JPH0453527Y2 - - Google Patents

Info

Publication number
JPH0453527Y2
JPH0453527Y2 JP1986115906U JP11590686U JPH0453527Y2 JP H0453527 Y2 JPH0453527 Y2 JP H0453527Y2 JP 1986115906 U JP1986115906 U JP 1986115906U JP 11590686 U JP11590686 U JP 11590686U JP H0453527 Y2 JPH0453527 Y2 JP H0453527Y2
Authority
JP
Japan
Prior art keywords
light
tilt
output
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986115906U
Other languages
Japanese (ja)
Other versions
JPS6323608U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986115906U priority Critical patent/JPH0453527Y2/ja
Publication of JPS6323608U publication Critical patent/JPS6323608U/ja
Application granted granted Critical
Publication of JPH0453527Y2 publication Critical patent/JPH0453527Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Level Indicators Using A Float (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、測量用、建築用又は加工用であつ
て、各種機器に取り付けられて、その機器の傾斜
角の大きさと傾斜の方向とを検出する傾斜センサ
に関する。
[Detailed description of the device] (Industrial field of application) The present device is used for surveying, construction, or processing, and is attached to various types of equipment to determine the size and direction of the tilt angle of the equipment. This invention relates to an inclination sensor for detecting an inclination.

(従来技術) 従来、液面や振子を用いて、機器の傾斜角を光
電検出する傾斜センサが多数提案されている。第
5〜7図に、従来の傾斜センサの代表的なものの
1例を示す。第5図はこの傾斜センサの構成を示
すもので、図中、1は光路部がガラスの容器、2
は下面に反射鏡面を有する浮子、3は浮子2を浮
かべる透光性の液体、4は発光素子、5は絞り、
6は投光レンズ、7は受光レンズ、8は4分割受
光素子である。浮子2、液体3以外は機器に固定
される。この傾斜センサにおいては、絞り5の像
が浮子2の反射面で反射して4分割受光素子8上
に、結像される。機器が傾斜すると、液体3に浮
かべた浮子2が相対的に傾き、4分割受光素子8
上で絞り5の像が移動し、傾斜が検出される。第
6図aは4分割受光素子8と絞り5の像の関係を
示すもので、81〜84は4つの受光素子を示
す。図中、実線51は機器が傾斜していないとき
の絞り5の像を示す。破線は機器が傾斜したとき
の絞り5の像の位置を示す。第7図は4分割受光
素子8に接続される傾斜検出回路の1例を示す。
図中、11〜13は加減算増幅器、14,15は
除算器を示す。加減算増幅器11〜13の入力信
号は、受光素子81〜84の出力に対応する。2
1,22はこの検出回路のそれぞれ直交する傾斜
角に対応する出力を示す。そして、加減算増幅器
11〜13において、+は加算、−は減算を示す。
作用を説明すると、今後に、X−Y座標を第6図
bのようにとる。機器がX方向に傾くと、絞り5
の像は、第6図bに示すように、破線の位置から
実線の位置に移動し、受光素子81,82の出力
は増加し、受光素子83,84の出力は減少す
る。すると、第7図の加減算増幅器11の出力が
増加し、第7図の21にX方向の傾斜出力が得ら
れる。同様に、Y方向に傾くと、第7図の22に
Y方向の傾斜出力が得られる。また、X、Y両方
向に同時に傾いたときも、同様の原理でX、Yの
各傾斜出力が21,22に得られる。
(Prior Art) Conventionally, many tilt sensors have been proposed that photoelectrically detect the tilt angle of equipment using a liquid level or a pendulum. 5 to 7 show one typical example of a conventional tilt sensor. Figure 5 shows the configuration of this tilt sensor. In the figure, 1 is a container whose optical path is made of glass, 2
is a float having a reflective mirror surface on the lower surface, 3 is a translucent liquid that floats the float 2, 4 is a light emitting element, 5 is an aperture,
6 is a light projecting lens, 7 is a light receiving lens, and 8 is a four-part light receiving element. Components other than the float 2 and liquid 3 are fixed to the equipment. In this tilt sensor, the image of the diaphragm 5 is reflected by the reflective surface of the float 2 and formed on the four-divided light-receiving element 8 . When the device is tilted, the float 2 floating in the liquid 3 tilts relatively, and the four-divided light receiving element 8
The image of the aperture 5 moves above, and the tilt is detected. FIG. 6a shows the relationship between the images of the four-part light-receiving element 8 and the aperture 5, and 81 to 84 indicate four light-receiving elements. In the figure, a solid line 51 shows the image of the diaphragm 5 when the device is not tilted. The dashed line shows the position of the image of the diaphragm 5 when the device is tilted. FIG. 7 shows an example of a tilt detection circuit connected to the four-division light-receiving element 8.
In the figure, 11 to 13 indicate addition/subtraction amplifiers, and 14 and 15 indicate dividers. The input signals of the adding/subtracting amplifiers 11 to 13 correspond to the outputs of the light receiving elements 81 to 84. 2
1 and 22 indicate outputs of this detection circuit corresponding to orthogonal inclination angles, respectively. In addition and subtraction amplifiers 11 to 13, + indicates addition and - indicates subtraction.
To explain the operation, from now on, the X-Y coordinates will be taken as shown in FIG. 6b. When the device is tilted in the X direction, the aperture 5
As shown in FIG. 6b, the image moves from the position of the broken line to the position of the solid line, the outputs of the light-receiving elements 81 and 82 increase, and the outputs of the light-receiving elements 83 and 84 decrease. Then, the output of the addition/subtraction amplifier 11 shown in FIG. 7 increases, and a slope output in the X direction is obtained at 21 in FIG. Similarly, when tilting in the Y direction, a tilt output in the Y direction is obtained at 22 in FIG. Further, even when tilting in both the X and Y directions at the same time, the X and Y tilt outputs are obtained at 21 and 22 using the same principle.

これら従来の傾斜センサは、機器の傾斜に伴つ
て変化する液面や振子に取り付けた鏡の傾きを、
いわゆる光てこの原理によつて光電検出するもの
であるが、光の投影、結像のための光学系を必要
とし、特に、てこ比を大きくして検出感度を高く
しようとする場合には、傾斜センサの寸法が大型
化する欠点があつた。
These conventional tilt sensors measure the liquid level, which changes as the equipment tilts, and the tilt of the mirror attached to the pendulum.
Photoelectric detection is based on the so-called optical lever principle, but it requires an optical system for light projection and imaging, especially when trying to increase the detection sensitivity by increasing the lever ratio. There was a drawback that the size of the tilt sensor became large.

(考案が解決しようとする問題点) 本考案の目的は、上記の従来の傾斜センサの欠
点を改良し、簡単な光学系を使用して、小型であ
つて検出感度の高い傾斜センサを提供することに
ある。
(Problems to be Solved by the Invention) The purpose of the invention is to improve the above-mentioned drawbacks of the conventional inclination sensor, and to provide a compact inclination sensor with high detection sensitivity using a simple optical system. There is a particular thing.

(問題点を解決するための手段) 本考案の傾斜角センサは、上期目的を達するた
めに、傾斜によつて機器に対して相対的に傾斜す
る反射鏡と、該反射鏡面に対して光束を発光する
発光素子からの発光光束の中心線の周りの同心円
上に配列され反射鏡面から反射された光を受光す
る3個以上の受光素子とから構成する。そして、
これら受光素子の出力を一定周期かつ一定順序で
順次読み出し、その読み出し出力を上記周期に対
応する周波数帯域において濾波して得られる正弦
波出力の振幅と、その正弦波出力の基準発振器出
力との相対位相差とから、傾斜角の大きさと傾斜
の方向とを検出するように構成する。
(Means for Solving the Problems) In order to achieve the first half of the purpose, the inclination angle sensor of the present invention includes a reflecting mirror that is tilted relative to the device due to the inclination, and a light beam is directed to the reflecting mirror surface. It is composed of three or more light receiving elements that are arranged on concentric circles around the center line of the luminous flux from the light emitting element and receive light reflected from the reflecting mirror surface. and,
The outputs of these light-receiving elements are sequentially read out in a fixed period and in a fixed order, and the readout output is filtered in a frequency band corresponding to the above-mentioned period. The configuration is configured to detect the magnitude of the tilt angle and the direction of the tilt from the phase difference.

(作用) 上記のように発光素子と受光素子を配列する
と、正弦波出力の振幅は傾斜角の大きさに、位相
は傾斜の方向に対応することになるので、これら
の検出ができることになる。
(Function) When the light emitting element and the light receiving element are arranged as described above, the amplitude of the sine wave output corresponds to the magnitude of the tilt angle, and the phase corresponds to the direction of the tilt, so that these can be detected.

(実施例) 次に、本考案の実施例を図面を参照にしながら
説明する。第1図は、本考案による傾斜センサの
1実施例を示す概略図である。この傾斜センサ
は、少なくとも下面が透光性の例えばガラスから
なる容器1、下面に反射鏡面を形成した浮子2、
容器1に封入されていて浮子2を浮かべる透光性
液体3、容器1の下面を照明するようにその下方
に設けられ円錐状の光束を発光する発光素子4、
発光素子4から容器1内へ入射する光束の中心線
の周りに同心に配置され浮子2の反射鏡面で反射
された光を受光するように同心円上に等間隔で配
置された3個以上の受光素子9から構成されてお
り、浮子2と液体3以外は相互に不動関係にあ
り、機器に取り付けられる。第2図は、発光素子
4と受光素子9の相対関係を示す図面であり、発
光素子4を中心として同心に、図の場合は8個の
受光素子91〜98が等間隔で配置されている。
このように配置すると、発光素子4から発せられ
た円錐状の光束は、浮子2の下面で反射して、受
光素子91〜98に入射する。浮子2が発光素子
4及び受光素子9に対して相対的に傾斜がない場
合、各受光素子91〜98に等量の光が入射する
ようになつている。しかしながら、容器1、発光
素子4、受光素子9,91〜98が水平面に対し
て傾斜すると、各受光素子91〜98に入射する
光量は傾斜角と傾斜の方向に応じて変化する。
(Example) Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a tilt sensor according to the present invention. This tilt sensor includes a container 1 made of glass, for example, whose lower surface is transparent, a float 2 whose lower surface has a reflective mirror surface,
a translucent liquid 3 sealed in the container 1 and floating the float 2; a light emitting element 4 provided below the container 1 to illuminate the bottom surface of the container 1 and emitting a conical light beam;
Three or more light receivers arranged concentrically around the center line of the luminous flux entering the container 1 from the light emitting element 4 and arranged at equal intervals on concentric circles so as to receive the light reflected by the reflective mirror surface of the float 2. It is composed of an element 9, and the elements other than the float 2 and the liquid 3 are in a fixed relationship with each other and are attached to equipment. FIG. 2 is a drawing showing the relative relationship between the light emitting element 4 and the light receiving element 9. In the case of the figure, eight light receiving elements 91 to 98 are arranged concentrically with the light emitting element 4 at the center, and at equal intervals. .
With this arrangement, the conical light beam emitted from the light emitting element 4 is reflected on the lower surface of the float 2 and enters the light receiving elements 91 to 98. When the float 2 is not inclined relative to the light emitting element 4 and the light receiving element 9, the same amount of light enters each of the light receiving elements 91 to 98. However, when the container 1, the light emitting element 4, and the light receiving elements 9, 91 to 98 are tilted with respect to the horizontal plane, the amount of light incident on each of the light receiving elements 91 to 98 changes depending on the tilt angle and the direction of the tilt.

第3図は、受光素子91〜98に接続され、こ
の傾斜センサの傾斜検出回路の1例を示すブロツ
ク図である。第3図において、91〜98は受光
素子、4は発光素子、31は順次選択回路、32
は帯域濾波及び増幅回路、33は整流回路、34
は位相比較回路、35は基準発振回路、36は
APC及び発光素子駆動回路である。第4図は、
第3図の各部の出力を示す波形図である。受光素
子91〜98の出力は、基準発振回路35の出力
に同期して、順次選択回路31により一定間隔で
順次選択されて順番に一定の周期で出力される。
その様子を第4図イに示す。図中、Tは順次選択
回路31の周期を示す。第4図イにおいて、受光
素子91〜98の出力91〜98のピークを結ぶ
包絡線は、傾斜センサの傾斜の大きさと方向に対
応するもので、図中に破線で示すように正弦波状
になる。順次選択回路31の出力を、周波数1/
T近傍の帯域のみを通す帯域濾波及び増幅回路3
2で帯域濾波すると、包絡線の部分が出力され
る。これを第4図ロに示す。図中、Aは振幅を示
す。帯域濾波及び増幅回路32の出力(第4図
ロ)は、傾斜角の大きさに対応する振幅Aと、傾
斜の方向に対応する位相角とを有する。例えば、
傾斜角センサの傾斜角が大きくなると、振幅Aは
それに対応して大きくなる。また、傾斜の方向が
変ると、読み出しの繰返しの基準点に対して位相
が変化する。さらに詳しく述べれば、第4図イで
は出力93が最大で出力97が最小であるが、こ
れとは逆の方向に傾斜した場合は、出力93が最
小で出力97が最大になり、位相が180°ずれる。
帯域濾波及び増幅回路32の出力を整流回路33
で整流すると、傾斜角の大きさに対応した出力4
1を得る。この様子を第4図ハに示す。図中、k0
は定数である。一方、帯域濾波及び増幅回路32
の出力は位相比較回路34で、基準発振回路35
から得られる周期Tの基準信号と位相比較され、
傾斜の方向に対応する位相角に相当する信号42
を出力する。この様子を第4図ニに示す。図中、
51は基準発振回路35からの基準信号、52は
帯域濾波及び増幅回路32の出力、Δは両者の位
相差を示す。
FIG. 3 is a block diagram showing an example of a tilt detection circuit of this tilt sensor connected to the light receiving elements 91 to 98. In FIG. 3, 91 to 98 are light receiving elements, 4 is a light emitting element, 31 is a sequential selection circuit, and 32
is a bandpass filter and amplifier circuit, 33 is a rectifier circuit, 34
is a phase comparison circuit, 35 is a reference oscillation circuit, and 36 is a phase comparison circuit.
APC and light emitting element drive circuit. Figure 4 shows
FIG. 4 is a waveform diagram showing the output of each part in FIG. 3; The outputs of the light-receiving elements 91 to 98 are sequentially selected at regular intervals by the sequential selection circuit 31 in synchronization with the output of the reference oscillation circuit 35, and are sequentially output at regular intervals.
The situation is shown in Figure 4A. In the figure, T indicates the period of the sequential selection circuit 31. In FIG. 4A, the envelope connecting the peaks of the outputs 91 to 98 of the light receiving elements 91 to 98 corresponds to the magnitude and direction of the tilt of the tilt sensor, and has a sine wave shape as shown by the broken line in the figure. . The output of the sequential selection circuit 31 is set to a frequency of 1/
Bandpass filter and amplifier circuit 3 that passes only the band near T
When bandpass filtering is performed with 2, the envelope portion is output. This is shown in Figure 4B. In the figure, A indicates amplitude. The output of the bandpass filter and amplifier circuit 32 (FIG. 4b) has an amplitude A corresponding to the magnitude of the tilt angle and a phase angle corresponding to the direction of the tilt. for example,
As the tilt angle of the tilt angle sensor increases, the amplitude A increases correspondingly. Further, when the direction of the inclination changes, the phase changes with respect to the reference point of repeated reading. To be more specific, in Figure 4A, the output 93 is the maximum and the output 97 is the minimum, but when tilted in the opposite direction, the output 93 is the minimum and the output 97 is the maximum, and the phase is 180 ° It shifts.
The output of the bandpass filter and amplification circuit 32 is converted into a rectifier circuit 33.
When rectified by
Get 1. This situation is shown in Figure 4C. In the figure, k 0
is a constant. On the other hand, the bandpass filter and amplification circuit 32
The output from the phase comparison circuit 34 is output from the reference oscillation circuit
The phase is compared with a reference signal of period T obtained from
a signal 42 corresponding to a phase angle corresponding to the direction of tilt;
Output. This situation is shown in FIG. 4D. In the figure,
Reference numeral 51 indicates a reference signal from the reference oscillation circuit 35, 52 indicates the output of the bandpass filter and amplifier circuit 32, and Δ indicates the phase difference between the two.

以上の説明から明らかなように、本考案による
と、簡単な光学系を用いるだけで、傾斜角の大き
さと傾斜の方向とが同時に検出でき、傾斜センサ
を小型化できる。
As is clear from the above description, according to the present invention, the magnitude of the tilt angle and the direction of tilt can be detected simultaneously by using a simple optical system, and the tilt sensor can be miniaturized.

なお、以上においては、最終出力41,42は
アナログ値として得る回路について説明したが、
この場合でも種々の変形が可能である。さらに、
それ以降の処理系の入力条件に合わせるためにも
種々の変形が可能である。例えば、デジタル値と
して出力するために、デジタル処理する回路も可
能である。
Note that in the above description, the circuit that obtains the final outputs 41 and 42 as analog values has been described.
Even in this case, various modifications are possible. moreover,
Various modifications are possible to match the input conditions of the subsequent processing system. For example, a circuit that performs digital processing to output a digital value is also possible.

(考案の効果) 本考案によると、簡単な光学系を用いて、傾斜
角の大きさと傾斜の方向とが、同時に高感度で検
出でき、しかも、傾斜センサを小型に構成するこ
とができる。
(Effects of the invention) According to the invention, the magnitude of the tilt angle and the direction of the tilt can be detected simultaneously with high sensitivity using a simple optical system, and the tilt sensor can be configured in a small size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の傾斜センサの1実施例の構成
を示すための概略図、第2図は発光素子と受光素
子の相対関係を示す平面図、第3図は傾斜検出回
路のブロツク図、第4図は第3図の各部の出力信
号の波形図、第5図は従来の傾斜センサの構成を
示すための概略図、第6図は第5図の受光素子と
絞りの像の関係を示す説明図、第7図は第5図の
傾斜検出回路のブロツク図である。 1……容器、2……浮子、3……液体、4……
発光素子、9,91〜98……受光素子、31…
…順次選択回路、32……帯域濾波及び増幅回
路、33……整流回路、34……位相比較回路、
35……基準発振回路、36……APC及び発光
素子駆動回路、41……傾斜角の大きさに対応し
た出力、42……傾斜の方向に対応した出力。
FIG. 1 is a schematic diagram showing the configuration of one embodiment of the tilt sensor of the present invention, FIG. 2 is a plan view showing the relative relationship between the light emitting element and the light receiving element, and FIG. 3 is a block diagram of the tilt detection circuit. Fig. 4 is a waveform diagram of the output signals of each part in Fig. 3, Fig. 5 is a schematic diagram showing the configuration of a conventional tilt sensor, and Fig. 6 shows the relationship between the image of the light receiving element and the aperture in Fig. 5. The explanatory diagram shown in FIG. 7 is a block diagram of the tilt detection circuit of FIG. 5. 1... Container, 2... Float, 3... Liquid, 4...
Light emitting element, 9, 91-98... Light receiving element, 31...
... sequential selection circuit, 32 ... bandpass filter and amplification circuit, 33 ... rectification circuit, 34 ... phase comparison circuit,
35...Reference oscillation circuit, 36...APC and light emitting element drive circuit, 41...Output corresponding to the magnitude of the tilt angle, 42...Output corresponding to the direction of tilt.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 傾斜によつて機器に対して相対的に傾斜する反
射鏡と、該反射鏡面に対して光束を発光する発光
素子と、該発光素子からの発光光束の中心線の周
りの同心円上に配列され上記反射鏡面から反射さ
れた光を受光する3個以上の受光素子とからな
り、これら受光素子の出力を一定周期かつ一定順
序で順次読み出し、その読み出し出力を上記周期
に対応する周波数帯域において濾波して得られる
正弦波出力の振幅と、その正弦波出力の基準発振
器出力との相対位相差とから、傾斜角の大きさと
傾斜の方向とを検出するように構成したことを特
徴とする傾斜センサ。
A reflecting mirror that is inclined relative to the device due to the inclination, a light emitting element that emits a luminous flux toward the reflecting mirror surface, and a light emitting element arranged on a concentric circle around the center line of the luminous flux from the light emitting element and said It consists of three or more light-receiving elements that receive light reflected from a reflecting mirror surface, and the outputs of these light-receiving elements are sequentially read out at a certain period and in a certain order, and the read output is filtered in a frequency band corresponding to the above-mentioned period. A tilt sensor characterized in that the magnitude and direction of the tilt angle are detected from the amplitude of the obtained sine wave output and the relative phase difference between the sine wave output and the reference oscillator output.
JP1986115906U 1986-07-30 1986-07-30 Expired JPH0453527Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986115906U JPH0453527Y2 (en) 1986-07-30 1986-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986115906U JPH0453527Y2 (en) 1986-07-30 1986-07-30

Publications (2)

Publication Number Publication Date
JPS6323608U JPS6323608U (en) 1988-02-16
JPH0453527Y2 true JPH0453527Y2 (en) 1992-12-16

Family

ID=31000000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986115906U Expired JPH0453527Y2 (en) 1986-07-30 1986-07-30

Country Status (1)

Country Link
JP (1) JPH0453527Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281445B2 (en) * 2014-08-28 2018-02-21 株式会社デンソー Liquid level detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937516U (en) * 1982-09-03 1984-03-09 オムロン株式会社 Tilt detection sensor

Also Published As

Publication number Publication date
JPS6323608U (en) 1988-02-16

Similar Documents

Publication Publication Date Title
CA1282145C (en) Non-contact sensor with particular utility for measurement of roadprofile
US5101570A (en) Inclination angle detector
JPH05256647A (en) Inclination measuring device
JPH0453527Y2 (en)
JPS6326877B2 (en)
JPH0660811B2 (en) Reflective tilt detector
JPS6155047B2 (en)
JP3227849B2 (en) Position detection device
JPS6035880Y2 (en) oil film detector
JPS60123719A (en) Tilt angle detection device
JPH0242311A (en) Detector for inclined angle
JPH0798429A (en) Range finder
JPS62887A (en) Detecting device for state of road surface
SU449238A1 (en) Photoelectric device for retrieving information from the rotor of a cordless gyroscope
JPH08320217A (en) Two-dimensional tilt sensor
JPH0412407Y2 (en)
SU475639A1 (en) Electron-optical sensor coordinates
JPH089606Y2 (en) Light receiving device of a surveying device for detecting the position of a light beam forming a plane
SU1229572A1 (en) Optronic object position transducer
JPH01304309A (en) Tilt angle measuring instrument
SU966721A1 (en) Installation for reading-out photoelectric raster converter
JPH02176925A (en) Pointing device
SU1081611A1 (en) Coordinate sensing device
SU781891A1 (en) Pick-up
JPS63196807A (en) Optical displacement measuring method