JPS61226607A - Range finder - Google Patents

Range finder

Info

Publication number
JPS61226607A
JPS61226607A JP6653785A JP6653785A JPS61226607A JP S61226607 A JPS61226607 A JP S61226607A JP 6653785 A JP6653785 A JP 6653785A JP 6653785 A JP6653785 A JP 6653785A JP S61226607 A JPS61226607 A JP S61226607A
Authority
JP
Japan
Prior art keywords
light
distance
output
outputs
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6653785A
Other languages
Japanese (ja)
Inventor
Masaki Shimada
雅樹 嶋田
Yoshio Murai
村井 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP6653785A priority Critical patent/JPS61226607A/en
Publication of JPS61226607A publication Critical patent/JPS61226607A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the distance measuring accuracy by making constant the sum of two light outputs without being influenced by the distance up to the object and the reflecting ratio of the object. CONSTITUTION:An infrared emission beam light pulse-modulated from an infrared emission diode 1 is emitted toward an object 3, and the reflecting beam light is photo-detected by a light position detecting device 5. Photodetecting circuits 6 and 7 output voltages V1 and V2 corresponding to electric currents I1 and I2, at a light emitting control circuit 10, first, a subtracter 10a calculates the difference between V1+V2 and a reference voltage V0, an integrator 10b integrates the difference Vr. By integrating in a such a way, the parameter only of photodetecting circuits 6 and 7 is related to the output of the light position detecting device 5, a photodetecting element, from the theorem of the final value, and therefore, the parameter is not related to the distance up to the object and the reflecting ratio of the object. Thus, the range of the amplifier at the photodetecting circuit can be made narrow and a logarithm compression goes to be unnecessary.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被写体の反射率に関係なく比較的遠方まで精度
よく測距ができる測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance measuring device that can accurately measure distances over relatively long distances regardless of the reflectance of a subject.

(従来技術) 近年自動焦点カメラや自動焦点調整式のビデオカメラが
開発され、撮影が大変楽になったが、このようなカメラ
において被写体像の合焦を光学的に検知する方法には、
被写体像のシャープさを検出するボケ像検出式、左右2
つの被測定物の重なりを検出する二重像合致検出式、あ
るいは上下像合致検出式、被測定物に向けて発射した光
線の反射光を利用して基線長と見込み角より三角測量式
に距離を求める光線距離式など種々の方式が知られてい
る。
(Prior Art) Autofocus cameras and autofocus video cameras have been developed in recent years, making photography much easier.
Bokeh image detection method that detects the sharpness of the subject image, left and right 2
Double image matching detection method that detects the overlap of two objects to be measured, or upper and lower image matching detection method, which uses the reflected light of the light beam emitted towards the object to be measured to calculate the distance using the triangulation method from the baseline length and viewing angle. Various methods are known, such as the ray distance formula, for determining .

第4図は光線距離式による測距の原理を示しており、赤
光コントロールパルスにより駆動される赤外発光ダイオ
ードIから投光レンズ2を通して被写体3に赤外線の細
いビームを投射する。被写体3より反射される赤外光ビ
ームは受光レンズ4を通して光位置検出器5上にスポッ
ト光として受光される。光位置検出器51よ、第3図(
イ)に示すように、2つの電極P1.P2にそれぞれ接
続された充電流出力端子5a、5bと共通電極端子5C
とを有するホトダイオードで、検出器5上での赤外スポ
ット光の位置dは、投光レンズ2から被写体3までの距
離をし、受光レンズ4の焦点距離をf、投光、受光レン
ズ2,4の光軸間の距離(基線長と呼ばれている)をS
とすればとなり、赤外スポット光の結像位置は被写体3
までの距離りにより変わることがわかる。一方、光・ 
位置検出器5の出力端子5a、5bがら出力する光電流
I、、I2の大きさは赤外スポット光の結像位置により
変化し、次の関係式で表わされる。
FIG. 4 shows the principle of distance measurement using the ray distance method, in which a narrow infrared beam is projected onto a subject 3 through a projection lens 2 from an infrared light emitting diode I driven by a red light control pulse. The infrared light beam reflected from the subject 3 is received as a spot light on the optical position detector 5 through the light receiving lens 4. Optical position detector 51, Fig. 3 (
As shown in b), two electrodes P1. Charging output terminals 5a, 5b and common electrode terminal 5C connected to P2 respectively
The position d of the infrared spot light on the detector 5 is the distance from the light emitting lens 2 to the subject 3, the focal length of the light receiving lens 4 is f, the light emitting, the light receiving lens 2, The distance between the optical axes of 4 (called the baseline length) is S
Then, the imaging position of the infrared spot light is subject 3.
You can see that it changes depending on the distance. On the other hand, light
The magnitude of the photocurrents I, I2 outputted from the output terminals 5a, 5b of the position detector 5 changes depending on the imaging position of the infrared spot light, and is expressed by the following relational expression.

ここでCは光位置検出器5の受光面の長さである。Here, C is the length of the light receiving surface of the optical position detector 5.

この関係を図示すると第5図(ロ)のようになり1’2
/I、はほぼ1/Lに比例することがわかる。
This relationship is illustrated in Figure 5 (b), which shows 1'2
It can be seen that /I is approximately proportional to 1/L.

上式かられかるように、I2/11は基線長S、受光レ
ンズ4の焦点距離f、光位置検出器5の受光面長さ2C
のみによって決まるので被写体の反射率の違いや赤外発
光ダイオード1の経時劣化などによるスポット光の強弱
には関係なく測距が可能になる。また第3図(ロ)から
れかるように、被写体までの距離が小ざくなるほど出力
値が大きく、変化も大きくなるので精度の高い測距がで
きる。
As can be seen from the above formula, I2/11 is the base line length S, the focal length f of the light receiving lens 4, and the light receiving surface length 2C of the optical position detector 5.
Therefore, distance measurement is possible regardless of the strength of the spot light due to differences in the reflectance of the subject or deterioration of the infrared light emitting diode 1 over time. Furthermore, as can be seen from FIG. 3(b), the smaller the distance to the subject, the larger the output value and the larger the change, allowing for highly accurate distance measurement.

このように光線距離式測距方法は□測距が純粋に電気的
に行なわれ何ら機械的な機構や動作は必要でないために
コンパクトで信頼性の高い測距システムを実現すること
ができるが、第4図に示したような測距システムにおい
て、赤外発光ダイオード1の光量を一定にすると、光位
置検出器5の受光光IQは次の式で表わされる。
In this way, the optical distance measurement method can realize a compact and highly reliable distance measurement system because distance measurement is performed purely electrically and no mechanical mechanism or operation is required. In the distance measuring system as shown in FIG. 4, when the amount of light from the infrared light emitting diode 1 is constant, the received light IQ of the optical position detector 5 is expressed by the following equation.

ここでγは被写体の反射率(5〜100%)である。い
ま、被写体までの距離りを1〜10mとしても、上記受
光光IQは1〜103という非常に広い範囲で変化する
ため、光位置検出器5の前段増幅は対数圧縮しなければ
ならない。
Here, γ is the reflectance of the subject (5 to 100%). Now, even if the distance to the subject is 1 to 10 m, the received light IQ varies over a very wide range of 1 to 103, so the front-stage amplification of the optical position detector 5 must be logarithmically compressed.

そのために測距出力が9゜I2/11となり1//シに
単純に比例しないのでビデオカメラのように躍影レンズ
を連続的に移動させるには測距出力から繰り出し量を求
める換算が必要であり、そのための換算回路が複雑にな
るという問題がある。
Therefore, the distance measurement output becomes 9°I2/11, which is not simply proportional to 1//shi, so in order to continuously move the shooting lens like a video camera, a conversion is necessary to calculate the extension amount from the distance measurement output. There is a problem that the conversion circuit for this becomes complicated.

また、赤外発光ダイオードの発光光量が一定であるため
に常に一定の電力を消費するという問題もある。
Furthermore, since the amount of light emitted from the infrared light emitting diode is constant, there is also the problem that a constant amount of power is always consumed.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもので、被写体
の反射率に関係なく遠方まで測距がでざる測距装置を提
供することを目的とし、この目的を達成するために、被
写体に投光したスポット光の反射光を受光手段で受光し
、受光手段から受光量と受光位置とに応じて出力する2
つの光出力の和と基準値との差を積分する積分器を設け
、積分出力に基づいてスポット光の光量を制御するよう
に構成した。
(Object and Structure of the Invention) The present invention has been made in view of the above-mentioned points, and aims to provide a distance measuring device that can measure a long distance regardless of the reflectance of the subject, and achieves this object. In order to do this, the reflected light of the spot light projected onto the subject is received by a light receiving means, and the light receiving means outputs the reflected light according to the amount of light received and the light receiving position.
An integrator was provided to integrate the difference between the sum of the two optical outputs and a reference value, and the light intensity of the spot light was controlled based on the integrated output.

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第1図は本発明による測距装置をレンズ制御装置と組合
せて示したブロック線図で、破線で囲んで示したAが測
距系、Bがレンズ制御系である。
FIG. 1 is a block diagram showing a distance measuring device according to the present invention in combination with a lens control device, where A surrounded by broken lines is the distance measuring system and B is the lens control system.

測距系Aを構成する1〜5は第2図に示したと同じもの
で、1は赤外発光ダイオード、2は投光レンズ、3は被
写体、4は受光レンズ、5は光位置検出器、6.7は光
位置検出器5からの出力電流11.12を増幅して比例
する電圧v1.v2を出力する受光回路、81色は受光
回路6,7の出力V1と■2とをそれぞれ減算する減算
回路および加算回路であるが、加算回路9ではv1十■
2の演算を行なう。10は加算回路9の出力に基づいて
赤外発光ダイオード1の発光状態(発光時間や発光間隔
)を制御する発光制御回路である。
1 to 5 constituting the distance measuring system A are the same as shown in FIG. 6.7 amplifies the output current 11.12 from the optical position detector 5 and generates a proportional voltage v1. The light receiving circuit that outputs v2, color 81, is a subtraction circuit and an addition circuit that subtracts the outputs V1 and ■2 of the light receiving circuits 6 and 7, respectively, but the adding circuit 9 outputs v10 and ■2.
Perform operation 2. Reference numeral 10 denotes a light emission control circuit that controls the light emission state (light emission time and light emission interval) of the infrared light emitting diode 1 based on the output of the adder circuit 9.

一方、レンズ制御系Bを構成する11はフォーカシング
レンズ15の位置信号と減算回路8の出力との差をとる
減算回路、12は減算回路11の出力を2つの所定値と
比較することにより測距値がフォーカシングレンズの焦
点深度内にあるか否かを判別するウィンドコンパレータ
、13はウィンドコンパレータ12の出力に基づいてフ
ォーカシングレンズ移動用のモータ14を駆動するモー
タ駆動回路、15はフォーカシングレンズ、16はフォ
ーカシングレンズ15の位置に応じた位置信号を出力す
るポテンショメータである。
On the other hand, 11 constituting the lens control system B is a subtraction circuit that takes the difference between the position signal of the focusing lens 15 and the output of the subtraction circuit 8, and 12 is a distance measuring circuit that measures the distance by comparing the output of the subtraction circuit 11 with two predetermined values. A window comparator that determines whether the value is within the focal depth of the focusing lens; 13, a motor drive circuit that drives the motor 14 for moving the focusing lens based on the output of the window comparator 12; 15, the focusing lens; 16, This is a potentiometer that outputs a position signal according to the position of the focusing lens 15.

第2図は第1図に示した測距装置の発光制御回路10の
具体的ブロック線図であり、10aは加算回路9(第1
図参照)からの光出力(V1十V2〉と基準電圧V。ど
の差を出力する減算器、10bは減算器10aの出力を
積分する積分器、10cは積分器10bの出力に基づい
てパルス変調するパルス変調回路である。
FIG. 2 is a specific block diagram of the light emission control circuit 10 of the range finder shown in FIG.
10b is an integrator that integrates the output of the subtracter 10a, and 10c is pulse modulated based on the output of the integrator 10b. This is a pulse modulation circuit.

次に本発明による測距装置の動作を説明する。Next, the operation of the distance measuring device according to the present invention will be explained.

赤外発光ダイオード1からパルス変調された赤外ビーム
光を被写体3に向けて発射し、その被写体3からの反射
ビーム光を光位置検出器5により受光する。その結果光
位置検出器5からは、受光量と受光位置とに応じて相反
するように変化する2つの電流11.I2が出力する。
An infrared light emitting diode 1 emits a pulse-modulated infrared beam toward a subject 3, and an optical position detector 5 receives the reflected beam from the subject 3. As a result, from the optical position detector 5, two currents 11. I2 outputs.

受光回路6゜7はこれらの電流■1.■2に対応した電
圧V1゜■2を出力し、減算回路8ではVl−V2、加
算回路9ではV1+V2が演算され、Vl−V2はレン
ズ制御系Bに与えられ、V1+V2は発光制御回路10
に与えられる。
The light receiving circuit 6°7 receives these currents ■1. A voltage V1゜■2 corresponding to 2 is output, the subtraction circuit 8 calculates Vl-V2, the addition circuit 9 calculates V1+V2, Vl-V2 is given to the lens control system B, and V1+V2 is given to the light emission control circuit 10.
given to.

発光制御回路10では、第2図に示すように、まず減算
器10aでv1+V2と基準電圧V0との差を演算し、
その差Vrが積分器10bで積分する。このように積分
することにより最終値の定理から受光素子である光位置
検出器5の出力には受光回路6,7のパラメータしか関
与しなくなるので被写体までの距離や被写体の反射率に
無関係となる。これとは逆に減算器10aの出力を積分
せずに単に増幅するだけであると、光位置検出器5の出
力に被写体の反射率に関するパラメータが関与してくる
ので一定値が得られない。パルス変調回路10cでは積
分器10bの出力■。に基づいて赤外発光ダイオード1
に流れる電流のピーク値を制御して投光量を制御し光位
置検出器5の受光量が一定になるようにする。
In the light emission control circuit 10, as shown in FIG. 2, the subtracter 10a first calculates the difference between v1+V2 and the reference voltage V0,
The difference Vr is integrated by an integrator 10b. By integrating in this way, according to the final value theorem, only the parameters of the light receiving circuits 6 and 7 are involved in the output of the optical position detector 5, which is a light receiving element, so it is independent of the distance to the subject and the reflectance of the subject. . On the other hand, if the output of the subtracter 10a is simply amplified without being integrated, a constant value cannot be obtained because the parameter related to the reflectance of the object will be involved in the output of the optical position detector 5. In the pulse modulation circuit 10c, the output ■ of the integrator 10b. Infrared light emitting diode based on 1
The amount of light emitted is controlled by controlling the peak value of the current flowing through the optical position detector 5, so that the amount of light received by the optical position detector 5 becomes constant.

このように発光制御回路10で光出力と基準値との差を
積分することにより光出力が被写体までの距離や被写体
の反射率に無関係になるので受光回路での増幅器のレン
ジを狭くすることができ、対数圧縮の必要がなくなる。
By integrating the difference between the light output and the reference value in the light emission control circuit 10 in this way, the light output becomes independent of the distance to the subject and the reflectance of the subject, making it possible to narrow the range of the amplifier in the light receiving circuit. This eliminates the need for logarithmic compression.

第3図は発光制御回路10の一回路例を示す。FIG. 3 shows an example of the light emission control circuit 10.

図において、20は基準電圧V。を発生するための可変
抵抗器、21は(■1+V2)とvoとの差電圧をR1
とCとの時定数で積分する積分回路、22は変調周波数
を決定するスイッチ、23はゲート構成の発振回路、2
4はダーリントン接続の増幅回路である。スイッチ22
を所定の周期でオンオフすればその周波数によって決定
される周波数でパルス変調された電流で赤外発光ダイオ
ード1が駆動され赤外パルス光を発光するが、積分回路
21による差電圧の積分により光位置検出器5(第1図
参照)の光出力は被写体までの距離や被写体の反射率に
無関係となる。
In the figure, 20 is the reference voltage V. A variable resistor 21 is used to generate the voltage difference between (■1+V2) and vo.
22 is a switch that determines the modulation frequency; 23 is a gate-configured oscillation circuit; 2
4 is a Darlington-connected amplifier circuit. switch 22
When turned on and off at a predetermined period, the infrared light emitting diode 1 is driven by a current pulse-modulated at a frequency determined by the frequency, and emits infrared pulsed light. The light output of the detector 5 (see FIG. 1) is independent of the distance to the object and the reflectance of the object.

レンズ制御系Bにおいて、減算回路11では減算回路8
の出力(Vl 十V2 >とポテンショメータ16から
出力するフォーカシングレンズ15の位置信号Yとの差
γを求める。ウィンドコンパレータ12では、1γIが
フォーカシングレンズの焦点深度内にあるか否かを判断
し、もしなければモータ駆動回路13を介してモータ1
4によりフォーカシングレンズ15を前後に移動させ焦
点深度内に入るようにする。こうしてレンズの自動焦点
調整が行なわれる。
In the lens control system B, the subtraction circuit 11
The difference γ between the output (Vl + V2 >) and the position signal Y of the focusing lens 15 output from the potentiometer 16 is determined. If not, the motor 1 is connected via the motor drive circuit 13.
4, the focusing lens 15 is moved back and forth so that it comes within the depth of focus. In this way, automatic focus adjustment of the lens is performed.

本発明は以上説明した実施例に限られるものではなく、
種々の変形が可能である。たとえば、受光手段として距
離に応じた光電流11.I2を出力する1個の素子すな
わら、光位置検出器を用いたが、それぞれ距離に応じた
出力を出す分離された2個の光電素子を用いてもよい。
The present invention is not limited to the embodiments described above,
Various modifications are possible. For example, as a light receiving means, a photocurrent 11. Although one element that outputs I2, ie, an optical position detector, is used, two separate photoelectric elements that each output an output according to the distance may be used.

また、積分器には、2出力の和■1+■2を入力させて
いるが、必要な機能としては測定対象からの反射光の絶
体値を測ることであり、この意味で2出力のいずれか一
方(■1またはV2 >を積分器に入力させてもよい。
In addition, the sum of the two outputs ■1 + ■2 is input to the integrator, but the necessary function is to measure the absolute value of the reflected light from the measurement object, and in this sense, either of the two outputs Either one (■1 or V2>) may be input to the integrator.

(発明の効果) 以上説明したように、本発明は、被写体に投射したスポ
ット光の被写体からの反射光を受光手段で受光し、その
受光聞と受光位置とに応じて相反する変化をする2つの
光出力を出力させ、2つの光出力の和が一定になるよう
に投射スポット光の光量を制御する測距装置において、
前記2つの光出力の和と予め定めた基準値との差を積分
し、この積分出力に基づいて投射スポットの光量を制御
するように構成したので、2つの光出力の和が被写体ま
での距離や被写体の反射率に影響されずに一定となるよ
うにすることが容易になり、測距精度を向上することが
できる。
(Effects of the Invention) As explained above, the present invention allows a light-receiving means to receive the reflected light from the object of the spot light projected onto the object, and to make contradictory changes depending on the receiving distance and the light-receiving position. In a distance measuring device that outputs two optical outputs and controls the light intensity of the projected spot light so that the sum of the two optical outputs becomes constant,
The difference between the sum of the two light outputs and a predetermined reference value is integrated, and the light intensity of the projection spot is controlled based on this integrated output, so the sum of the two light outputs is the distance to the subject. It becomes easy to keep the distance constant without being affected by the reflectance of the subject or the subject, and the accuracy of distance measurement can be improved.

ざらに、本発明によれば、受光手段からの2つの光出力
の差が被写体までの距離に逆比例するとともにフォーカ
シングレンズの繰り出し量にも逆比例するので、レンズ
の位置を制御するレンズ制御系の構成を簡潔にできる。
Roughly speaking, according to the present invention, since the difference between the two light outputs from the light receiving means is inversely proportional to the distance to the subject and also inversely proportional to the amount of extension of the focusing lens, the lens control system that controls the position of the lens is The structure can be simplified.

また、赤外発光ダイオードの発光光量が高反射率の被写
体や被写体が近距離のとき小さくなるので消費電力およ
びダイオードの寿命が伸びる。
Furthermore, since the amount of light emitted by the infrared light emitting diode is reduced when a subject with a high reflectance or the subject is close, power consumption and the life of the diode are extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による測距装置の一実施例のブロック線
図、第2図は第1図に示した測距装置の発光制御回路の
ブロック線図、第3図は第2図に示した発光制御回路の
具体的な回路例、第4図は本発明で採用した従来の測距
方式の原理を説明する図、第5図(イ)は本発明で測距
方式の原理を説明する線図、(ロ)は(イ)に示した光
位置検出器の距離と出力電流との関係を示す特性図であ
る。 1・・・赤外発光ダイオード、2・・・投光レンズ、3
・・・被写体、4・・・受光レンズ、5・・・光位置検
出器、6.7・・・受光回路、8・・・減算回路、9・
・・加算回路。 10・・・発光制御回路、11・・・減算回路、12・
・・ウィンドコンパレータ、13・・・モータ駆動回路
、14・・・モータ、15・・・フォーカシングレンズ
、16・・・ポテンショメータ、10a・・・比較器、
10b・・・積分器、10G・・・パルス変調回路。 特許出願人 小西六写真工業株式会社 代理人  弁理士  鈴 木 弘 男 系5図 (イ)                  (O)距
維L
FIG. 1 is a block diagram of an embodiment of a distance measuring device according to the present invention, FIG. 2 is a block diagram of a light emission control circuit of the distance measuring device shown in FIG. 1, and FIG. 4 is a diagram explaining the principle of the conventional distance measuring method adopted in the present invention, and FIG. 5 (A) is a diagram explaining the principle of the distance measuring method adopted in the present invention. The diagram (b) is a characteristic diagram showing the relationship between the distance and the output current of the optical position detector shown in (a). 1... Infrared light emitting diode, 2... Light projection lens, 3
... Subject, 4... Light receiving lens, 5... Optical position detector, 6.7... Light receiving circuit, 8... Subtraction circuit, 9.
...Addition circuit. 10... Light emission control circuit, 11... Subtraction circuit, 12.
...Window comparator, 13...Motor drive circuit, 14...Motor, 15...Focusing lens, 16...Potentiometer, 10a...Comparator,
10b... Integrator, 10G... Pulse modulation circuit. Patent applicant Konishiroku Photo Industry Co., Ltd. Agent Patent attorney Hiroshi Suzuki Male lineage 5 chart (A) (O) Range L

Claims (2)

【特許請求の範囲】[Claims] (1)測定対象にスポット光を投射し、測定対象からの
反射光を受光手段で受光し、該受光手段の出力を演算す
ることにより測定対象までの距離を測定する測距装置で
あって、前記受光手段の出力を投光手段にフィードバッ
クして前記投光手段を制御する測距装置において、フィ
ードバック回路に基準電圧と前記受光手段の出力の差を
積分する積分器を設け、該積分器の出力を前記投光手段
の制御に用いたことを特徴とする測距装置。
(1) A distance measuring device that measures the distance to the measurement target by projecting a spot light onto the measurement target, receiving the reflected light from the measurement target with a light receiving unit, and calculating the output of the light receiving unit, In the distance measuring device that feeds back the output of the light receiving means to the light projecting means to control the light projecting means, an integrator for integrating the difference between a reference voltage and the output of the light receiving means is provided in the feedback circuit, and the integrator A distance measuring device characterized in that the output is used to control the light projecting means.
(2)前記受光手段が測定対象までの距離の変化に対し
て互いに異る変化を示す2つの出力を生ずる受光手段で
あって、該2つの出力の相対値から距離情報を得、該2
つの出力の和またはいずれか一方の出力を前記積分器に
入力するようにしたことを特徴とする特許請求の範囲第
1項に記載の測距装置。
(2) The light receiving means generates two outputs that show different changes with respect to changes in the distance to the measurement target, and the distance information is obtained from the relative value of the two outputs, and the distance information is obtained from the relative value of the two outputs.
2. The distance measuring device according to claim 1, wherein the sum of two outputs or one of the two outputs is input to the integrator.
JP6653785A 1985-04-01 1985-04-01 Range finder Pending JPS61226607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6653785A JPS61226607A (en) 1985-04-01 1985-04-01 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6653785A JPS61226607A (en) 1985-04-01 1985-04-01 Range finder

Publications (1)

Publication Number Publication Date
JPS61226607A true JPS61226607A (en) 1986-10-08

Family

ID=13318744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6653785A Pending JPS61226607A (en) 1985-04-01 1985-04-01 Range finder

Country Status (1)

Country Link
JP (1) JPS61226607A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138406A (en) * 1987-08-21 1989-05-31 Omron Tateisi Electron Co Distance measuring instrument
JPH05172565A (en) * 1991-12-26 1993-07-09 Sharp Corp Optical distance measuring sensor
JPH0618258A (en) * 1992-03-24 1994-01-25 Sharp Corp Optical range finding sensor
JP2006153814A (en) * 2004-12-01 2006-06-15 Nidec Copal Corp Distance measuring apparatus
JP2006153813A (en) * 2004-12-01 2006-06-15 Nidec Copal Corp Distance measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138406A (en) * 1987-08-21 1989-05-31 Omron Tateisi Electron Co Distance measuring instrument
JPH05172565A (en) * 1991-12-26 1993-07-09 Sharp Corp Optical distance measuring sensor
JPH0618258A (en) * 1992-03-24 1994-01-25 Sharp Corp Optical range finding sensor
JP2006153814A (en) * 2004-12-01 2006-06-15 Nidec Copal Corp Distance measuring apparatus
JP2006153813A (en) * 2004-12-01 2006-06-15 Nidec Copal Corp Distance measuring apparatus

Similar Documents

Publication Publication Date Title
US5008695A (en) Rangefinder for camera
US4935613A (en) Light projecting type distance measuring apparatus
US4913546A (en) Range finder
JPS61226607A (en) Range finder
JPH0313565B2 (en)
JPH0642915A (en) Optical measuring apparatus
JP2920680B2 (en) Active ranging device
JP2528844B2 (en) Automatic focusing device
JPS6227688A (en) Photoelectric switch for setting distance
JPS61226735A (en) Automatic focus adjusting device for camera
JPH09318349A (en) Optical displacement measuring device
JPH0774854B2 (en) Automatic focus adjustment device
KR940007795Y1 (en) Auto-focus controlling circuit for camera
JPH0435006B2 (en)
JP2763828B2 (en) Apparatus and method for automatically adjusting video camera focus
JPH0618259A (en) Range finder for camera
JPH0576605B2 (en)
JP3009513B2 (en) Distance measuring device for camera
JPH0550686B2 (en)
JPS62156630A (en) Auto-focusing device for camera
JPS622232A (en) Automatic focusing device for camera
JPH0575461A (en) Signal processing unit
JPH06137863A (en) Range measurement device
JPH0576604B2 (en)
JPS61245012A (en) Automatic focusing device