KR100328867B1 - Composition of pyroelectric ceramics for infrared sensor - Google Patents
Composition of pyroelectric ceramics for infrared sensor Download PDFInfo
- Publication number
- KR100328867B1 KR100328867B1 KR1019970060871A KR19970060871A KR100328867B1 KR 100328867 B1 KR100328867 B1 KR 100328867B1 KR 1019970060871 A KR1019970060871 A KR 1019970060871A KR 19970060871 A KR19970060871 A KR 19970060871A KR 100328867 B1 KR100328867 B1 KR 100328867B1
- Authority
- KR
- South Korea
- Prior art keywords
- temperature
- composition
- pyroelectric
- infrared sensor
- room temperature
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 25
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 초전성 세라믹스(Ceramics) 조성물에 관한 것으로, 보다 상세하게는 상온 내지 120℃의 온도 범위에서 안정적으로 사용할 수 있는 적외선 센서로서의 실용성이 높은 초전성 세라믹스 조성물에 관한 것이다.BACKGROUND OF THE
일반적으로 적외선 센서는 자연계에 존재하는 광선중 파장이 가시광 보다 길고 전파 보다 짧은 적외선을 이용한다. 즉, 방사되는 적외선의 파장은 물체의 온도에 따라 달라서, 인간의 체온은 36∼37℃ 이므로 9∼10㎛에서 피크(Peak)를 가진 원적외선이 방사되고 400∼700℃로 가열된 물체에서는 3∼5㎛에서 피크를 가진 중간 적외선이 방사되는데, 이러한 각종 적외선을 검출하는 센서가 적외선 센서이다.In general, infrared sensors use infrared light whose wavelength is longer than visible light and shorter than radio waves. That is, the wavelength of the emitted infrared rays depends on the temperature of the object. Since the human body temperature is 36 to 37 ° C., the far-infrared rays having a peak at 9 to 10 μm are emitted and the object is heated to 400 to 700 ° C. A medium infrared ray having a peak at 5 μm is emitted. An infrared sensor is a sensor for detecting various kinds of infrared rays.
적외선 센서는 동작 원리에 따라, 적외선을 일단 열로 변환하고 저항 변화나 기전력 등의 형태로 출력을 꺼내는 열형과, 반도체의 이동간 에너지 흡수차를 이용한 광전도 효과나 PN 접합에 의한 광기전력 효과를 이용한 양자형으로 나눌 수 있다. 이중 초전형 적외선 센서는 열형에 속하는 적외선 센서로서, 소자의 표면 온도가 변화하면 이에 따라 감지 소자의 극성 크기가 변화하여 전허가 발생되는 현상인 초전 효과를 이용한 것이다.According to the principle of operation, the infrared sensor converts infrared rays into heat and takes out the output in the form of resistance change or electromotive force, and a quantum using photoconductive effect using energy absorption difference between semiconductors and photovoltaic effect by PN junction. It can be divided into types. The dual pyroelectric infrared sensor is an infrared sensor belonging to the thermal type, and when the surface temperature of the device is changed, the polarity of the sensing element is changed accordingly to use the pyroelectric effect, a phenomenon in which power generation occurs.
초전형 적외선 센서는 물체에서 방사되는 적외선을 검지함으로써 직접 접촉하지 않아도 물체 표면의 온도를 감지할 수 있다는 것, 검지 대상물이 발하는 적외선을 받는 수동형이므로 능동형과 같이 투수광기의 광축을 맞추어야 하는등 번거로운 작업이 필요 없다는 것, 온도 변화에 의한 에너지를 받았을 때만 전압을 미분하여 출력한다는 것을 특징으로 하는 센서로 최근 특히 주목되고 있다.The pyroelectric infrared sensor can detect the temperature of the surface of the object without direct contact by detecting infrared radiation emitted from the object, and it is a passive type that receives infrared light emitted by the object to be detected. In particular, attention has recently been paid to the sensor, which is characterized in that it is not necessary and outputs the voltage by differentiating only when energy is received due to temperature change.
예를 들면 협소 구역, 접근 불가능 지역 등의 측온, 고압 변압기, 연소실, 배전부 등 위험 개소에서의 측온, 연속 라인의 이동 물체나 회전체의 측온, 열용량이 작은 종이, 섬유의 측온 등에 널리 이용 개발이 진행되고 있는 중이며, 이에 따라 고품질, 고성능을 갖는 초전성 재료가 요구되고 있다.For example, it is widely used for temperature measurement in narrow areas and inaccessible areas, temperature measurement in dangerous places such as high voltage transformers, combustion chambers and distribution units, temperature measurement of moving objects or rotating bodies in continuous lines, paper with low heat capacity, and measurement of fibers. This is in progress, and accordingly, there is a demand for a superelectric material having high quality and high performance.
종래 이러한 목적으로 사용되는 초전성 재료는 다음 표 1 로 나타낸 것이 있다.Conventional superconducting materials used for this purpose are shown in Table 1 below.
종래 사용되고 있는 초전성 재료로는 LiNbO3,LiTaO3등의 단결정 혹은 PbTiO3 Conventionally used superconducting materials include single crystals such as LiNbO 3 , LiTaO 3 , or PbTiO 3.
또는 PZT(PbZrO3-PbTiO3)등의 강유전체 세라믹스가 있으며, 이하 종래 개발된 초전성 재료에 대하여 상세하게 논하기로 한다.Or ferroelectric ceramics, such as PZT (PbZrO 3 -PbTiO 3 ), there will be discussed in detail with respect to the conventionally developed superelectric material.
표 1Table 1
일반적으로 초전성 재료의 성능은 초전계수(P)값에 비례하고 비유전율(εr) 및 유전손실(tanδ)에 반비례하며, 실제 센서로서의 사용 온도 영역은 초전성 재료의 초전 특성이 사라지는 온도인 큐리(Curie) 온도가 높을 수록 증가하는 것으로 알려져 있다.In general, the performance of a pyroelectric material is proportional to the value of the pyroelectric coefficient (P) and inversely proportional to the relative dielectric constant (ε r ) and the dielectric loss (tanδ), and the operating temperature range of the actual sensor is a temperature at which the pyroelectric properties of the pyroelectric material disappear. It is known that the higher Curie temperature increases.
현재 공업적으로 제조되고 있는 초전성 재료로서는 LiNbO3,LiTaO3등의 단결정은 큐리 온도가 높고 비유전율이 비교적 작아서 상온 근처의 성능 지수가 비교적 안정하다는 등의 적절한 성질을 가지며, 단결정상이므로 높은 재현성을 얻을 수 있다고 하는 특징을 갖는다.Currently, industrially manufactured superconducting materials such as LiNbO 3 and LiTaO 3 have the proper properties such as high Curie temperature and relatively low relative dielectric constant and relatively stable performance index near room temperature. It has a feature that it can be obtained.
그러나 이들 단결정은 쵸크라스키(Czochralski)법 등의 단결정 육성 기술에 의해 제조되므로 제조 단가가 높고 큐리 온도 범위 외에서는 초전계수가 작으므로 감도가 현저히 떨어진다는 결점이 있다.However, since these single crystals are manufactured by single crystal growing techniques such as the Czochralski method, there is a drawback that the sensitivity is significantly reduced because the manufacturing cost is high and the pyroelectric coefficient is small outside the Curie temperature range.
한편, PbTiO3세라믹스는 실용화된 대표적인 초전성 세라믹스이며, 높은 큐리 온도와 큰 자발 분극, 비교적 작은 비유전율을 갖는 우수한 초전성 재료로 생각되고 있다. 그러나, PbTiO3는 초전계수가 작아 감도가 높지 않은 결점이 있고 반면 PZT 계 세라믹스는 초전계수는 크지만 상대적으로 비유전율 및 유전손실도 매우 커서 감도가 저하된다는 단점이 있다.PbTiO 3 ceramics, on the other hand, are representative of commercially available superconducting ceramics, and are considered to be excellent superconducting materials having high Curie temperatures, large spontaneous polarization, and relatively small relative dielectric constants. However, PbTiO 3 has a drawback in that its sensitivity is not high due to its small pyroelectric coefficient, whereas PZT-based ceramics have a disadvantage in that the sensitivity of the PZT-based ceramics is large, but the relative dielectric constant and dielectric loss are also very large.
따라서, 본 발명은 상기 설명한 종래 기술의 결점을 해결하기 위하여 이루어진 것으로, 비유전율 및 유전손실을 현저히 저하시키고 상온 감도 및 노이즈비가 크게 향상됨으로써 실용성이 높은 적외선 센서용 초전성 세라믹스 조성물을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned drawbacks of the prior art, and the present invention provides a highly practical pyroelectric ceramic composition for infrared sensors by remarkably lowering the dielectric constant and dielectric loss and greatly improving the room temperature sensitivity and noise ratio. There is this.
도 1 은 본 발명에 따른 초전성 세라믹스 조성물에서 xPb(Yb1/2Sn1/2)O3치환량 및 Zr/Ti 비에 따른 상온에서의 비유전율 및 유전 손실의 변화를 나타낸 그래프도,1 is a graph showing changes in relative dielectric constant and dielectric loss at room temperature according to xPb (Yb 1/2 Sn 1/2 ) O 3 substitution amount and Zr / Ti ratio in a superconducting ceramic composition according to the present invention.
도 2 는 본 발명에 따른 초전성 세라믹스 조성물에서 xPb(Yb1/2Sn1/2)O3치환량 및 Zr/Ti 비에 따른 큐리온도의 변화를 나타낸 그래프도이다.2 is a graph showing the change in Curie temperature according to the xPb (Yb 1/2 Sn 1/2 ) O 3 substitution amount and Zr / Ti ratio in the superconducting ceramic composition according to the present invention.
상기 목적을 달성하기 위한 본 발명의 적외선 센서용 초전성 세라믹스 조성물은, xPb(Yb1/2Sn1/2)O3-yPbTiO3-zPbZrO3의 초전성 세라믹스 조성중, 식중의 변수 x,y 및 z 가 몰(Mole)비로 각각 0.01≤x≤0.05, 0<y<0.4 및 0.6<z<1.0 (단, x+y+z=1)의 범위를 갖는 것을 특징으로 하는 구성이다.In order to achieve the above object, the superconducting ceramic composition for an infrared sensor of the present invention includes the variables x, y in the superconducting ceramic composition of xPb (Yb 1/2 Sn 1/2 ) O 3 -yPbTiO 3 -zPbZrO 3 . z has a range of 0.01 ≦ x ≦ 0.05, 0 <y <0.4 and 0.6 <z <1.0 (where x + y + z = 1), respectively, in a molar ratio.
이하에서는 첨부 도면과 관련하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 xPb(Yb1/2Sn1/2)O3-yPbTiO3-zPbZrO3의 초전성 세라믹스 조성물은 y/z 비의 변화에 따라 정방정(Tetragonal)계 및 능면정(Rhombohedral)계로 결정구조가 변화하며 여기에 제 3 성분으로 첨가된 xPb(Yb1/2Sn1/2)O3의 양을 변화시킴으로써 결정립의 크기 및 형상을 제어하여 초전성 세라믹스 조성물의 기계적 강도 및 여러 특성을 조절할 수 있다.The superconducting ceramic composition of xPb (Yb 1/2 Sn 1/2 ) O 3 -yPbTiO 3 -zPbZrO 3 according to the present invention has a tetragonal system and a rhombohedral system according to a change in the y / z ratio. By changing the crystal structure and changing the amount of xPb (Yb 1/2 Sn 1/2 ) O 3 added to the third component, it is possible to control the size and shape of the crystal grains, thereby controlling the mechanical strength and various properties of the pyroelectric ceramic composition. I can regulate it.
먼저 xPb(Yb1/2Sn1/2)O3이 첨가되지 않은 순수 PZT 의 경우 결정입경은 4∼6㎛로, 이와 같이 결정립이 큰 시료는 기계적 강도가 약하고 분극 처리후 10일∼1 개월간 방치하면 노이즈(Noise)가 현저하게 발생하게 된다. 이러한 노이즈의 원인은 결정립의 조대화에 따른 비유전율 및 유전손실의 증가 때문이며, 이는 제 3 성분으로 xPb(Yb1/2Sn1/2)O3를 첨가하여 전체적인 고용체의 결정입경을 감소시킴으로써 낮은 비유전율 및 낮은 유전 손실을 나타내어 초전감도가 높고 노이즈가 낮은 우수한 초전성 세라믹스 조성물을 얻을 수 있다.In the case of pure PZT without xPb (Yb 1/2 Sn 1/2 ) O 3 added, the grain size is 4 to 6 µm. In this case, the sample having a large grain size has weak mechanical strength and 10 days to 1 month after polarization treatment. If left unnoticed, noise is remarkably generated. The cause of this noise is due to an increase in relative dielectric constant and dielectric loss due to coarsening of grains, which is reduced by adding xPb (Yb 1/2 Sn 1/2 ) O 3 as a third component to reduce the overall grain size of solid solution. It is possible to obtain an excellent superconducting ceramic composition having high dielectric constant and low noise by exhibiting relative dielectric constant and low dielectric loss.
그리고 초전형 적외선 세라믹스 조성물의 큐리온도는 센서로 활용시 사용온도와 관계되어 있는데 일반적으로 유전상수는 큐리온도의 1/3 되는 온도까지 변화가 작아 안정하게 사용가능한 것으로 알려져 있다. 본 발명의 경우 xPb(Yb1/2Sn1/2)O3의 첨가량을 증가시킴에 따라 큐리온도는 낮아지는 경향을 나타내므로 초전형 적외선 센서 소자용으로는 xPb(Yb1/2Sn1/2)O3의 첨가량 및 y/z의 비를 조절하여 센서의 사용온도에 알맞는 큐리온도를 나타내도록 조절할 수 있다.The Curie temperature of the pyroelectric infrared ceramic composition is related to the use temperature when used as a sensor. In general, the dielectric constant is known to be stably used due to the small change up to 1/3 of the Curie temperature. In the present invention, the Curie temperature tends to decrease as the amount of xPb (Yb 1/2 Sn 1/2 ) O 3 is increased, so that xPb (Yb 1/2 Sn 1 / 2 ) The amount of O 3 added and the ratio of y / z can be adjusted to show the Curie temperature suitable for the sensor's operating temperature.
본 발명에 따른 초전성 세라믹스 조성물은 적외선을 방사하는 물체를 접촉하지 않은 상태에서 온도값을 감지할 수 있으므로 각종 산업 현장에 이용되는 비접촉식 적외선 온도계 및 인체 검지를 통한 침입 경보기, 불꽃 검지를 통한 화재 경보기, 전기기구의 과열방지 시스템 등의 초전형 적외선 센서로 광범위하게 적용이 가능하다.Since the superconducting ceramic composition according to the present invention can detect the temperature value without contacting an object emitting infrared rays, a non-contact infrared thermometer used for various industrial sites, an intrusion alarm through human body detection, a fire alarm through flame detection It can be applied to a wide range of pyroelectric infrared sensors such as overheating prevention system of electric appliances.
이하에서는 실시예와 관련하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
실시예Example
발명예1 및 발명예2는 조성이 xPb(Yb1/2Sn1/2)O3-yPbTiO3-zPbZrO3의 초전성 세라믹스 조성중, 식중의 변수 x,y 및 z 가 몰(Mole)비로 각각 0.01≤x≤0.05, 0<y<0.4 및 0.6<z<1.0 (단, x+y+z=1)의 범위를 갖고, 비교예1∼비교예3은 x,y 및 z 가 0.05<x<0.1, 0.4<y<1.0, 0<z<0.6 (단,x+y+z=1)의 범위를 갖도록 조성을 설계하였다.Inventive Examples 1 and 2 are composed of xPb (Yb 1/2 Sn 1/2 ) O 3 -yPbTiO 3 -zPbZrO 3 in the composition of the superconducting ceramics, wherein the variables x, y and z in the formula are each represented by a molar ratio. 0.01 ≦ x ≦ 0.05, 0 <y <0.4 and 0.6 <z <1.0 (where x + y + z = 1), and Comparative Examples 1 to 3 show that x, y and z are 0.05 <x The composition was designed to have a range of <0.1, 0.4 <y <1.0, 0 <z <0.6 (where x + y + z = 1).
각각의 조성에 대하여 순도 99.5% 이상의 PbO, SnO, Yb2O3, TiO2, ZrO2산화물 분말을 칭량하여 볼밀(Ball Mill)을 사용하여 에탄올 용매중에서 24 시간 혼합 건조한후, 750℃에서 4 시간 하소를 행하였다. 하소된 분말은 X-ray 분석을 통하여 페로브스카이트(Perovskite) 단일상임을 확인한후, 24 시간 습식 볼밀을 행하여 평균 입도가 0.4∼0.5㎛가 되도록 하였다. 건조된 분말을 먼저 유압 프레스를 이용하여 직경 10㎜의 성형 몰드에 의해 가압성형한후 냉간 정수압 프레스에 의하여 190 Mpa 의 압력으로 성형하였다. 성형된 펠렛은 PbO 분위기의 밀폐된 알루미나 도가니에 넣어 1150℃의 온도에서 4 시간 유지시켜 소결을 행하였다. 소결된 시편들은 양면 연마기에 의해 0.5㎜의 두께가 되도록 연마한후 시편 표면의 응력을 제거하기 위하여 650℃에서 2 시간 소둔을 행하였으며, 소결된 시편의 밀도는 이론 밀도의 약 97∼98% 이었다. 연마된 시편은 초음파 세척기로 이물질을 제거하고 건조후 은전극을 도포하여 590℃에서 15분간 열처리하여 전극을 형성하였으며 80℃에서 2㎸/㎜의 직류전압을 인가하여 분극처리하였다.PbO, SnO, Yb 2 O 3 , TiO 2 , ZrO 2 oxide powders with a purity of 99.5% or more were weighed and mixed for 24 hours in an ethanol solvent using a ball mill, followed by 4 hours at 750 ° C. Calcination was carried out. The calcined powder was confirmed to be a perovskite single phase through X-ray analysis, and then wet ball milled for 24 hours to obtain an average particle size of 0.4 to 0.5 µm. The dried powder was first press-molded by a molding mold having a diameter of 10 mm using a hydraulic press and then molded at a pressure of 190 Mpa by a cold hydrostatic press. The molded pellets were placed in a sealed alumina crucible in a PbO atmosphere and kept at a temperature of 1150 ° C for 4 hours to sinter. The sintered specimens were polished to a thickness of 0.5 mm by a double-side polisher and then annealed at 650 ° C. for 2 hours to remove the stress on the specimen surface. The density of the sintered specimens was about 97-98% of the theoretical density. . The polished specimens were removed by an ultrasonic cleaner, dried, coated with silver electrodes, heat-treated at 590 ° C. for 15 minutes to form electrodes, and polarized by applying a DC voltage of 2 mA / mm at 80 ° C. FIG.
본 발명에 따른 초전성 세라믹스 조성물에서 Pb(Yb1/2Sn1/2)O3치환량 및 Zr/Ti비에 따른 상온에서의 비유전율 및 유전손실의 변화를 제 1 도에 나타내었다. 또한 Pb(Yb1/2Sn1/2)O3치환량 및 Zr/Ti 비에 따른 큐리온도의 변화를 제 2 도에 나타내었다. 제 1 도 및 제 2 도로부터 알 수 있는 바와 같이, Pb(Yb1/2Sn1/2)O3의 치환량을 0.05 몰까지 변화시킴에 따라 비유전율 및 유전 손실을 현저히 저하시키고 큐리온도를 200∼360℃의 범위에서 직선적으로 변화시킬 수 있었다.The change in dielectric constant and dielectric loss at room temperature according to Pb (Yb 1/2 Sn 1/2 ) O 3 substitution amount and Zr / Ti ratio in the superconducting ceramic composition according to the present invention is shown in FIG. 1. Also, FIG. 2 shows changes in Curie temperature according to Pb (Yb 1/2 Sn 1/2 ) O 3 substitution amount and Zr / Ti ratio. As can be seen from FIGS. 1 and 2, by changing the substitution amount of Pb (Yb 1/2 Sn 1/2 ) O 3 to 0.05 mole, the relative dielectric constant and dielectric loss are significantly reduced and the Curie temperature is 200. It was able to change linearly in the range of -360 degreeC.
본 발명에 따른 발명예1, 발명예2 및 비교예1∼비교예3에 대하여 상온감도(S),노이즈(N) 및 S/N 비를 측정하여 종래 시판된 제품중 초전특성이 가장 우수한 일본 니세라(Nicera) 제품(종래예)과 비교하여 결과를 표 2 에 나타내었다.Inventive Example 1, Inventive Example 2 and Comparative Examples 1 to 3 according to the present invention were measured in room temperature sensitivity (S), noise (N) and S / N ratio of the most excellent commercially available products in Japan The results are shown in Table 2 in comparison with Nicera products (conventional example).
표 2TABLE 2
표 2 로부터 알 수 있는 바와 같이, 발명예1 과 발명예2 의 경우 초전특성이 특히 우수하였으며, 발명예2의 경우 종래의 제품 보다 약 62% 정도 향상된 S/N 비를 얻을 수 있었다.As can be seen from Table 2, the pyroelectric properties were particularly excellent in Inventive Example 1 and Inventive Example 2, and Inventive Example 2 was able to obtain an S / N ratio improved by about 62% over conventional products.
따라서, 상기 설명한 바와 같은 본 발명의 적외선 센서용 초전성 세라믹스 조성물에 의하면, Pb(Yb1/2Sn1/2)O3치환량을 0.05 몰까지 증가시킴에 따라 비유전율 및 유전 손실을 현저히 저하시키고 큐리온도를 200∼360℃의 범위에서 직선적으로 변화시킬 수 있으며, 상온감도 및 노이즈의 비가 종래의 초전재료 보다 약 62% 향상되며, 따라서, 상온∼120℃ 의 온도 범위에서 안정적으로 사용할 수 있는 적외선 센서로서의 실용성이 높은 초전성 세라믹스 조성물을 얻을 수 있는 효과가 얻어진다.Therefore, according to the above-described superconducting ceramic composition for infrared sensors of the present invention, as the amount of Pb (Yb 1/2 Sn 1/2 ) O 3 substitution is increased to 0.05 mol, the relative dielectric constant and dielectric loss are significantly reduced. Curie temperature can be changed linearly in the range of 200-360 ° C, and the ratio of room temperature sensitivity and noise is improved by about 62% compared to conventional pyroelectric materials, and therefore, infrared rays which can be used stably in the temperature range of room temperature to 120 ° C. The effect which can obtain the superconducting ceramic composition with high practicality as a sensor is acquired.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970060871A KR100328867B1 (en) | 1997-11-18 | 1997-11-18 | Composition of pyroelectric ceramics for infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970060871A KR100328867B1 (en) | 1997-11-18 | 1997-11-18 | Composition of pyroelectric ceramics for infrared sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990040482A KR19990040482A (en) | 1999-06-05 |
KR100328867B1 true KR100328867B1 (en) | 2002-05-10 |
Family
ID=37479052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970060871A KR100328867B1 (en) | 1997-11-18 | 1997-11-18 | Composition of pyroelectric ceramics for infrared sensor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100328867B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101916121B1 (en) * | 2016-08-30 | 2019-01-30 | 김미정 | Device for collecting excrement and winding rollor assembly |
-
1997
- 1997-11-18 KR KR1019970060871A patent/KR100328867B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990040482A (en) | 1999-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics | |
US7928637B2 (en) | Piezoelectric materials | |
EP2622661B1 (en) | Lead-free piezoelectric material based on bismuth zinc titanate-bismuth potassium titanate-bismuth sodium titanate | |
Qiao et al. | Enhancing pyroelectric properties in (Pb1–1.5 xLax)(Zr0. 86Ti0. 14) O3 ceramics through composition modulated phase transition | |
EP1031545B1 (en) | Ferroelectric ceramics | |
KR100328867B1 (en) | Composition of pyroelectric ceramics for infrared sensor | |
Cao et al. | Research on dielectric and piezoelectric properties of Ta-doped 0.68 Pb (Mg1/3Nb2/3) O3–0.32 PbTiO3 ceramics | |
JP2000128632A (en) | Piezoelectric ceramics | |
CN104557038B (en) | A kind of compound system pyroelectric ceramic material and preparation method thereof | |
Zhang et al. | High pyroelectric response of lead zirconate stannate titanate based antiferroelectric ceramics with low Curie temperature | |
US5440125A (en) | Radiation detector having a pyroelectric ceramic detection element | |
Zhang et al. | Large pyroelectric response in (Pb 0.87 La 0.02 Ba 0.1)(Zr 0.7 Sn 0.3− x Ti x) O 3 antiferroelectric ceramics under DC bias field | |
US5141903A (en) | Pyroelectric ceramic composition | |
Jun et al. | (Ba, Sr) TiO3 system under DC-bias field: I. Improvement on the thermostability of pyroelectric response by Zr-substitution | |
JP2571658B2 (en) | Pyroelectric porcelain composition | |
Lal et al. | Pyroelectric and dielectric properties of europium orthochromite | |
KR100641338B1 (en) | Piezoelectric ceramic composition for accelerometer | |
Zhang et al. | High pyroelectric properties of (Pb0. 87La0. 02Ba0. 1)(Zr0. 75Sn0. 25–xTix) O3 ceramics near AFE/RFE phase boundary under DC bias field | |
Çapan | Organic pyroelectric materials for device applications | |
Lian et al. | Pyroelectric properties of lead zirconate titanate based ceramics with a rhombohedral ferroelectric phase transition | |
KR100471978B1 (en) | Piezoelectric ceramic composition for accelerometer | |
KR0146004B1 (en) | Pyroelectric infrared sensor ceramic sintering and the manufacturing method thereof | |
EP0260875B1 (en) | Ceramic composition for pyroelectric sensors | |
JPS60191053A (en) | Pyroelectric type infrared ray decting element | |
JPS60191052A (en) | Pyroelectric type infrared ray decting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080306 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |