JPH01230467A - Pyroelectric porcelain composition - Google Patents
Pyroelectric porcelain compositionInfo
- Publication number
- JPH01230467A JPH01230467A JP63057263A JP5726388A JPH01230467A JP H01230467 A JPH01230467 A JP H01230467A JP 63057263 A JP63057263 A JP 63057263A JP 5726388 A JP5726388 A JP 5726388A JP H01230467 A JPH01230467 A JP H01230467A
- Authority
- JP
- Japan
- Prior art keywords
- pyroelectric
- composition
- evaluation index
- porcelain composition
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 25
- 229910052573 porcelain Inorganic materials 0.000 title abstract description 20
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 25
- 238000011156 evaluation Methods 0.000 abstract description 14
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 229910052787 antimony Inorganic materials 0.000 abstract description 2
- 229910052797 bismuth Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 229910052745 lead Inorganic materials 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910012463 LiTaO3 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000005620 antiferroelectricity Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- XKENYNILAAWPFQ-UHFFFAOYSA-N dioxido(oxo)germane;lead(2+) Chemical compound [Pb+2].[O-][Ge]([O-])=O XKENYNILAAWPFQ-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910020698 PbZrO3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- -1 antimony modified lead zirconate titanate Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は焦電性磁器組成物に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to pyroelectric porcelain compositions.
(従来の技術)
焦電体は、彼検知物体から放射される赤外放射エネルギ
ーを吸収することによって温度変化を生じ、その温度変
化に起因して自発分極に変化を生じることから、その焦
電効果を利用した赤外線センサーの材料として利用され
ている。(Prior art) A pyroelectric substance causes a temperature change by absorbing infrared radiation energy emitted from a sensing object, and a change in spontaneous polarization occurs due to the temperature change. It is used as a material for infrared sensors that utilize this effect.
この種の焦電型赤外線センサーは、焦電体に電極を形成
した焦電素子そのものではインピーダンスが高すぎて実
用的でないため、一般には、第1図に示すように、焦電
素子lのインピータンスを電界効果トランジスタ2で適
当なインピータンスに変換するインピータンス変換タイ
プと、第2図に示すように、発生電流を直接高入力イン
ピータンスを持つ演算増幅器3に入力して増幅する電流
モート検知タイプのものか開発されている。In this type of pyroelectric infrared sensor, the impedance of the pyroelectric element itself, which is formed by forming electrodes on a pyroelectric material, is too high to be practical. There is an impedance conversion type that converts the impedance into an appropriate impedance using a field effect transistor 2, and a current mote detection type that amplifies the generated current by directly inputting it to an operational amplifier 3 with a high input impedance, as shown in Figure 2. type has been developed.
現在普及しているインピータンス変換タイプの場合、出
力電圧感度に対する材料評価指数(Fv)、及びノイズ
を含めた比検出率(D)に対する材料評価指数(FD、
以下、S/N比評価指数と記す。)は、その焦電係数を
λ、比熱をCp、密度をd、比誘電率をε7、誘電正接
をtanδとすると、それぞれ次式で与えられる。In the case of the currently popular impedance conversion type, the material evaluation index (Fv) for output voltage sensitivity and the material evaluation index (FD,
Hereinafter, it will be referred to as an S/N ratio evaluation index. ) are given by the following equations, where λ is the pyroelectric coefficient, Cp is the specific heat, d is the density, ε7 is the relative permittivity, and tanδ is the dielectric loss tangent.
FV−λ/cp−c+・ε、 ・・・・・
・(1)FD−λ/Cp−d−F1−コゴTフー ・・
・・・・(2)従って、FVおよびFoの値か大きいほ
ど優れた焦電体材料と言える。このため、焦電体材料と
しては、(1)式および(2)式から、焦電体の温度変
化に対する自発分極の変化か大きい、即ち、焦電体の焦
電係数(λ)か大きく、また、比誘電率か小さく、かつ
誘電正接か小さいことか要求される。しかし、焦電体の
比MN率か小さ(なるほど、焦電素子か外部回路の浮遊
容量の影響を受は易くなるためセンサーのノイズか大き
くなり、比誘電率が大きすきると性能指数が小さくなる
ことから、ノイズ低減および焦電性能の観点から、比誘
電率は200〜400の範囲か適当である。また、ノイ
ズ低減の観点から、焦電素子の肉厚を薄くして静電容■
をできるたけ大きくするため、適度の強度か要求される
。FV-λ/cp-c+・ε, ・・・・・・
・(1) FD-λ/Cp-d-F1-Kogo T Fu ・・
(2) Therefore, it can be said that the larger the values of FV and Fo, the better the pyroelectric material. Therefore, as a pyroelectric material, from equations (1) and (2), the change in spontaneous polarization with respect to temperature change of the pyroelectric material is large, that is, the pyroelectric coefficient (λ) of the pyroelectric material is large; It is also required that the dielectric constant be small and the dielectric loss tangent be small. However, the specific MN ratio of the pyroelectric material is small (I see, it is easily affected by the stray capacitance of the pyroelectric element or external circuit, so the noise of the sensor increases, and the larger the relative permittivity, the smaller the figure of merit. Therefore, from the perspective of noise reduction and pyroelectric performance, the relative permittivity is appropriate within the range of 200 to 400. Also, from the perspective of noise reduction, the thickness of the pyroelectric element is made thinner to reduce the capacitance.
In order to make it as large as possible, a moderate amount of strength is required.
他方、高入力イノビータンスの演算増幅器の開発により
最近実用可能になった電流モート検知タイプの場合、発
生した電荷を直接変換するため、−3=
その検出感度は焦電体の比誘電率には依存せず、焦電体
の温度変化にりζ1する発生焦電流、従って、焦電係数
のみに依存するから、インピータンス変換タイプのもの
に関する評価方法は適用できず、できるたけ大きな焦電
係数を持つことが要求される。On the other hand, in the case of the current mote detection type, which has recently become practical due to the development of operational amplifiers with high input innovation, the generated charge is directly converted, so the detection sensitivity is dependent on the dielectric constant of the pyroelectric material. The pyroelectric current generated varies by ζ1 due to the temperature change of the pyroelectric body. Therefore, it depends only on the pyroelectric coefficient, so the evaluation method for impedance conversion type cannot be applied, and the pyroelectric coefficient is as large as possible. This is required.
また、前記いずれのタイプにおいても、実用」―の観点
から、焦電体はその焦電性か消失する温度、即ち、キュ
リー温度が少なくとも150’C以上あ ・るこ
とか望ましい。In addition, in any of the above types, from the viewpoint of practical use, it is desirable that the pyroelectric material has a temperature at which its pyroelectricity disappears, that is, a Curie temperature of at least 150'C or higher.
従来、焦電体材料としては、LiTaO3、LiNbO
3、硫酸グリシ:/ (TGS) 、5rxBa、−x
Nb。Conventionally, pyroelectric materials include LiTaO3 and LiNbO.
3. Glycysulfate: / (TGS), 5rxBa, -x
Nb.
06(SBN)、ゲルマニウム酸鉛系磁器、チタン酸鉛
系磁器およびチタン酸ジルコン酸鉛系磁器等が知られて
いる。06 (SBN), lead germanate-based porcelain, lead titanate-based porcelain, lead zirconate titanate-based porcelain, and the like.
(発明か解決しようとする課題)
しかしなから、前記公知の焦電体材料のうちチタン酸鉛
系磁器およびチタン酸ジルコン酸鉛系磁器以外の大部分
は、比誘電率か30〜50と小さく焦電評価指数の点か
らは好ましいか、焦電素子−4=
の電極面積が小さい場合、素子容量が外部回路のt手遊
容量より小さくなりセンサーのノイズが大きくなるとい
う欠点かある。また、LiTaO3およびLiNbO3
は比較的高価であり、ゲルマニウム酸鉛系磁器はキュリ
ー温度が低いため焦電素子の性能の温度安定性に劣ると
いう欠点がある。(Invention or problem to be solved) However, most of the known pyroelectric materials other than lead titanate-based porcelain and lead zirconate titanate-based porcelain have a small dielectric constant of 30 to 50. Although this is preferable from the point of view of the pyroelectric evaluation index, it has the drawback that if the electrode area of the pyroelectric element -4= is small, the element capacitance becomes smaller than the free capacitance of the external circuit, and the noise of the sensor increases. Also, LiTaO3 and LiNbO3
is relatively expensive, and because lead germanate-based porcelain has a low Curie temperature, it has the disadvantage that the temperature stability of the pyroelectric element performance is poor.
他方、チタン酸鉛系磁器は比誘電率が200前後と適度
の値を示すが、その分極温度が200°C前後と高いた
め電極材料の選択か困難であり、しかも薄肉化すると十
分な強度か得られず実用に供することが困難であった。On the other hand, lead titanate-based porcelain exhibits a moderate dielectric constant of around 200, but its polarization temperature is high at around 200°C, making it difficult to choose the electrode material, and it is difficult to select an electrode material that is strong enough to be made thinner. Therefore, it was difficult to put it into practical use.
このため、現在ては、真性もしくは変性チタン酸ジルコ
ン酸鉛系磁器、例えば、P b (S n +ztSb
+z、)03−PbTiOa−PbZrO3からなる主
成分に、副成分きしてM n O2、Coo、Cr2O
3なとを含有させたものなとか汎用されている。Therefore, at present, pure or modified lead zirconate titanate-based porcelain, such as P b (S n +ztSb
+z, )03-PbTiOa-PbZrO3 as a main component, with subcomponents M n O2, Coo, Cr2O
It is widely used, such as those containing 3.
この種のチタン酸/ルコン酸鉛系磁器は、適度の条件下
で分極処理が可能で、安価で加工性も良好であり、比較
的良好な焦電性能を示すか、インピータンス変換タイプ
の赤外線センづ−の材料としては、より優れた焦電特性
が要望されており、また、電流モード検知タイプの焦電
型赤外線センサーの材料として適用する場合、焦電係数
を十分に満足させるものではないのが現状である。This type of lead titanate/ruconate porcelain can be polarized under moderate conditions, is inexpensive, has good workability, and exhibits relatively good pyroelectric performance or impedance conversion type infrared porcelain. As a sensor material, better pyroelectric properties are required, and when applied as a material for a current mode detection type pyroelectric infrared sensor, it does not fully satisfy the pyroelectric coefficient. is the current situation.
従って、本発明は、3成分系チタン酸ジルコン酸鉛系焦
電体素子の安価で加工性が良いという長所を保有し、焦
電係数が大きく、適度の比誘電率並びに出力電圧感度に
対する材料評価指数(Fv)及びS/N比評価指数を有
しインピーダンス変換タイプのみならず電流モード検知
タイプの赤外線センサーの焦電体材料として適用可能な
焦電性磁器組成物を得ることを目的とする。Therefore, the present invention possesses the advantages of a three-component lead zirconate titanate-based pyroelectric element that is inexpensive and easy to process, has a large pyroelectric coefficient, has an appropriate relative dielectric constant, and has material evaluation for output voltage sensitivity. The object of the present invention is to obtain a pyroelectric ceramic composition that has an index (Fv) and an S/N ratio evaluation index and can be used as a pyroelectric material for infrared sensors of not only impedance conversion type but also current mode detection type.
(課題を解決するための手段)
本発明は、前記問題点を解決する手段として、−数式
%式%)
(但し、α、β、x、yおよび2は各成分のモル分率で
、001≦α≦0.09.0.25≦β≦0.75.0
.O1≦X≦020.005≦y≦097.002≦2
≦0.94、x+y+z−1゜00である。)で示され
る組成を有する化合物を主成分とし、副成分としてMg
、CrおよびMnからなる群から選ばれた少なくとも一
種の元素を03〜25原子%含有することを特徴とする
焦電性磁器組成物を提供するものである。(Means for Solving the Problems) The present invention provides, as a means for solving the above-mentioned problems, - Formula % Formula %) (However, α, β, x, y and 2 are the mole fractions of each component, and 001 ≦α≦0.09.0.25≦β≦0.75.0
.. O1≦X≦020.005≦y≦097.002≦2
≦0.94, x+y+z−1°00. ) is the main component, with Mg as a subcomponent.
, Cr, and Mn in an amount of 0.3 to 25 at. %.
(作用)
本発明に係る焦電性磁器組成物は、基本的には、錫・ア
ンチモン変性チタン酸ジルコン酸鉛におけるI) bの
一部を31で置換すると共に、副成分としてMg、Cr
およびMnからなる群から選ばれた少なくとも一種の元
素を03〜25原子%添加含有さぜたものであるか、そ
の組成範囲の限定理由について説明する。(Function) The pyroelectric ceramic composition according to the present invention basically replaces a part of I) b in tin/antimony modified lead zirconate titanate with 31, and also contains Mg and Cr as subcomponents.
The reason why the composition range is limited will be explained below.
B1は焦電性能を向上させると共に、焼結温度を低下さ
せる作用を有し、αか0.01未満てはBi置換による
焦電性能の向」二か得られず、αが0.09を越えると
、Bi、O,か析出し、焼結性か急激に低下するので前
記範囲とした。B1 has the effect of improving pyroelectric performance and lowering the sintering temperature; if α is less than 0.01, no improvement in pyroelectric performance can be obtained by Bi substitution; If it exceeds this range, Bi, O, etc. will precipitate and the sinterability will drop sharply, so it was set in the above range.
また、βを0.25〜0.75としたのは、βかこの範
囲を外れると緻密な焼結体か得られないからである。X
か001未満ては、焼結が困難となり、また0、20を
越えると焼結しにくくなると同時に、キュリー点が著し
く低下して実用的でなくなるのて前記範囲とした。yが
0.05未満ては、反強誘電性を示し、焦電体としての
性能が得られず、yか097を越えると、焼結が困難と
なるのて、yは前記範囲とした。Zが002未満ては焼
結性が悪く、逆に094を越えると、反強誘電性を示し
、焦電体としての性能が得られないので前記範囲とした
。前記主成分の組成範囲を第1図に示す。Further, the reason why β is set to 0.25 to 0.75 is because if β is out of this range, a dense sintered body cannot be obtained. X
If it is less than 0.001, sintering will be difficult, and if it exceeds 0.20, it will be difficult to sinter, and at the same time the Curie point will drop significantly, making it impractical. When y is less than 0.05, antiferroelectricity is exhibited and performance as a pyroelectric material cannot be obtained, and when y exceeds 097, sintering becomes difficult, so y was set in the above range. If Z is less than 002, the sinterability is poor, and if it exceeds 094, antiferroelectricity is exhibited and the performance as a pyroelectric material cannot be obtained, so the above range was set. The composition range of the main components is shown in FIG.
前記組成の主成分に、副成分としてMg、CrおよびM
nからなる群から選ばれた少なくとも一種の元素か酸化
物の形態で含有されるか、これらの元素のうちMgは粒
成長を抑制する効果があり、焼結後の機械的強度を高め
、研磨加工をし易くするか、0.3原子%未満ではその
効果か得られず、2.5原子%を越えると、その効果が
なくかり、また誘電損失が著しく大きくなるという弊害
を生しるので、その範囲を03〜25原子%とした。In addition to the main components of the composition, Mg, Cr and M are added as subcomponents.
Among these elements, Mg has the effect of suppressing grain growth, increases mechanical strength after sintering, and improves polishing. If it is less than 0.3 atom%, the effect will not be obtained, and if it exceeds 2.5 atom%, the effect will be lost and the dielectric loss will increase significantly. , the range was set to 03 to 25 at%.
また、Crは熱エーゾングを繰り返しても分極を失われ
なくする効果を有するが、その含有量か03〜25原子
%の範囲外では顕著な効果か認められなくなるので前記
範囲とした。さらに、Mnは誘電損失を小さくしてS/
N比評価指数を増大させる効果かあるか、その含有量か
03〜2.5原子%の範囲外ではその添加効果かなくな
るので前記範囲とした。また、前記Mg、CrおよびM
nを二種以上併添加する場合、前記理由により総量は0
3〜25%であることか必要である。Further, Cr has the effect of preventing loss of polarization even after repeated thermal aging, but if the content is outside the range of 0.3 to 25 at %, no significant effect will be observed, so the above range was set. Furthermore, Mn reduces dielectric loss and
If the content is outside the range of 0.3 to 2.5 atom %, the effect of addition is lost, so the above range is set. In addition, the Mg, Cr and M
When two or more types of n are added together, the total amount is 0 for the above reason.
It is necessary that it be between 3 and 25%.
(実施例)
素原料として、Pb、0.、SnO2、Sb、03、T
iO2、ZrO2、B12O3、PbCrO4、MnO
7およびMgOを用い、第1表に示す組成になるように
秤量し、各混合原料を約16時間湿式混合した後、乾燥
させ、900°Cて3時間仮焼した。(Example) As raw materials, Pb, 0. ,SnO2,Sb,03,T
iO2, ZrO2, B12O3, PbCrO4, MnO
7 and MgO were weighed so as to have the composition shown in Table 1, and each mixed raw material was wet mixed for about 16 hours, dried, and calcined at 900°C for 3 hours.
この仮焼原料を2〜5重量%の有機ハインタと共に10
〜20時間湿式粉砕した後、乾燥させ、60メツシユの
ふるいを通して整粒した。得られた粉末を750〜10
00kg/cm2の圧力で、直径12mm、厚さ1mm
の円板に成形し、1100〜1150°Cて2時間焼成
して焦電性磁器を得た。This calcined raw material was mixed with 2 to 5% by weight of organic hindrance to
After wet milling for ~20 hours, it was dried and sized through a 60 mesh sieve. The obtained powder is 750-10
00kg/cm2 pressure, diameter 12mm, thickness 1mm
It was molded into a disc and fired at 1100 to 1150°C for 2 hours to obtain pyroelectric porcelain.
前記磁器円板の両面に蒸着法によりAg電極を形成した
後、80°Cの絶縁油中に浸漬し、3.0〜4.Qkv
/mmの直流電圧を30分間印加して試料とした。After forming Ag electrodes on both sides of the porcelain disk by a vapor deposition method, it was immersed in insulating oil at 80°C. Qkv
A DC voltage of /mm was applied for 30 minutes to prepare a sample.
各試料について、比誘電率(εr)、tanδ、焦電係
数(λ)、体積比熱(Cv)、キュリー温度および抗折
強度を測定すると共に、出力電圧感度に対する材料評価
指数(Fv)、及びS/N比評価指数(FD)を求めた
。それらの結果を第2表に示す。なお、第1表および第
2表中、*を付した試料は本発明の範囲外のものである
。For each sample, the relative permittivity (εr), tanδ, pyroelectric coefficient (λ), volumetric specific heat (Cv), Curie temperature, and bending strength were measured, and the material evaluation index (Fv) for output voltage sensitivity and S /N ratio evaluation index (FD) was determined. The results are shown in Table 2. Note that in Tables 1 and 2, samples marked with * are outside the scope of the present invention.
第1表
第2表
(比較例)
第3表および第4表に示す各組成の焦電体からなる試料
について、それらの焦電特性を第3表および第4表に示
す。Tables 1 and 2 (Comparative Examples) Tables 3 and 4 show the pyroelectric properties of samples made of pyroelectric materials having the respective compositions shown in Tables 3 and 4.
第3表
第4表
第2表〜第4表に示される結果から明らかなように、本
発明に係る焦電性磁器組成物は、B1の置換量および/
または主成分におけるBサイトのX、 y、 zの
比をその組成の範囲内で適宜設定することにより、比誘
電率が約230〜1490で、焦電係数か6 X 10
−8C−cm/ Kにも達し、優れた評価指数(Fvお
よびFl))を示す。Table 3 Table 4 As is clear from the results shown in Tables 2 to 4, the pyroelectric porcelain composition according to the present invention has the following characteristics:
Alternatively, by appropriately setting the ratio of X, y, and z of the B site in the main component within the range of its composition, a dielectric constant of about 230 to 1490 and a pyroelectric coefficient of 6 x 10
-8C-cm/K, showing excellent evaluation indices (Fv and Fl).
例えば、本発明の焦電性磁器組成物からなる第1表およ
び第2表の試料4と、それと同しx、y、2の、比を有
する第4表の試料1の特性とを比較すると、本発明の焦
電性磁器組成物は、B1置換により焦電係数、評価指数
(FV、 FD)ともに向上していることか判る。For example, if we compare the properties of Sample 4 in Tables 1 and 2, which is made of the pyroelectric porcelain composition of the present invention, with the properties of Sample 1 in Table 4, which has the same ratio of x, y, and 2. It can be seen that the pyroelectric coefficient and evaluation index (FV, FD) of the pyroelectric ceramic composition of the present invention are improved by the B1 substitution.
また、本発明に係る焦電性磁器組成物は、pbの一部を
B1て置換されていないものに比べて、焼結温度か50
〜100°C低いことか確認された。Furthermore, the pyroelectric ceramic composition according to the present invention has a sintering temperature of 50
It was confirmed that the temperature was ~100°C lower.
(効果)
以上の説明したように、本発明によれば、焦電体のBi
の置換量および/または主成分におけるBサイトのx、
y、 zの比をその組成範囲内で、適宜設定する
ことにより、比誘電率か200〜400と適度で、優れ
た材料評価指数(Fv、Fr1)を有する、インピータ
ンス変換タイプの焦電線センサーに適した焦電体か得ら
れる一方、焦電係数か大きく、電流モート検知タイプの
赤外線センサーに適した焦電体か得られる。従って、本
発明に係る焦電性磁器組成物をインピータンス変換タイ
プの赤外線上ワ寄1−に適用すると、低ノイズで電圧感
度か低下しないものか得られ、また検出感度が焦電係数
のみに依存する電流モードタイプの赤外線センサーに適
用すると、高感度のものか得られる。また、焼結温度か
従来のものに比へて50〜100°C低いため、生産性
の向」二を図ることかできるなと優れた効果が得られる
。(Effects) As explained above, according to the present invention, the Bi
The amount of substitution and/or x of the B site in the main component,
By appropriately setting the ratio of y and z within the composition range, an impedance conversion type pyroelectric wire sensor has a moderate dielectric constant of 200 to 400 and excellent material evaluation index (Fv, Fr1). On the other hand, it is possible to obtain a pyroelectric material suitable for use in current mote detection type infrared sensors with a large pyroelectric coefficient. Therefore, when the pyroelectric ceramic composition according to the present invention is applied to an impedance conversion type infrared rays 1-, it is possible to obtain a device with low noise and no drop in voltage sensitivity, and the detection sensitivity is reduced only by the pyroelectric coefficient. When applied to dependent current mode type infrared sensors, high sensitivity can be obtained. In addition, since the sintering temperature is 50 to 100°C lower than that of the conventional method, excellent effects such as improved productivity can be obtained.
第1図はインピータンス変換タイプの焦電型赤外線セン
サーの等価回路図、第2図は電流モートタイプの焦電型
赤外線センサーの等価回路図、第3図は本発明に係る焦
電性磁器組成物の主成分の組成範囲を示す三元図である
。
1〜焦電素子、2〜電界効果トランノスタ、3〜演算増
幅器、Rg、Rs、Rf〜抵抗、Cf〜コンテンヅ。
特許出廓人 株式会社村田製作所Fig. 1 is an equivalent circuit diagram of an impedance conversion type pyroelectric infrared sensor, Fig. 2 is an equivalent circuit diagram of a current mote type pyroelectric infrared sensor, and Fig. 3 is a pyroelectric porcelain composition according to the present invention. It is a ternary diagram showing the composition range of the main components of an object. 1 - Pyroelectric element, 2 - Field effect transnoster, 3 - Operational amplifier, Rg, Rs, Rf - Resistor, Cf - Contents. Patent distributor Murata Manufacturing Co., Ltd.
Claims (1)
b_β)_xTi_yZr_z〕O_3(但し、α、β
、x、yおよびzは各成分のモル分率で、0.01≦α
≦0.09、0.25≦β≦0.75、0.01≦x≦
0.20、0.05≦y≦0.97、0.02≦z≦0
.94、x+y+z=1.00である。)で示される組
成を有する化合物を主成分とし、副成分としてMg、C
rおよびMnからなる群から選ばれた少なくとも一種の
元素を0.3〜2.5原子%含有することを特徴とする
焦電性磁器組成物。(1) General formula: (Pb_1_−_αBi_α) [(Sn_1_−_βS
b_β)_xTi_yZr_z]O_3 (however, α, β
, x, y and z are the mole fractions of each component, 0.01≦α
≦0.09, 0.25≦β≦0.75, 0.01≦x≦
0.20, 0.05≦y≦0.97, 0.02≦z≦0
.. 94, x+y+z=1.00. ) is the main component, with Mg and C as subcomponents.
A pyroelectric ceramic composition containing 0.3 to 2.5 at.% of at least one element selected from the group consisting of r and Mn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63057263A JPH0714836B2 (en) | 1988-03-09 | 1988-03-09 | Pyroelectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63057263A JPH0714836B2 (en) | 1988-03-09 | 1988-03-09 | Pyroelectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01230467A true JPH01230467A (en) | 1989-09-13 |
JPH0714836B2 JPH0714836B2 (en) | 1995-02-22 |
Family
ID=13050638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63057263A Expired - Fee Related JPH0714836B2 (en) | 1988-03-09 | 1988-03-09 | Pyroelectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714836B2 (en) |
-
1988
- 1988-03-09 JP JP63057263A patent/JPH0714836B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0714836B2 (en) | 1995-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6080327A (en) | Piezoelectric ceramic composition | |
JP3198906B2 (en) | Piezoelectric porcelain composition | |
US4761242A (en) | Piezoelectric ceramic composition | |
JPH01230467A (en) | Pyroelectric porcelain composition | |
US5254278A (en) | Lead titanate based piezoelectric ceramic material | |
JPS598922B2 (en) | Porcelain dielectric composition for temperature compensation | |
JPH01261876A (en) | Pyroelectric porcelain composition | |
JP2789374B2 (en) | Piezoelectric ceramic composition | |
JPS59214105A (en) | Dielectric porcelain composition | |
JPH0648825A (en) | Bismuth laminar compound | |
JPH0437076A (en) | Piezoelectric porcelain compound | |
JP2737451B2 (en) | Piezoelectric material | |
JPH01230469A (en) | Pyroelectric porcelain composition | |
JPH02279561A (en) | Dielectric porcelain composition | |
JPH0146471B2 (en) | ||
JP2833751B2 (en) | Porcelain composition for pyroelectric elements | |
JPH04188882A (en) | Piezoelectric porcelain composition | |
JPS60191052A (en) | Pyroelectric type infrared ray decting element | |
JPH01230468A (en) | Pyroelectric porcelain composition | |
JP2571658B2 (en) | Pyroelectric porcelain composition | |
JPH0742166B2 (en) | Pyroelectric porcelain composition | |
JPH05339052A (en) | Dielectric ceramic composition for temperature compensation | |
JPH0497947A (en) | Pyroelectric porcelain composition | |
JPS6372006A (en) | Ceramic composition for pyroelectric sensor | |
JPH0566332B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |