JPS6326877B2 - - Google Patents

Info

Publication number
JPS6326877B2
JPS6326877B2 JP18647081A JP18647081A JPS6326877B2 JP S6326877 B2 JPS6326877 B2 JP S6326877B2 JP 18647081 A JP18647081 A JP 18647081A JP 18647081 A JP18647081 A JP 18647081A JP S6326877 B2 JPS6326877 B2 JP S6326877B2
Authority
JP
Japan
Prior art keywords
light
snow
signal
light source
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18647081A
Other languages
Japanese (ja)
Other versions
JPS5887486A (en
Inventor
Iesato Sato
Naoki Ishikawa
Hideo Susuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP18647081A priority Critical patent/JPS5887486A/en
Publication of JPS5887486A publication Critical patent/JPS5887486A/en
Publication of JPS6326877B2 publication Critical patent/JPS6326877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 本発明は積雪計測装置、特に光電方式による積
雪計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a snow measuring device, and particularly to a photoelectric snow measuring device.

積雪の深さを計測する手段として、投光器から
ビーム状光線を雪面に投射し、その反射光を光検
出器により受光評価して、積雪の深さの計測を行
なうようにした積雪計測装置がある。
As a means of measuring the depth of snow, there is a snow measuring device that projects a beam of light from a projector onto the snow surface, receives and evaluates the reflected light with a photodetector, and measures the depth of snow. be.

以下、この光電方式の積雪計測装置の光学的構
成の一例を簡単に説明する。
An example of the optical configuration of this photoelectric snow measuring device will be briefly described below.

第1図に示すように、投光器1と受光器2と
は、それら光軸1Aと2Aとが定められた角度で
互に交差するようにして設定される。そして投光
器1により投射されたビーム状光線3は被計測雪
面4,4A,4Bに光スポツト5,5A,5Bを
形成する。このとき、受光器2の受光レンズ6に
より光検出器7の受光面上に上記雪面上の光スポ
ツト5,5A,5Bの反射光による光スポツト像
8,8A,8Bが結像される。被計測雪面4が4
Aから4Bに変化したときは光検出器7の受光面
上に結像される光スポツト像8の位置も8Aから
8Bに変化する。すなわち、第2図に示すように
被計測雪面4が4Aのレベルにあるときには光検
出器7の受光面7A上に光スポツト像8Aが結像
され、被計測雪面5が5Bのレベルになつたとき
には、上記とは異つた位置に光スポツト像8Bが
結像される。
As shown in FIG. 1, a light emitter 1 and a light receiver 2 are set so that their optical axes 1A and 2A intersect with each other at a predetermined angle. The light beam 3 projected by the projector 1 forms light spots 5, 5A, 5B on the snow surface 4, 4A, 4B to be measured. At this time, light spot images 8, 8A, 8B are formed by the light reflected from the light spots 5, 5A, 5B on the snow surface onto the light receiving surface of the photodetector 7 by the light receiving lens 6 of the light receiver 2. Measured snow surface 4 is 4
When the light spot changes from A to 4B, the position of the light spot image 8 formed on the light receiving surface of the photodetector 7 also changes from 8A to 8B. That is, as shown in FIG. 2, when the snow surface 4 to be measured is at the level 4A, a light spot image 8A is formed on the light receiving surface 7A of the photodetector 7, and the snow surface 5 to be measured is at the level 5B. When the light spot has cooled, a light spot image 8B is formed at a position different from that described above.

このような光学的構成による雪面計測装置の光
検出器7としては、例えば分割形検出器あるいは
位置検知器等が使用される。
As the photodetector 7 of the snow surface measuring device with such an optical configuration, for example, a split type detector or a position detector is used.

分割形検出器はその受光面7Aが二分割されて
おり、光スポツト像が受光面7A上に結像される
と、分割された受光面7Aの各々について結像さ
れた光スポツト像による受光量に比例した出力信
号が出力されるようにしたものであり、光スポツ
ト像の結像位置に応じて、各々の受光面の受光量
が変わることにより、当該各々の受光面からの出
力信号電流が変化するものである。また、位置検
知器は受光面7Aが分割されておらず、該受光面
7Aは全面にわたつて均一で高感度な半導体受光
素子で形成されていて、その両端に出力信号を送
出する電極が取付けられており、受光面7A上を
直線的に移動する光スポツト像8,8A,8Bに
より上記半導体受光素子で発生した光電流が上記
両端の電極と光スポツト像8,8A,8Bの結像
位置との間の距離に応じて分割されて上記両端の
それぞれの電極への出力信号電流となるものであ
る。
In the split type detector, the light receiving surface 7A is divided into two parts, and when a light spot image is formed on the light receiving surface 7A, the amount of light received by the light spot image formed on each of the divided light receiving surfaces 7A is divided into two parts. The output signal current is proportional to It changes. In addition, the position detector has an undivided light-receiving surface 7A, and the light-receiving surface 7A is formed of a uniform and highly sensitive semiconductor light-receiving element over the entire surface, and electrodes for transmitting output signals are attached to both ends of the light-receiving surface 7A. The photocurrent generated in the semiconductor light receiving element by the light spot images 8, 8A, 8B moving linearly on the light receiving surface 7A is transferred to the electrodes at both ends and the imaging position of the light spot images 8, 8A, 8B. The output signal current is divided according to the distance between the electrodes and output signal currents to the respective electrodes at both ends.

上記分割形検出器又は位置検出器から得られた
2つの出力信号電流から光検出器7の受光面7A
上に結像された光スポツト像8,8A,8Bの結
像位置を求めるのであるが、この信号処理の方法
として従来は被計測雪面4,4A,4Bでの反射
率の変化等による計測誤差を除去する目的で上記
2つの出力信号電流の和信号と差信号とを求め、
これ等の比を演算して結像位置情報を得ている。
上記2つの信号の比を求めるために従来は一般に
割算器が使用されるが、該割算器を構成するに
は、通常、上記和信号と差信号とをそれぞれ対数
信号に変換する2つの変換回路、上記対数信号に
変換した和信号から差信号を減算する引算回路及
び該引算回路の出力信号を逆対数信号に変換する
変換回路等が必要であつて回路構成が複雑であり
高価になるばかりでなく、回路構成が多段である
ためにドリフトが大きくて計測誤差が大きいとい
う欠点がある。
The light receiving surface 7A of the photodetector 7 is detected from the two output signal currents obtained from the split type detector or position detector.
The image forming position of the light spot images 8, 8A, 8B formed on the snow surface is determined, and conventional methods for signal processing include measurement based on changes in reflectance on the snow surface 4, 4A, 4B to be measured. For the purpose of removing errors, obtain the sum signal and difference signal of the above two output signal currents,
These ratios are calculated to obtain imaging position information.
Conventionally, a divider is generally used to find the ratio of the above two signals, but in order to construct the divider, two signals are usually used to convert the sum signal and the difference signal into logarithmic signals, respectively. A conversion circuit, a subtraction circuit that subtracts a difference signal from the sum signal converted into a logarithmic signal, and a conversion circuit that converts the output signal of the subtraction circuit into an antilogarithmic signal are required, and the circuit configuration is complicated and expensive. In addition, since the circuit configuration is multistage, there is a drawback that the drift is large and the measurement error is large.

また、上記したように被計測雪面4,4A,4
Bの反射率の変化は信号処理によつて一応は除去
されるものの、上記雪面4,4A,4Bの反射率
が極端に低下すると(例えば、積雪表面に塵介が
付着蓄積されたとき等にこの現象が生ずる。)光
検出器7に入射する反射光量が極端に少なくな
り、当該光検出器7から出力される出力信号電流
の値が信号処理可能範囲以下になつて積雪の深さ
の計測が不可能になつてしまう。
In addition, as described above, the measured snow surfaces 4, 4A, 4
Although the change in the reflectance of B is temporarily removed by signal processing, if the reflectance of the snow surfaces 4, 4A, and 4B decreases extremely (for example, when dust accumulates on the snow surface, etc.) (This phenomenon occurs.) The amount of reflected light incident on the photodetector 7 becomes extremely small, and the value of the output signal current output from the photodetector 7 falls below the signal processing range, resulting in an increase in snow depth. Measurement becomes impossible.

本発明の第1の目的は、以上に述べたような複
雑な処理を必要とせず、従つて回路構成が簡単で
ドリストによる誤差が少なく、かつ、雪面でのビ
ーム状光線の反射量が変化しても計測不能に陥る
ことがない積雪計測装置を得ることである。
The first object of the present invention is to eliminate the need for the above-mentioned complicated processing, so the circuit configuration is simple, there is little error due to drist, and the amount of reflection of the beam-like rays on the snow surface changes. To obtain a snow measuring device that does not become unable to measure even when the snow is covered.

また、雪面の状態(例えば積雪中であるか又は
融雪中であるか等)により当該雪面の反射率が異
ることは一般に知られている処であり、従つて上
記反射率自体が計測できれば、上記雪面の状態を
知る上で非常に好都合である。
Furthermore, it is generally known that the reflectance of the snow surface differs depending on the condition of the snow surface (for example, whether it is covered in snow or melting snow), and therefore the reflectance itself is measured. If possible, it would be very convenient to know the condition of the snow surface.

本発明の第2の目的は積雪の深さの計測と同時
に被計測雪面の反射率自体をも計測可能にするこ
とであり、かつ当該計測を簡単な回路構成により
行なうことである。
A second object of the present invention is to make it possible to measure the reflectance of the snow surface to be measured at the same time as measuring the depth of snow, and to perform the measurement using a simple circuit configuration.

また、光検出器7の受光面7Aには計測に寄与
する前記光スポツト5,5A,5Bの反射光のみ
ならず、例えば太陽光、周囲の照明光等、計測に
無関係な光も入射される。これ等多くの種類の入
射光から前記光スポツト5,5A,5Bの反射光
を区別して抽出するために、一般には投光器1か
らの投射光(ビーム状光線)3に変調された光を
用いる。
In addition, not only the reflected light from the light spots 5, 5A, and 5B that contributes to measurement, but also light unrelated to measurement, such as sunlight and ambient illumination light, enters the light receiving surface 7A of the photodetector 7. . In order to distinguish and extract the reflected light from the light spots 5, 5A, and 5B from these many types of incident light, light modulated into projection light (beam-shaped light beam) 3 from the projector 1 is generally used.

ところで、光による積雪計測では、特に降雪時
に於いては、飛雪粒によつて背光等が反射され、
この反射光が変調光(測定光)と同等の信号にな
ることがある。この現象は計測装置の信号対雑音
比(S/N比)を著しく悪化させ、計測誤差の大
きな原因となる。
By the way, when measuring snowfall using light, especially during snowfall, backlight etc. are reflected by flying snow particles.
This reflected light may become a signal equivalent to the modulated light (measurement light). This phenomenon significantly deteriorates the signal-to-noise ratio (S/N ratio) of the measuring device and becomes a major cause of measurement errors.

本発明の第3の目的は上記投光器1からの投射
光3の変調方法を工夫して、信号対雑音比(S/
N比)のより良好な積雪計測装置を得ることであ
る。
A third object of the present invention is to improve the modulation method of the projected light 3 from the projector 1, and to achieve a signal-to-noise ratio (S/
The purpose of the present invention is to obtain a snow measuring device with a better snow accumulation ratio (N ratio).

以上の目的のために本発明では前記割算器に代
えて演算増幅器を用い、前記光検出器からの2つ
の出力信号電流の和信号を当該演算増幅器に入力
して基準値との比較処理を行ない、比較処理結
果、すなわち当該演算増幅器の出力で投光器の発
光素子を輝度制御して前記光検出器に入射される
反射光(光スポツト像)の光量、すなわち上記和
信号が一定に保たれるように制御し、このときの
光検出器からの出力信号の差信号に基いて光スポ
ツト像の結像位置を検出するようにするととも
に、上記輝度制御が行なわれた発光素子の駆動電
流によつて被計測雪面の反射率を求めるように
し、又上記発光素子の駆動電流の変調(輝度変
調)を、ランダムな周期のパルスに基いて行うよ
うにして、S/N比の改善を行なうようにした。
For the above purpose, in the present invention, an operational amplifier is used in place of the divider, and the sum signal of the two output signal currents from the photodetector is input to the operational amplifier, and comparison processing with a reference value is performed. The result of comparison processing, that is, the luminance of the light emitting element of the projector is controlled by the output of the operational amplifier, and the amount of reflected light (light spot image) that enters the photodetector, that is, the above-mentioned sum signal, is kept constant. The imaging position of the light spot image is detected based on the difference signal between the output signals from the photodetector at this time, and the driving current of the light emitting element subjected to the above brightness control is used to detect the imaging position of the light spot image. Then, the reflectance of the snow surface to be measured is determined, and the modulation (luminance modulation) of the drive current of the light emitting element is performed based on pulses with a random period to improve the S/N ratio. I made it.

以下、第3図〜第7図によつて本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 7.

第3図は本発明の実施例のブロツク図、第4図
は当該実施例で被計測雪面の反射率を計測するよ
うにした場合の当該反射率の計測情報を得る反射
率検出回路の回路図、第5図は投射光線を変調す
るための発振器の詳細を示すブロツク図、第6図
は光検出器の出力信号と光スポツト像の結像位置
関係を説明するための図、第7図は積雪深さと光
スポツト像の結像位置関係を説明する図である。
Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is a circuit diagram of a reflectance detection circuit that obtains measurement information of the reflectance when the reflectance of the snow surface to be measured is measured in this embodiment. 5 is a block diagram showing the details of the oscillator for modulating the projected light beam, FIG. 6 is a diagram for explaining the relationship between the output signal of the photodetector and the imaging position of the light spot image, and FIG. 7 FIG. 2 is a diagram illustrating the relationship between snow depth and the imaging position of a light spot image.

第3図〜第7図に於いて、10は被計測雪面
(以下、雪面という。)、11は投光器(第1図に
“1”で示したもの)中の光源(発光素子)、13
は光源11の駆動電流、12は光源11によつて
投射されるビーム状光線、13はビーム状光線1
2が雪面10に反射して得られる反射光、14は
反射光13によつてその表面に結像された光スポ
ツト像(第2図に“8A”又は“8B”で示した
もの)の位置を検出する光検出器(第1図に
“7”で示したもの)、I1,I2は光検出器14
から出力される2つの出力信号電流、15及び1
6はそれぞれ出力信号電流I1およびI2を電圧
信号に変換する変換器、17は変換器15,16
の出力信号の引算処理を行ない差信号を出力する
引算器、18は変換器15,16の出力信号の加
算処理を行ない和信号を出力する加算器、19及
び20はそれぞれ上記差信号及び和信号を増幅す
る増幅器、21は光源11を変調するための発振
器、21Aは発振器21の発振出力信号、22及
び23はそれぞれ差信号及び和信号(この差信号
と和信号とは発振器21の発振出力信号によつて
変調されている。)を発振器21の発信出力信号
に同期して検波する同期検波器、24及び25は
それぞれ同期検波器22,23の検波出力信号を
直流信号に変換する低域フイルタ、26は低域フ
イルタ25の出力信号の値を基準値と比較する演
算増幅器で構成された比較増幅器、27は比較増
幅器26での比較の基準値となる基準電圧源、2
8は光源11の駆動電流I3を比較増幅器26の
出力信号で輝度制御し、かつ当該駆動電流I3を
発振器21の発振出力信号で光度変調する光源駆
動器、29は上記駆動電流I3に比例した電圧信
号を得るための抵抗、30,31及び32はいず
れも抵抗29で得られた電圧信号を積分するため
の積分器を構成するもので、それぞれ演算増幅
器、抵抗及びコンデンサ、V0は光検出器14上
に結像された前記光スポツト像の位置検出情報、
V1は雪面10の反射率検出情報、33,34及
び35はいずれも発振器21を構成するもので、
33は矩形波発振回路、34はnビツトのシフト
レジスタ、34Aはシフトレジスタ34の出力、
35は排他的論理和回路である。
In Figures 3 to 7, 10 is the snow surface to be measured (hereinafter referred to as the snow surface), 11 is a light source (light emitting element) in the floodlight (indicated by "1" in Figure 1), 13
is the driving current of the light source 11, 12 is the beam-shaped light beam projected by the light source 11, and 13 is the beam-shaped light beam 1.
2 is the reflected light obtained by reflecting on the snow surface 10, and 14 is the light spot image formed on the surface by the reflected light 13 (indicated by "8A" or "8B" in FIG. 2). A photodetector for detecting the position (indicated by "7" in FIG. 1), I1 and I2 are photodetectors 14
Two output signal currents, 15 and 1, are output from
6 is a converter that converts the output signal currents I1 and I2 into voltage signals, respectively; 17 is a converter 15, 16;
18 is an adder that performs addition processing on the output signals of converters 15 and 16 and outputs a sum signal; 19 and 20 respectively perform subtraction processing on the output signals of converters 15 and 16 and output a sum signal; 21 is an oscillator for modulating the light source 11; 21A is the oscillation output signal of the oscillator 21; 22 and 23 are the difference signal and the sum signal, respectively (the difference signal and the sum signal are the oscillation output signal of the oscillator 21); The synchronous detectors 24 and 25 detect the signal (modulated by the output signal) in synchronization with the output signal of the oscillator 21. 26 is a comparison amplifier composed of an operational amplifier that compares the value of the output signal of the low-pass filter 25 with a reference value; 27 is a reference voltage source that serves as a reference value for comparison in the comparison amplifier 26;
8 is a light source driver that controls the brightness of the drive current I3 of the light source 11 with the output signal of the comparison amplifier 26 and modulates the luminance of the drive current I3 with the oscillation output signal of the oscillator 21; 29 is a voltage proportional to the drive current I3; Resistors 30, 31, and 32 for obtaining a signal all constitute an integrator for integrating the voltage signal obtained by the resistor 29, and each is an operational amplifier, a resistor, and a capacitor, and V0 is a photodetector 14. position detection information of the light spot image formed on the spot;
V1 is reflectance detection information of the snow surface 10, 33, 34, and 35 all constitute the oscillator 21,
33 is a rectangular wave oscillation circuit, 34 is an n-bit shift register, 34A is the output of the shift register 34,
35 is an exclusive OR circuit.

上記光検出器14の出力信号電流I1,I2
は、光検出器14が前記分割形検出器であるとき
には、2分割されたそれぞれの受光面から出力さ
れる電流に相当し、前記位置検出器であるときに
は、その両端の電極からそれぞれ出力される光電
流に相当する。
Output signal currents I1 and I2 of the photodetector 14
When the photodetector 14 is the split type detector, corresponds to the current output from each of the two divided light receiving surfaces, and when the photodetector 14 is the position detector, the current is output from the electrodes at both ends. Corresponds to photocurrent.

光源11は光源駆動器28からの駆動電流I3
によつて発光駆動されるが、発振器21の発振出
力信号21Aで上記駆動電流I3は変調されてい
るので、当該光源11は例えば輝度変調されたビ
ーム状光線12を雪面10に投射する。光検出器
14は上記ビーム状光線12の雪面10で反射光
13をとらえ、その受光面に結像された光スポツ
ト像の位置に従つて出力信号電流I1とI2を出
力する。この出力信号電流I1,I2は変換器1
5,16によりそれぞれの値に比例した電圧信号
に変換された後、引算器17と加算器18にそれ
ぞれ入力されて差と和が演算される。
The light source 11 receives a driving current I3 from the light source driver 28.
However, since the driving current I3 is modulated by the oscillation output signal 21A of the oscillator 21, the light source 11 projects, for example, a brightness-modulated beam 12 onto the snow surface 10. The photodetector 14 captures the reflected light 13 of the beam 12 on the snow surface 10, and outputs output signal currents I1 and I2 according to the position of the light spot image formed on its light receiving surface. These output signal currents I1 and I2 are applied to the converter 1
5 and 16 into voltage signals proportional to their respective values, the signals are input to a subtracter 17 and an adder 18, respectively, and the difference and sum are calculated.

引算器17と加算器18とによつて得られた出
力信号電流I1,I2の差信号と和信号は増幅器
19,20により、それぞれ増幅され、同期検波
器22,23により発振器21の発振出力信号2
1Aに同期して検波され、更に低域フイルター2
4,25を通して直流信号に変換される。このよ
うにして光検出器14の出力信号電流I1,I2
の差信号と和信号に対応した直流信号(以下、前
者を“差の直流信号”、後者を“和の直流信号”
という。)が得られる。
The difference signal and sum signal of the output signal currents I1 and I2 obtained by the subtracter 17 and the adder 18 are amplified by amplifiers 19 and 20, respectively, and the oscillation output of the oscillator 21 is output by the synchronous detectors 22 and 23. signal 2
Detected in synchronization with 1A, and further low-pass filter 2
4 and 25, it is converted into a DC signal. In this way, the output signal currents I1, I2 of the photodetector 14
A DC signal corresponding to the difference signal and the sum signal (hereinafter, the former is referred to as the "difference DC signal", and the latter is referred to as the "sum DC signal")
That's what it means. ) is obtained.

上記和の直流信号は比較増幅器26により、基
準電圧源27の電圧(基準電圧)と比較され、上
記和の直流信号が基準電圧より大きいときには当
該和の直流信号と基準電圧との差に対応して光源
11の発光光量が小さくなるように光源駆動器2
8により光源11の駆動電流I3を制御し、逆に
上記和の直流信号が基準電圧より小さいときには
同様にして、同様な値だけ光源11の発光光量が
大きくなるように制御する。このように制御する
ことにより、光検出器14に入射する反射光13
の光量(投射ビーム状光線は輝度変調されている
ことにより、ここでいう光量とは入射光量の積分
値(平均値)を意味している。)が常に一定値に
なるように制御され、このときの上記差の直流信
号の値を測定することにより、積雪深さを計測す
ることができる。すなわち、当該差の直流信号が
光スポツト像の結像位置検出情報V0となる。こ
の結像位置検出情報V0は演算処理器(図示せ
ず)に入力されて、以下に説明する処により積雪
の深さが算出される。
The sum DC signal is compared with the voltage (reference voltage) of the reference voltage source 27 by the comparator amplifier 26, and when the sum DC signal is larger than the reference voltage, it corresponds to the difference between the sum DC signal and the reference voltage. the light source driver 2 so that the amount of light emitted by the light source 11 is reduced.
8 to control the drive current I3 of the light source 11, and conversely, when the sum of the DC signals is smaller than the reference voltage, the amount of light emitted from the light source 11 is similarly controlled to increase by the same value. By controlling in this way, the reflected light 13 that enters the photodetector 14
The light intensity (the projected beam-like light beam is brightness modulated, so the light intensity here means the integrated value (average value) of the incident light intensity) is controlled so that it is always a constant value, and this The snow depth can be measured by measuring the DC signal value of the difference between the two times. That is, the DC signal of the difference becomes the imaging position detection information V0 of the optical spot image. This imaging position detection information V0 is input to an arithmetic processor (not shown), and the snow depth is calculated as described below.

ここで、上記光スポツト像の結像位置検出情報
V0と光検出器14の光スポツト像結像位置との
関係及び当該結像位置と積雪の深さとの関係につ
いて第6図及び第7図により説明する。
Here, the relationship between the image forming position detection information V0 of the light spot image and the light spot image forming position of the photodetector 14, and the relationship between the image forming position and the snow depth are shown in FIGS. 6 and 7. explain.

光検出器14に例えば前記位置検出器を使用し
た場合、第6図に示すように当該光検出器14
は、両端の電極間に於いて抵抗値で示すことがで
きる受光面の光スポツト像5の結像位置に電流源
を接続した等価回路で表現することができる。
For example, when the above-mentioned position detector is used as the photodetector 14, as shown in FIG.
can be expressed by an equivalent circuit in which a current source is connected to the imaging position of the light spot image 5 on the light-receiving surface, which can be represented by the resistance value between the electrodes at both ends.

光検出器14の中心を基準点“0”とし、受光
面が当該基準点の両側“−S”から“S”までに
設定され、かつ光スポツト像5の結像位置が
“x”(−S≦x≦S)の点であるものとし、上記
電流源が発生する電流値を“I”とすれば両端の
電極から流出する前記出力信号電流“I1”,“I
2”と上記電流源が発生する電流“I”との間に
は次の関係が成立する。
The center of the photodetector 14 is set as a reference point "0", the light receiving surface is set from "-S" to "S" on both sides of the reference point, and the imaging position of the light spot image 5 is set at "x" (- S≦x≦S), and if the current value generated by the current source is "I", the output signal currents "I1" and "I" flowing out from the electrodes at both ends are
The following relationship holds between the current "I" and the current "I" generated by the current source.

I1+I2=I ……(1) I1=S−x/2SI ……(2) I2=S+x/2SI ……(3) 前記したように光検出器14の入射光量は一定
であるように制御されるから上記各関係式(1)〜(3)
に於ける電流“I”は一定である。
I1+I2=I...(1) I1=S-x/2SI...(2) I2=S+x/2SI...(3) As described above, the amount of light incident on the photodetector 14 is controlled to be constant. From each of the above relational expressions (1) to (3)
The current "I" at is constant.

また、光スポツト像5の位置検出情報“V0”
は上記出力信号電流“I1”,“I2”の差信号に
比例した電圧信号であるので V0=A(I1−I2);(Aは定数) ……(4) の関係が成り立つ。
In addition, position detection information “V0” of the light spot image 5
Since is a voltage signal proportional to the difference signal between the output signal currents "I1" and "I2", the following relationship holds: V0=A(I1-I2); (A is a constant) (4).

以上の(1)〜(4)の関係から、光スポツト像5の結
像位置“x”は x=−S/AIV0 ……(5) で表わすことができる。
From the relationships (1) to (4) above, the imaging position "x" of the optical spot image 5 can be expressed as x=-S/AIV0 (5).

前記したように電流“I”は一定であることか
ら当該結像位置“x”は上記位置検出情報“V
0”に比例した値として把握できる。
As mentioned above, since the current “I” is constant, the imaging position “x” is determined by the position detection information “V”.
It can be understood as a value proportional to 0".

次に第7図によつて光スポツト像5の結像位置
“x”と積雪の深さ(これを“y”とする。)との
関係について述べる。
Next, with reference to FIG. 7, the relationship between the imaging position "x" of the light spot image 5 and the snow depth (this will be referred to as "y") will be described.

第7図に示すように投光器1の光軸1Aと受光
器2の光軸2Aとは設定角度αで交差している。
また、光検出器14の受光面と上記受光器2の光
軸2Aとは直交している。
As shown in FIG. 7, the optical axis 1A of the light projector 1 and the optical axis 2A of the light receiver 2 intersect at a set angle α.
Further, the light receiving surface of the photodetector 14 and the optical axis 2A of the light receiver 2 are perpendicular to each other.

雪面10と投光器1の光軸1A(ビーム状光線
12)との交点をA、上記双方の光軸1A,2A
の交点をB、反射光13と受光器2の光軸2Aと
の交点をC(この交点Cは受光器2の受光レンズ
(第2図に於いて、“6”で示すもの)の光学的中
心である。)、交点Aから受光器2の光軸2Aに下
した垂線と当該光軸2Aとの交点をDとし、地表
9から交点Bまでの高さを“k”、光検出器14
の受光面と交点Cとの間の距離を“m”、交点B,
C間の距離を“n”とすると、交点A,C及びD
で形成される三角形と光検出器14の中心0、結
像位置“x”及び交点Cで形成される三角形とが
相似関係にあることから積雪の深さ“y”は y=nx/xcosα+msinα+k ……(6) で表わすことができる。
The intersection point of the snow surface 10 and the optical axis 1A (beam-shaped ray 12) of the floodlight 1 is A, and the optical axes 1A and 2A of both of the above are
B is the intersection of the reflected light 13 and the optical axis 2A of the light receiver 2. (This intersection C is the optical point of the light receiving lens of the light receiver 2 (indicated by "6" in Fig. 2). ), the intersection of a perpendicular drawn from the intersection A to the optical axis 2A of the light receiver 2 and the optical axis 2A is D, the height from the ground surface 9 to the intersection B is "k", and the photodetector 14
The distance between the light-receiving surface and the intersection C is "m", the intersection B,
If the distance between C is "n", then the intersections A, C and D
Since the triangle formed by the center 0 of the photodetector 14, the imaging position "x", and the intersection C have a similar relationship, the snow depth "y" is y=nx/xcosα+msinα+k... ...(6)

上記(6)の関係に於いて角度α、距離k,m,n
はいずれも予め設定される既知の定数であり、従
つて当該積雪の深さ“y”は前記第6図で求めた
光スポツト像5の位置検出情報“V0”に基いて
求めた当該光スポツト像5の結像位置xから求め
ることができる。
In the relationship (6) above, angle α, distances k, m, n
are known constants set in advance, and therefore, the snow depth "y" is determined based on the position detection information "V0" of the light spot image 5 obtained in FIG. It can be determined from the imaging position x of the image 5.

また、本発明では光源11に供給される駆動電
流I3の平均値を検出することにより、雪面10
の反射率変化を検出することができる。なぜなら
ば第3図に示す本発明の実施例に於いて、光検出
器14に入射される反射光13の光量は常に一定
に保持されるため、雪面10の反射率が変化した
ときには、光源11の駆動電流I3は上記反射率
の変化に対応して増減するように制御されるから
である。
Further, in the present invention, by detecting the average value of the drive current I3 supplied to the light source 11, the snow surface 10
can detect changes in reflectance. This is because in the embodiment of the present invention shown in FIG. 3, the amount of reflected light 13 incident on the photodetector 14 is always kept constant, so when the reflectance of the snow surface 10 changes, the light source This is because the drive current I3 of No. 11 is controlled to increase or decrease in accordance with the change in reflectance.

第4図は上記雪面10の反射率検知回路の一例
であり、この検知回路は光源11の電流径路に積
分回路が挿入されて構成されている。
FIG. 4 shows an example of a reflectance detection circuit for the snow surface 10, and this detection circuit is constructed by inserting an integrating circuit into the current path of the light source 11.

前記したように光源駆動器28は光源11から
のビーム状光線12が雪面10に反射されて光検
出器14に入射する反射光13の光量を一定に保
つように当該光源11の輝度を制御する。従つて
光源11に供給される駆動電流I3は雪面10の
反射率の変化に反比例して変化する。そこで第4
図に示すように上記光源11に供給される電流径
路中に当該光源11と直列に抵抗29を挿入する
ことにより当該抵抗29の両端には、雪面10の
反射率に反比例した電圧信号が現われる。この電
圧信号によつて雪面10の反射率検出情報を得る
のであるが、前記したように光源11の駆動電流
I3は変調されているため、抵抗31、コンデン
サ32及び演算増幅器30で構成される積分回路
で直流信号に変換すれば当該直流信号の値は上記
駆動電流I3の平均値に比例した値となり、この
値は雪面10の反射率に反比例した信号となつて
反射率検出情報V1となる。
As described above, the light source driver 28 controls the brightness of the light source 11 so that the light beam 12 from the light source 11 is reflected by the snow surface 10 and the amount of reflected light 13 that enters the photodetector 14 is kept constant. do. Therefore, the drive current I3 supplied to the light source 11 changes in inverse proportion to the change in reflectance of the snow surface 10. Therefore, the fourth
As shown in the figure, by inserting a resistor 29 in series with the light source 11 in the current path supplied to the light source 11, a voltage signal that is inversely proportional to the reflectance of the snow surface 10 appears at both ends of the resistor 29. . The reflectance detection information of the snow surface 10 is obtained from this voltage signal, but since the driving current I3 of the light source 11 is modulated as described above, it is composed of a resistor 31, a capacitor 32, and an operational amplifier 30. When converted into a DC signal by an integrating circuit, the value of the DC signal becomes a value proportional to the average value of the drive current I3, and this value becomes a signal inversely proportional to the reflectance of the snow surface 10, and becomes the reflectance detection information V1. Become.

また、比較増幅器26の出力信号と上記駆動電
流I3とは比例関係にあることから当該反射率検
出情報V1は上記比較増幅器26の出力信号を積
分することによつても得られる。尚、比較増幅器
26の出力信号は直流信号ではあるが、この直流
信号は回路雑音や計測地の環境の変化等で生ずる
雑音等でそのレベルが変化するのでこのようにす
る場合に於いても、当該出力信号を積分する必要
がある。
Furthermore, since the output signal of the comparison amplifier 26 and the drive current I3 are in a proportional relationship, the reflectance detection information V1 can also be obtained by integrating the output signal of the comparison amplifier 26. Although the output signal of the comparison amplifier 26 is a DC signal, the level of this DC signal changes due to circuit noise, noise caused by changes in the environment at the measurement site, etc., so even in this case, It is necessary to integrate the output signal.

以上のようにして得られた反射率検出情報V1
は前記演算処理器(図示せず)に入力されて雪面
10の反射率が演算される。
Reflectance detection information V1 obtained as above
is input to the arithmetic processor (not shown), and the reflectance of the snow surface 10 is calculated.

更に、発振器21について述べると、従来では
一般に単一周期の矩形パルスを発生する発振器を
使用し、測定光(投射ビーム状光線)の変調を単
純な輝度変調としていたが、本発明の実施例では
ランダムパルスを発生する発振器を使用すること
により測定光をランダムに輝度変調し、もつて
S/N比の向上を計つている。
Furthermore, regarding the oscillator 21, in the past, an oscillator that generates a single-period rectangular pulse was generally used, and the modulation of the measurement light (projection beam) was simple brightness modulation, but in the embodiment of the present invention, By using an oscillator that generates random pulses, the measurement light is randomly modulated in brightness, thereby improving the S/N ratio.

すなわち、本発明の実施例では発振器21に第
5図に示すようなランダムパルス発生回路を用い
ている。このランダムパルス発生回路は単一周期
の矩形波発振回路33から出力される矩形波パル
スがnビツト・シフト・レジスタ34のクロツク
入力端子に入力され、当該シフト・レジスタ34
の並列出力34Aの幾つかが排他的論理和回路3
5に入力されて相互間で適宜に排他的論理和がな
され、その結果(排他的論理和回35の出力)が
上記シフトレジスタ34の入力端子に入力される
ように構成される。このような構成で前記シフ
ト・レジスタ34の出力端子には、矩形波発振回
路33の発振周期からその(2n−1)倍の周期ま
での任意の周期及びパルス巾を有する非繰返しパ
ルス信号が出力され、これが発振器21の発振出
力信号21Aとなる。
That is, in the embodiment of the present invention, a random pulse generating circuit as shown in FIG. 5 is used as the oscillator 21. In this random pulse generation circuit, a rectangular wave pulse outputted from a single-period rectangular wave oscillation circuit 33 is input to the clock input terminal of an n-bit shift register 34, and the shift register 34
Some of the parallel outputs 34A of the exclusive OR circuit 3
5, exclusive OR is performed between them as appropriate, and the result (output of exclusive OR circuit 35) is input to the input terminal of the shift register 34. With this configuration, the output terminal of the shift register 34 receives a non-repetitive pulse signal having an arbitrary period and pulse width from the oscillation period of the rectangular wave oscillation circuit 33 to a period (2 n -1) times the oscillation period. This becomes the oscillation output signal 21A of the oscillator 21.

このように発振出力信号21Aをランダムなパ
ターンにすることは当該発振出力信号21Aの周
波数帯域を拡げることになり、このような周波数
帯域の広いランダムパルスに基いて測定光の輝度
変調を行うと、スペクトラム拡散理論の教える処
により光スポツト像の位置検出処理に於けるS/
N比の改善が図れる。
Making the oscillation output signal 21A a random pattern in this way widens the frequency band of the oscillation output signal 21A, and when the brightness modulation of the measurement light is performed based on such a random pulse with a wide frequency band, Based on the teachings of spread spectrum theory, S/ in position detection processing of optical spot images can be improved.
The N ratio can be improved.

以上、詳述したように本発明によれば光検出器
に入射する光量が常に一定になるように制御する
ことにより、安価な回路構成で正確な積雪深さの
計測を行うことができ、しかも光源の輝度変調方
式にスペクトラム拡散方式を用いることにより、
光スポツト像の位置検出処理でのS/N比が改善
されるため、降雪がないときはもとより降雪時で
あつても高分解能で積雪深さの計測を達成でき、
また、雪面の反射率をも極めて簡単に測定できる
等の利益があり、本発明は極めて顕著な効果を奏
するもである。
As described in detail above, according to the present invention, by controlling the amount of light incident on the photodetector to be always constant, it is possible to accurately measure the snow depth with an inexpensive circuit configuration. By using the spread spectrum method for the brightness modulation method of the light source,
Since the S/N ratio in the position detection process of the optical spot image is improved, it is possible to measure snow depth with high resolution even when it is snowing, as well as when there is no snowfall.
Further, the present invention has the advantage that the reflectance of the snow surface can be measured extremely easily, and the present invention has extremely significant effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光電式積雪計測装置の測定原理を示す
図、第2図は第1図の受光器の内部構成を示す
図、第3図は本発明の実施例に係わる積雪計測装
置の構成を示すブロツク図、第4図は本発明の実
施例に係わる雪面の反射率測定回路部分の構成を
示す回路図、第5図は本発明の実施例で用いられ
る発振回路の構成を示すブロツク図、第6図は光
検出器の出力信号と光スポツト像結像位置との間
の関係の説明図、第7図は光スポツト像結像位置
と積雪深さとの間の関係の説明図である。 1……投光器、2……受光器、4A,4B,1
0……被計測雪面、7,14……光検出器、11
……光源、12……投射光、13……反射光、1
7……引算器、18……加算器、21……変調用
発振器、22,23……同期検波器、26……比
較増幅器、27……基準電圧源、28……光源駆
動器、29……反射率検出用抵抗、30……積分
器用演算増幅器、31……積分器用抵抗、32…
…積分器用コンデンサ、33……矩形波発振回
路、34……nビツト・シフト・レジスタ、35
……排他的論理和回路、I1,I2……光検出器
の出力信号電流、I3……光源の駆動電流、V0
……位置検出情報、V1……反射率検出情報、α
……投光器と受光器との間の設定角度。
FIG. 1 is a diagram showing the measurement principle of a photoelectric snow measuring device, FIG. 2 is a diagram showing the internal configuration of the light receiver in FIG. 1, and FIG. 3 is a diagram showing the configuration of a snow measuring device according to an embodiment of the present invention. FIG. 4 is a circuit diagram showing the configuration of the snow surface reflectance measurement circuit according to the embodiment of the present invention, and FIG. 5 is a block diagram showing the configuration of the oscillation circuit used in the embodiment of the present invention. , FIG. 6 is an explanatory diagram of the relationship between the output signal of the photodetector and the optical spot image forming position, and FIG. 7 is an explanatory diagram of the relationship between the optical spot image forming position and the snow depth. . 1... Emitter, 2... Light receiver, 4A, 4B, 1
0...Snow surface to be measured, 7, 14...Photodetector, 11
...Light source, 12...Projection light, 13...Reflected light, 1
7... Subtractor, 18... Adder, 21... Modulation oscillator, 22, 23... Synchronous detector, 26... Comparison amplifier, 27... Reference voltage source, 28... Light source driver, 29 ... Resistor for reflectance detection, 30 ... Operational amplifier for integrator, 31 ... Resistor for integrator, 32 ...
...Integrator capacitor, 33...Square wave oscillation circuit, 34...n-bit shift register, 35
...Exclusive OR circuit, I1, I2...Output signal current of photodetector, I3...Driving current of light source, V0
...Position detection information, V1...Reflectance detection information, α
...The setting angle between the emitter and receiver.

Claims (1)

【特許請求の範囲】 1 ビーム状光線を被計測雪面上に投射し、上記
ビーム状光線の上記雪面上からの反射光を受光評
価して積雪の深さを計測するようにした積雪計測
装置に於いて、 (A) ビーム状光線を被計測雪面上に投射する光
源、 (B) 上記光源から投射されたビーム状光線の上記
雪面上からの反射光を受光し、受光面での受光
位置に対応して2つの出力信号を送出する光検
出器、 (C) 上記光検出器の2つの出力信号の和を演算し
て和信号を出力する加算器、 (D) 上記光検出器の2つの出力信号の差を演算し
て差信号を出力する引算器、 (E) 上記和信号を基準値と比較し、比較値に応じ
た出力信号を送出する比較器、 (F) ランダムなパターンのパルス列信号を生成す
る発振器、 (G) 上記比較器からの出力信号により、上記光検
出器での受光量平均値が常時一定となるように
上記光源を輝度制御するとともに、上記発振器
からのパルス列信号により上記光源からのビー
ム状光線をランダムに輝度変調する光源駆動
器、 (H) 上記引算器から出力される差信号に基いて積
雪の深さを演算する演算処理器 でなる積雪計測装置。 2 ビーム状光線を被計測雪面上に投射し、上記
ビーム状光線の上記雪面上からの反射光を受光評
価して積雪の深さ及び上記雪面の反射率を計測す
るようにした積雪計測装置に於いて、 (A) ビーム状光線を被計測雪面上に投射する光
源、 (B) 上記光源から投射されたビーム状光線の上記
雪面上からの反射光を受光し、受光面での受光
位置に対応して2つの出力信号を送出する光検
出器、 (C) 上記光検出器の2つの出力信号の和を演算し
て和信号を出力する加算器、 (D) 上記光検出器の2つの出力信号の差を演算し
て差信号を出力する引算器、 (E) 上記和信号を基準値と比較し、比較値に応じ
た出力信号を送出する比較器、 (F) ランダムなパターンのパルス列信号を生成す
る発振器、 (G) 上記比較器からの出力信号により、上記光検
出器での受光量平均値が常時一定となるように
上記光源を輝度制御するとともに、上記発振器
からのパルス列信号により上記光源からのビー
ム状光線をランダムに輝度変調する光源駆動
器、 (H) 上記比較器の出力信号の値もしくは上記光源
駆動器の光源駆動出力の値を検知する検知回
路、 (I) 上記引算器から出力される差信号に基いて積
雪の深さを演算し、かつ上記検知回路から出力
される検知信号に基いて被計測雪面の反射率を
演算する演算処理器、 でなる積雪計測装置。
[Scope of Claims] 1. Snow measurement in which the depth of snow is measured by projecting a beam-like light beam onto the snow surface to be measured and receiving and evaluating the reflected light of the beam-like light beam from the snow surface. In the device, (A) a light source that projects a beam-like light beam onto the snow surface to be measured; (B) a light source that receives reflected light from the snow surface of the beam-like light beam projected from the light source; (C) an adder that calculates the sum of the two output signals of the photodetector and outputs a sum signal; (D) the photodetector that outputs a sum signal by calculating the sum of the two output signals of the photodetector; a subtracter that calculates the difference between the two output signals of the device and outputs a difference signal; (E) a comparator that compares the sum signal with a reference value and sends out an output signal according to the comparison value; (G) an oscillator that generates a pulse train signal with a random pattern; (H) a light source driver that randomly modulates the brightness of the beam from the light source using a pulse train signal from the subtractor; (H) an arithmetic processor that calculates the snow depth based on the difference signal output from the subtracter; Snow measuring device. 2. A snow cover in which a beam-shaped light beam is projected onto the snow surface to be measured, and the reflected light of the beam-shaped light beam from the snow surface is received and evaluated to measure the depth of the snow cover and the reflectance of the snow surface. In the measurement device, (A) a light source that projects a beam-shaped light beam onto the snow surface to be measured; (B) a light-receiving surface that receives reflected light from the snow surface of the beam-shaped light beam projected from the light source; (C) an adder that calculates the sum of the two output signals of the photodetector and outputs a sum signal; (D) an adder that outputs a sum signal by calculating the sum of the two output signals of the photodetector; a subtracter that calculates the difference between the two output signals of the detector and outputs a difference signal; (E) a comparator that compares the above sum signal with a reference value and sends out an output signal according to the comparison value; ) an oscillator that generates a pulse train signal with a random pattern; a light source driver that randomly modulates the brightness of the light beam from the light source using a pulse train signal from an oscillator; (H) a detection circuit that detects the value of the output signal of the comparator or the value of the light source drive output of the light source driver; (I) Arithmetic processing for calculating the snow depth based on the difference signal output from the subtracter and calculating the reflectance of the measured snow surface based on the detection signal output from the detection circuit. A snow measuring device consisting of a device and a.
JP18647081A 1981-11-20 1981-11-20 Measuring device for snowdepth Granted JPS5887486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18647081A JPS5887486A (en) 1981-11-20 1981-11-20 Measuring device for snowdepth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18647081A JPS5887486A (en) 1981-11-20 1981-11-20 Measuring device for snowdepth

Publications (2)

Publication Number Publication Date
JPS5887486A JPS5887486A (en) 1983-05-25
JPS6326877B2 true JPS6326877B2 (en) 1988-05-31

Family

ID=16189030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18647081A Granted JPS5887486A (en) 1981-11-20 1981-11-20 Measuring device for snowdepth

Country Status (1)

Country Link
JP (1) JPS5887486A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233025U (en) * 1988-08-24 1990-03-01
JPH0233026U (en) * 1988-08-24 1990-03-01
JPH0244720U (en) * 1988-09-21 1990-03-28
JPH0244719U (en) * 1988-09-20 1990-03-28
JPH0251320U (en) * 1988-10-05 1990-04-11
JPH03121414A (en) * 1989-10-04 1991-05-23 Hino Motors Ltd Light control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746052B2 (en) * 1984-04-25 1995-05-17 三菱電機株式会社 Optical displacement meter
JPS63154911A (en) * 1986-12-19 1988-06-28 Tokyo Keiki Co Ltd Apparatus for measuring road surface
CN104662472B (en) 2012-09-25 2017-03-01 日产自动车株式会社 Filming apparatus and image pickup method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233025U (en) * 1988-08-24 1990-03-01
JPH0233026U (en) * 1988-08-24 1990-03-01
JPH0244719U (en) * 1988-09-20 1990-03-28
JPH0244720U (en) * 1988-09-21 1990-03-28
JPH0251320U (en) * 1988-10-05 1990-04-11
JPH03121414A (en) * 1989-10-04 1991-05-23 Hino Motors Ltd Light control device

Also Published As

Publication number Publication date
JPS5887486A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
KR100844284B1 (en) System and method for signal acquisition in a distance meter
US4786815A (en) Non-contact sensor with particular utility for measurement of road profile
US4921345A (en) Spatial filter type speed measuring apparatus
US6388754B1 (en) Shape measuring system and method
JPS6326877B2 (en)
US4913546A (en) Range finder
JPH08184431A (en) Distance measuring equipment
JPS6025471A (en) Optical displacement measuring method
US3740152A (en) Device for detecting the boundary between different brightness regions of an object
JPH02108907A (en) Distance/shape measuring instrument
JP2920680B2 (en) Active ranging device
JPS61226607A (en) Range finder
JP3486223B2 (en) Distance measuring device
JP2886663B2 (en) Optical scanning displacement sensor
JP3117227B2 (en) Distance detection device
JPH0453527Y2 (en)
JP2816257B2 (en) Non-contact displacement measuring device
JPH04307387A (en) Range finder device
JP3127010B2 (en) Distance measuring device
JPH06194129A (en) Optical scanning type displacement sensor and amplification factor switching method thereof
JPS6345504A (en) Range finder
RU2016382C1 (en) Optronic measuring device
JP3419029B2 (en) Optical displacement measuring device
JPH0226726B2 (en)
JPS58150876A (en) Reflecting type light sensor