mount infrared detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125664A1 (en) 2006-04-28 2007-11-08 Murata Manufacturing Co., Ltd. Pyroelectric ceramic composition, pyroelectric element, and infrared detector
EP2017239A1 (en) * 2006-04-28 2009-01-21 Murata Manufacturing Co. Ltd. Pyroelectric ceramic composition, pyroelectric element, and infrared detector
EP2017239A4 (en) * 2006-04-28 2010-08-25 Murata Manufacturing Co Pyroelectric ceramic composition, pyroelectric element, and infrared detector
US7897921B2 (en) 2006-04-28 2011-03-01 Murata Manufacturing Co., Ltd. Pyroelectric ceramic composition, and infrared element, and infrared detector
US8129889B2 (en) 2006-12-26 2012-03-06 Murata Manufacturing Co., Ltd. Piezoelectric ceramic compositions and piezoelectric elements
JP2020012791A (en) * 2018-07-20 2020-01-23 日本セラミック株式会社 Surface mount infrared detector

Similar Documents

Publication Publication Date Title
JPH01261876A (en) Pyroelectric porcelain composition
US4062790A (en) Piezoelectric ceramic compositions
JP2001048642A (en) Piezoelectric ceramics
US5254278A (en) Lead titanate based piezoelectric ceramic material
JP2571658B2 (en) Pyroelectric porcelain composition
JPH01242464A (en) Piezoelectric or pyroelectric ceramic composition
EP0260875B1 (en) Ceramic composition for pyroelectric sensors
JPH01230468A (en) Pyroelectric porcelain composition
JP2000143339A (en) Piezoelectric substance porcelain composition
JP2833751B2 (en) Porcelain composition for pyroelectric elements
JPH01230469A (en) Pyroelectric porcelain composition
JPH04170364A (en) Piezoelectric porcelain composition
JP3106507B2 (en) Piezoelectric porcelain composition
JPS60191051A (en) Pyroelectric type infrared ray decting element
JPH0742166B2 (en) Pyroelectric porcelain composition
JPH03215357A (en) Piezoelectric ceramic composition
JPH01230467A (en) Pyroelectric porcelain composition
JPS60191052A (en) Pyroelectric type infrared ray decting element
KR20230139821A (en) Pzt based piezoelectric material with excellent low temperature sintering properties
JPH0753603B2 (en) Pyroelectric porcelain composition
JPS6246958A (en) Pyroelectric ceramic material
JPH0478582B2 (en)
JPH0338892A (en) Piezoelectric porcelain composition
JPH02303172A (en) Piezoelectric porcelain composition
JPS60191054A (en) Pyroelectric type infrared ray decting element