JPH0862038A - Infrared detection element and production thereof - Google Patents

Infrared detection element and production thereof

Info

Publication number
JPH0862038A
JPH0862038A JP6216581A JP21658194A JPH0862038A JP H0862038 A JPH0862038 A JP H0862038A JP 6216581 A JP6216581 A JP 6216581A JP 21658194 A JP21658194 A JP 21658194A JP H0862038 A JPH0862038 A JP H0862038A
Authority
JP
Japan
Prior art keywords
thick film
slurry
porous
ferroelectric
ferroelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216581A
Other languages
Japanese (ja)
Inventor
Mikio Shimokata
幹生 下方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6216581A priority Critical patent/JPH0862038A/en
Publication of JPH0862038A publication Critical patent/JPH0862038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE: To enhance the practical performance index by employing a porous ferroelectric ceramics having a structure sandwiched by compact ferroelectric ceramics thereby lowering the permittivity and thermal capacity. CONSTITUTION: The pyroelectric infrared detection element is composed of a porous ferroelectric ceramics 1 and a sintered ferroelectric ceramics 2 wherein a plumbum titanate(PT) based or a plumbum zirconate titanate(PZT) based ceramic having a relatively high pyroelectric coefficient is preferably employed. An organic bubble forming material having particle size of 100μm or less is mixed with a ferroelectric ceramic powder and a thick film of a slurry having volume fraction of 20-70% is formed to obtain a green sheet for porous thick film. It is superposed on a green sheet for compact thick film obtained by forming a thick film of slurry from which the bubble forming material is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は人体及び生物体検出用等
の赤外線検出素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element for detecting a human body and a living body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】赤外線検出素子としては、現在、量子型
と熱型の2種類が知られている。このうち量子型赤外線
検出素子は赤外線を半導体のバンドギャップとして捉え
るので感度が高い、応答速度が早いなどの特長がある。
しかし、一方で使用時に液体窒素温度への冷却の必要が
あり、冷却ユニットを設ける必要があるため大型で且つ
高価になる。更に、波長選択性もあり遠赤外線には応答
しないなどの欠点もある。
2. Description of the Related Art At present, two types of infrared detection elements are known: a quantum type and a thermal type. Among them, the quantum infrared detection element has features such as high sensitivity and fast response speed because infrared rays are captured as a band gap of a semiconductor.
However, on the other hand, it is necessary to cool to the liquid nitrogen temperature at the time of use, and it is necessary to provide a cooling unit, which is large and expensive. Further, it has a wavelength selectivity and does not respond to far infrared rays.

【0003】熱型赤外線検出素子は赤外線を熱エネルギ
ーに変換し温度として検知するタイプで熱起電力を利用
した熱電対型、温度による抵抗変化を利用したボロメー
ター型、強誘電体の焦電効果を利用した焦電型に大別さ
れる。この内焦電型は他のものに比べて感度が1桁以上
高く又構造が簡単で波長依存性がなく、常温で動作する
ため、現在実用に供されている主な赤外線検出素子はこ
の焦電型赤外線検出素子である。
A thermal infrared detecting element is a type that converts infrared rays into thermal energy and detects it as temperature, which is a thermocouple type utilizing thermoelectromotive force, a bolometer type utilizing resistance change with temperature, and a pyroelectric effect of a ferroelectric substance. It is roughly divided into pyroelectric type using. The inner pyroelectric type has a sensitivity higher than that of other types by one digit or more, has a simple structure, has no wavelength dependence, and operates at room temperature. It is an electric infrared detector.

【0004】焦電型赤外線検出素子は強誘電体の焦電現
象を利用し、温度変化に伴う分極率の変化を表面電荷の
変化として検知するものである。この為、焦電検出素子
の構造は同じ入射赤外線エネルギーに対して温度上昇が
より大きくなるように、受光面積に比べその厚みを可能
な限り薄くしたり又、熱容量の高い基板や本体との接触
を出来るだけ小さい構造にする等の考慮がなされてい
る。
The pyroelectric infrared detecting element utilizes the pyroelectric phenomenon of a ferroelectric substance to detect a change in polarizability with a change in temperature as a change in surface charge. For this reason, the structure of the pyroelectric detection element should be as thin as possible compared to the light receiving area so that the temperature rise is larger for the same incident infrared energy, and the contact with the substrate or body with high heat capacity Consideration is given to making the structure as small as possible.

【0005】また、焦電型赤外線検出素子の材質として
は式(1)の焦電性能指数(p1)が大きくなるように
強誘電性セラミックスの内から選択するのが一般的であ
る。
Further, the material of the pyroelectric infrared detecting element is generally selected from ferroelectric ceramics so that the pyroelectric figure of merit (p1) of the formula (1) becomes large.

【数1】 p1=(dI/dT)/(A・ε) ・・・・・(1) (但し、I:焦電電流、T:温度、A:面積、ε:誘電
率) 一方、実用面からは式(2)のp2が実際の起電圧とな
り実際上は熱容量の小さいものが適している事も知られ
ている。
## EQU1 ## p1 = (dI / dT) / (A.ε) (1) (where, I: pyroelectric current, T: temperature, A: area, ε: permittivity) From the aspect, it is also known that p2 in the equation (2) is an actual electromotive voltage and that having a small heat capacity is actually suitable.

【数2】 p2=p1/Cp ・・・・・(2)(但し、Cp:熱容量) 熱容量は一般に物質の密度に比例すると考えられるの
で、式(2)の代わりに式(3)を実用性能指数として
取り扱っても差し支えない。
## EQU00002 ## p2 = p1 / Cp (2) (where Cp: heat capacity) Since the heat capacity is generally considered to be proportional to the density of the substance, the expression (3) is used instead of the expression (2). It can be treated as a performance index.

【数3】 p3=p1/D ・・・・・(3)(但し、D:密度)## EQU00003 ## p3 = p1 / D (3) (where D: density)

【0006】[0006]

【発明が解決しようとする課題】しかし、現在実用に供
されている所謂、緻密質の強誘電性セラミックス若しく
は強誘電性単結晶を材質とする焦電型赤外線検出素子で
は自立強度を保つためにその厚みは約0.3mmが限界
でそれ以上薄くするのは非常に困難で、素子自身の熱容
量は限られ自ずと上述のp1〜p3の値も限られる。と
ころが更に高性能の赤外線検出素子を実現するために
は、これらの性能指数を向上させることが求められてい
る。
However, in order to maintain the self-sustaining strength, the so-called pyroelectric infrared detecting element made of a so-called dense ferroelectric ceramic or ferroelectric single crystal is put into practical use at present. The thickness is limited to about 0.3 mm, and it is very difficult to make it thinner, and the heat capacity of the element itself is limited, and the above-mentioned values of p1 to p3 are also limited. However, in order to realize a higher performance infrared detection element, it is required to improve these performance indexes.

【0007】[0007]

【課題を解決する為の手段】本発明は上記問題点に鑑み
これを解決するために成されたものであり、多孔質強誘
電性セラミックスが緻密質強誘電性セラミックスによっ
て挟まれた構造を持つ焦電型赤外線検出素子によって達
成される。
The present invention has been made in order to solve the above problems, and has a structure in which porous ferroelectric ceramics are sandwiched between dense ferroelectric ceramics. This is achieved by a pyroelectric infrared detection element.

【0008】又、本発明の赤外線検出素子は100μm
以下の粒子径を持つ有機物の気孔形成材を強誘電性セラ
ミックス粉体と混合しその体積分率が20〜70%であ
るスラリーを厚膜成形した多孔質厚膜用グリーンシート
と上記スラリーから気孔形成材を除いたスラリーを厚膜
成形した緻密質厚膜用グリーンシートを重ね合わせるこ
とを特徴とする焦電型赤外線検出素子の製造方法により
達成される。
The infrared detecting element of the present invention is 100 μm
Porous thick film green sheet obtained by mixing an organic pore-forming material having the following particle size with a ferroelectric ceramic powder and forming a thick film of a slurry having a volume fraction of 20 to 70%, and pores from the slurry. This is achieved by a method for manufacturing a pyroelectric infrared detection element, which comprises stacking dense green films for thick films, which are formed by thickening the slurry excluding the forming material.

【0009】本構造の赤外線検出素子は、多孔質部分を
中央部に含みその為、同じ体積で比較すると緻密質に比
べて素子の誘電率が低くなり、その結果性能指数p1が
向上する。また熱容量も小さくなり、実用性能指数p3
がそれに反比例して大きくなる。更に、素子表面に緻密
質層を設けているために自立強度は緻密体と同等に改善
され、且つ電極の設置は緻密質のみよりなる素子と同等
の容易さで可能である。
Since the infrared detecting element of this structure includes the porous portion in the central portion, when compared with the same volume, the dielectric constant of the element becomes lower than that of the dense one, and as a result, the figure of merit p1 is improved. Also, the heat capacity becomes smaller, and the practical performance index p3
Is inversely proportional to it. Furthermore, since the dense layer is provided on the surface of the device, the self-supporting strength is improved to the same level as that of the dense body, and the electrodes can be installed with the same ease as that of the device composed of only the dense body.

【0010】本発明の焦電型赤外線検出素子の詳細を添
付の図1を用いて説明する。図中1は多孔質強誘電性セ
ラミックスで、材質は焦電性を示す強誘電性セラミック
スであれば何れの物でもよいが、通常の焼結法で焼結
し、焦電係数の比較的大きなチタン酸鉛(PT)系若し
くはチタン酸ジルコン酸鉛(PZT)系の物が好まし
い。1の構造は多孔質である必要があり、その気孔率は
本発明の効果を得るために20%以上が好ましい。気孔
率は大きければそれだけ効果は大きいが、製造時の作業
性及び歩留りの面から80%以上の物は不適切である。
気孔形状は連通気孔又は単独気孔の何れでもよいが、大
きな気孔率を得、しかも高強度が達成できるので球状連
通気孔が望ましい。
Details of the pyroelectric infrared detection element of the present invention will be described with reference to the attached FIG. In the figure, reference numeral 1 is a porous ferroelectric ceramic, and any material may be used as long as it is a ferroelectric ceramic showing pyroelectricity, but it is sintered by an ordinary sintering method and has a relatively large pyroelectric coefficient. Lead titanate (PT) based or lead zirconate titanate (PZT) based materials are preferred. The structure of No. 1 needs to be porous, and its porosity is preferably 20% or more in order to obtain the effect of the present invention. The higher the porosity, the greater the effect, but it is inappropriate to use a material having a porosity of 80% or more in terms of workability during production and yield.
The shape of the pores may be either continuous pores or single pores, but spherical continuous pores are desirable because they can achieve high porosity and high strength.

【0011】図中2は緻密質強誘電性セラミックスであ
れば良い。ここで言う緻密質とはその気孔率が10%以
下の材料を指す。収縮率が多孔質部分と同一にするため
にその材質は1部と同じ場合が好ましい。更に、3で示
された電極を設置するために、2の緻密質強誘電性セラ
ミックスは1の上下面に設ける必要がある。3の電極は
公知の物であれば何れの電極でもよく、銀ペースト、金
及び白金のスパッタリング、貴金属の無電界メッキ等が
例として挙げられる。
Reference numeral 2 in the figure may be a dense ferroelectric ceramic. The denseness referred to here means a material having a porosity of 10% or less. In order to make the shrinkage rate the same as that of the porous portion, the material is preferably the same as that of the part. Furthermore, in order to install the electrode shown by 3, the dense ferroelectric ceramics of 2 must be provided on the upper and lower surfaces of 1. The electrode 3 may be any known electrode, and examples thereof include silver paste, gold and platinum sputtering, and electroless plating of noble metal.

【0012】本発明の赤外線検出素子の厚さは、出来る
だけ薄い方が好ましいが自立して存在するためにある程
度の厚みは必要である。具体的には検出素子の最終的な
厚さが2〜0.2mmである事が好ましい。2mmを上廻る
と多孔質化するメリットが失われ、0.2mm未満である
と作業性に於いて著しく劣る。また、赤外線検出器とし
て使用する前に分極処理(ポーリング)を行う必要があ
る場合は、これを行って実用に供する。
The thickness of the infrared detecting element of the present invention is preferably as thin as possible, but it is necessary to have a certain thickness because it exists in a self-supporting manner. Specifically, it is preferable that the final thickness of the detection element is 2 to 0.2 mm. If it exceeds 2 mm, the merit of making it porous is lost, and if it is less than 0.2 mm, the workability is extremely poor. If it is necessary to perform polarization treatment (poling) before using it as an infrared detector, it is put to practical use.

【0013】以下に具体的な実施例を挙げて本発明を具
体的に説明する。 実施例 セラミックスに対しバインダーとしてポリヴィニルアル
コール(PVA)を10重量%、可塑剤としてグリセリ
ンを9重量%、分散剤としてポリアクリル酸アンモニウ
ム塩を0.4重量部添加した水系のPZT系原料(富士
チタン製PE−650)のスラリー(スラリ−A)を作
製した。このスラリーをドクターブレード法で厚膜成型
し乾燥厚さ0.10mmのグリーンシート(A)を得た。
一方、上記スラリーAにジャガイモ澱粉(粒子径、10
μm)をPZTに対し体積比で1:1となるように添加
し更にボールミルを行いスラリーBを作製し、同様にド
クターブレード法で乾燥厚さ0.15mmのグリーンシー
ト(B)を得た。
The present invention will be specifically described below with reference to specific examples. Example A water-based PZT-based raw material obtained by adding 10% by weight of polyvinyl alcohol (PVA) as a binder to ceramics, 9% by weight of glycerin as a plasticizer, and 0.4 parts by weight of ammonium polyacrylate as a dispersant ( A Fuji Titanium PE-650) slurry (slurry-A) was prepared. A thick film was formed from this slurry by a doctor blade method to obtain a green sheet (A) having a dry thickness of 0.10 mm.
On the other hand, potato slurry (particle size: 10
μm) was added to PZT in a volume ratio of 1: 1 and further ball-milled to prepare a slurry B, and a doctor blade method was similarly used to obtain a green sheet (B) having a dry thickness of 0.15 mm.

【0014】得られたグリーンシートを1cm×2cmに切
り出し、シートAが表面となるように表1に示す枚数の
各シートを重ね合わせた。この場合、水を接着面に塗布
し圧着した後乾燥させて層状グリーン体を得た。焼成は
電気炉を用い、400℃で2時間の脱脂を経て1330
℃にて1時間行った。焼成体の両面に銀ペースト(藤倉
化成製ドータイト)を塗布し乾燥後600℃で焼き付
け、更に、シリコーンオイル中140℃で2kV/mmの
電圧を印加しポーリング処理を行った。
The obtained green sheet was cut into a piece of 1 cm × 2 cm, and the sheets shown in Table 1 were stacked so that the sheet A was on the surface. In this case, water was applied to the adhesive surface, pressure-bonded, and then dried to obtain a layered green body. An electric furnace was used for firing, and after degreasing at 400 ° C for 2 hours, 1330
It carried out at 1 degreeC for 1 hour. Silver paste (Dotite made by Fujikura Kasei Co., Ltd.) was applied to both sides of the fired body, dried and baked at 600 ° C., and further, poling treatment was performed by applying a voltage of 2 kV / mm at 140 ° C. in silicone oil.

【0015】環境試験機(タバイエスペック製SU−2
20)中でサンプルを一定速度(1℃/分)にて昇温し
つつ微小電流測定器(アドバンテスト製R8240)に
より発生電流を測定することで焦電係数を求めた。又、
比誘電率は焦電測定と同じ環境下でLCRメーター(ヒ
ューレットパッカード製4192A)により測定した容
量から計算した誘電率を真空の誘電率で割ることで求め
た。結果は表1に示す。表中のB層部気孔率は全体の相
対密度と比較例1で求めたA層部気孔率及び断面観察に
よる各層の厚さより計算した。尚、相対密度は外寸と重
量から計算したものを理論密度(7.9)で割った値で
ある。
Environmental tester (SU-2 made by Tabai Espec
In 20), the pyroelectric coefficient was determined by measuring the generated current with a minute current measuring device (R8240 manufactured by Advantest) while heating the sample at a constant rate (1 ° C./min). or,
The relative permittivity was determined by dividing the permittivity calculated from the capacitance measured by an LCR meter (4192A manufactured by Hewlett Packard) in the same environment as the pyroelectric measurement by the permittivity of vacuum. The results are shown in Table 1. The porosity of the B layer portion in the table was calculated from the relative density of the whole, the porosity of the A layer portion obtained in Comparative Example 1 and the thickness of each layer by cross-sectional observation. The relative density is a value calculated from the outer size and the weight and divided by the theoretical density (7.9).

【0016】[0016]

【表1】 [Table 1]

【表1(続き)】 [Table 1 (continued)]

【0017】表1に於いて同じ材質の緻密質から成る検
出器である比較例1と比較することで本発明の構造によ
る性能指数(p1及びp3)の顕著な向上が明らかにな
りその効果が確かめられた。
In Table 1, by comparing with the detector of Comparative Example 1 which is a detector made of the same material, a remarkable improvement in the performance index (p1 and p3) by the structure of the present invention is revealed, and its effect is obtained. I was confirmed.

【0018】次にチタン酸鉛(PT)に酸化カルシウム
を20モル%添加したPT系原料を用い、上記実施例と
同様に水系のスラリーを作成した後、緻密質用のグリー
ンシートを成型した(シートC)。得られたグリ−ンシ
ートの厚みは0.040mmであった。上記スラリ−に中
心粒径30μmのポリスチレンビーズを仕込み体積比で
70%になるように混合し、様々な厚みを得る為にブレ
ード間隔を変えてシート成形を行った(シートD)。
Next, using a PT-based raw material in which 20 mol% of calcium oxide was added to lead titanate (PT), an aqueous slurry was prepared in the same manner as in the above-mentioned example, and then a green sheet for compact was molded ( Sheet C). The resulting green sheet had a thickness of 0.040 mm. Polystyrene beads having a median particle diameter of 30 μm were charged into the slurry and mixed so as to have a volume ratio of 70%, and a sheet was formed by changing blade intervals to obtain various thicknesses (sheet D).

【0019】得られたグリーンシートを1cm×2cmに切
り出し、C−D−Cの順で各シートを1枚づつ重ね合わ
せて実施例とした。一方シートCを5層重ね比較例とし
た。焼成は電気炉を用い、400℃で2時間の脱脂を経
て1380℃にて1時間行った。焼成体の両面に銀ペー
スト(藤倉化成製ドータイト)を塗布し乾燥後600℃
で焼き付け、更に、シリコーンオイル中140℃で2k
V/mmの電圧を印加しポーリング処理を行った。
The obtained green sheet was cut into a piece of 1 cm × 2 cm, and the sheets were stacked one by one in the order of C-D-C to give an example. On the other hand, the sheet C was used as a comparative example of stacking five layers. The firing was performed using an electric furnace at 1380 ° C. for 1 hour after degreasing at 400 ° C. for 2 hours. Silver paste (Dotite made by Fujikura Kasei) is applied to both sides of the fired body and dried at 600 ° C.
Baked at 140 ° C for 2k in silicone oil
A poling treatment was performed by applying a voltage of V / mm.

【0020】[0020]

【表2】 [Table 2]

【表2(続き)】 [Table 2 (continued)]

【0021】得られた結果を表2に示す。多孔質層部
(D層部)の気孔率は全体の相対密度と比較例2で求め
たC層部気孔率及び断面観察による各層の厚さより計算
した。また、相対密度は理論密度を7.7と仮定し計算
した。比誘電率、焦電係数の測定は、実施例1〜3及び
比較例1の測定と同様に行った。
The results obtained are shown in Table 2. The porosity of the porous layer portion (D layer portion) was calculated from the relative density of the whole, the porosity of the C layer portion obtained in Comparative Example 2 and the thickness of each layer by cross-sectional observation. Further, the relative density was calculated assuming a theoretical density of 7.7. The relative permittivity and the pyroelectric coefficient were measured in the same manner as in Examples 1 to 3 and Comparative Example 1.

【0022】表2から明らかなように、この場合も比較
例2に比べp1値、p2値が共に大きくなり本発明の構
造による効果が明らかである。
As is clear from Table 2, in this case as well, both the p1 value and the p2 value are larger than in Comparative Example 2, and the effect of the structure of the present invention is clear.

【0023】[0023]

【発明の効果】本発明に係わる赤外線検出素子は、従来
の強誘電性セラミックスを用いたまま、その検出器の構
造を改良した。本発明の赤外線検出素子によりその誘電
率と熱容量が大幅に低下できるので、実用性能指数が飛
躍的に向上する利点がある。
The infrared detecting element according to the present invention has an improved detector structure while using the conventional ferroelectric ceramics. Since the infrared detector of the present invention can significantly reduce its dielectric constant and heat capacity, it has an advantage of dramatically improving the practical performance index.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年11月30日[Submission date] November 30, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の焦電型赤外線検出素子の説明図。FIG. 1 is an explanatory view of a pyroelectric infrared detection element of the present invention.

【符号の説明】 1 多孔質強誘電性セラミックス 2 緻密質強誘電性セラミックス 3 電極[Explanation of symbols] 1 porous ferroelectric ceramics 2 dense ferroelectric ceramics 3 electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多孔質強誘電性セラミックスが緻密質強誘
電性セラミックスによって挟まれた構造を持つ焦電型赤
外線検出素子。
1. A pyroelectric infrared detector having a structure in which porous ferroelectric ceramics are sandwiched between dense ferroelectric ceramics.
【請求項2】100μm以下の粒子径を持つ有機物の気
孔形成材を強誘電性セラミックス粉体と混合し、その体
積分率が20〜70%であるスラリーを厚膜成形した多
孔質厚膜用グリーンシートと上記スラリーから気孔形成
材を除いたスラリーを厚膜成形した緻密質厚膜用グリー
ンシートを重ね合わせることを特徴とする請求項1に記
載の焦電型赤外線検出素子の製造方法。
2. A porous thick film obtained by mixing an organic pore forming material having a particle size of 100 μm or less with a ferroelectric ceramic powder, and forming a slurry having a volume fraction of 20 to 70% into a thick film. The method for producing a pyroelectric infrared detection element according to claim 1, wherein a green sheet and a dense green sheet for thick thick film obtained by forming a thick slurry of the slurry from which the pore-forming material has been removed are laminated.
JP6216581A 1994-08-17 1994-08-17 Infrared detection element and production thereof Pending JPH0862038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216581A JPH0862038A (en) 1994-08-17 1994-08-17 Infrared detection element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6216581A JPH0862038A (en) 1994-08-17 1994-08-17 Infrared detection element and production thereof

Publications (1)

Publication Number Publication Date
JPH0862038A true JPH0862038A (en) 1996-03-08

Family

ID=16690666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216581A Pending JPH0862038A (en) 1994-08-17 1994-08-17 Infrared detection element and production thereof

Country Status (1)

Country Link
JP (1) JPH0862038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144162A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Image pickup device and monitoring device
JP2003017663A (en) * 2001-06-29 2003-01-17 Rohm Co Ltd Ferroelectric memory
WO2010044438A1 (en) * 2008-10-15 2010-04-22 株式会社村田製作所 Heat sensor, non-contact temperature measuring device, and non-contact temperature measuring method
WO2015072095A1 (en) * 2013-11-14 2015-05-21 パナソニックIpマネジメント株式会社 Infrared radiation detection element, infrared radiation detection device, and piezoelectric element
JP2018157179A (en) * 2017-03-16 2018-10-04 キヤノン株式会社 Piezoelectric element, manufacturing method of the same, and liquid ejection head
EP3492892A1 (en) * 2017-12-04 2019-06-05 Commissariat à l'énergie atomique et aux énergies alternatives Thermal pattern sensor with pyroelectric capacity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144162A (en) * 1997-11-06 1999-05-28 Nohmi Bosai Ltd Image pickup device and monitoring device
JP2003017663A (en) * 2001-06-29 2003-01-17 Rohm Co Ltd Ferroelectric memory
WO2010044438A1 (en) * 2008-10-15 2010-04-22 株式会社村田製作所 Heat sensor, non-contact temperature measuring device, and non-contact temperature measuring method
JP5321595B2 (en) * 2008-10-15 2013-10-23 株式会社村田製作所 Thermal sensor, non-contact thermometer device, and non-contact temperature measurement method
WO2015072095A1 (en) * 2013-11-14 2015-05-21 パナソニックIpマネジメント株式会社 Infrared radiation detection element, infrared radiation detection device, and piezoelectric element
JP2018157179A (en) * 2017-03-16 2018-10-04 キヤノン株式会社 Piezoelectric element, manufacturing method of the same, and liquid ejection head
EP3492892A1 (en) * 2017-12-04 2019-06-05 Commissariat à l'énergie atomique et aux énergies alternatives Thermal pattern sensor with pyroelectric capacity
FR3074574A1 (en) * 2017-12-04 2019-06-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives THERMAL PATTERN SENSOR WITH PYROELECTRIC CAPABILITY
US11158780B2 (en) 2017-12-04 2021-10-26 Commissariat à l'énergie atomique et aux énergies alternatives Thermal pattern sensor with pyroelectric capacitor

Similar Documents

Publication Publication Date Title
US5297438A (en) Piezoresistive sensor
US4642732A (en) Dielectric ceramic composition and method of producing same, and a monolithic capacitor
US4545254A (en) Materials and methods for pressure and temperature sensors at cryogenic temperatures
US6329656B1 (en) Ferroelectric ceramics
JPH0862038A (en) Infrared detection element and production thereof
US7305743B2 (en) Method of producing piezoelectric ceramic device
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JP3305272B2 (en) Dielectric porcelain material
Chauhan et al. A study on SBN-POP composites for pyroelectric sensing applications
Leppävuori et al. A thick-film pyroelectric PLZT ceramic sensor
JPH0387056A (en) Thin film capacitor and manufacture thereof
WO2006035576A1 (en) Ceramic capacitor and method for manufacturing same
Harikrishnan et al. PZT/PLZT-elastomer composites with improved piezoelectric voltage coefficient
Kulawik et al. Multilayer perovskite-based thermistors fabricated by ltcc technology
JP3174150B2 (en) Humidity sensor
JPS5939690B2 (en) Pyroelectric detection element
JPH0221675A (en) Substrate for thin film thermopile use
JP2936925B2 (en) Method for producing multilayer semiconductor ceramic composition
JPS60191053A (en) Pyroelectric type infrared ray decting element
JPS6234707B2 (en)
JPS5852176B2 (en) Pyroelectric detection element
JP2571386B2 (en) High dielectric constant dielectric porcelain composition
JPS63270357A (en) Sintered pyroelectric ceramics
JP2893704B2 (en) Multilayer ceramic capacitors
KR0146004B1 (en) Pyroelectric infrared sensor ceramic sintering and the manufacturing method thereof