JPH0642915A - Optical measuring apparatus - Google Patents

Optical measuring apparatus

Info

Publication number
JPH0642915A
JPH0642915A JP16679492A JP16679492A JPH0642915A JP H0642915 A JPH0642915 A JP H0642915A JP 16679492 A JP16679492 A JP 16679492A JP 16679492 A JP16679492 A JP 16679492A JP H0642915 A JPH0642915 A JP H0642915A
Authority
JP
Japan
Prior art keywords
light
light source
amount
sources
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16679492A
Other languages
Japanese (ja)
Inventor
Hirokazu Tanaka
宏和 田中
Kiyomitsu Ishikawa
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP16679492A priority Critical patent/JPH0642915A/en
Publication of JPH0642915A publication Critical patent/JPH0642915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To permit two light sources having different optical path lengths to emit light at a predetermined ratio of the amounts of light at all times in an optical measuring apparatus which calculates the distance to an object from the reflected light at the object by projecting light to the object from the two light sources. CONSTITUTION:In addition to second photodetecting means 55, 56 which obtain distance data when receiving the reflecting light from an object 54, first photodetecting means 52, 53 are provided in the vicinity of two light sources 50, 51 to control the amount of light. The light emitted from the two light sources 50, 51 is detected by the first photodetecting means 52, 53 and photoelectrically converted to signals separately for each light source. The amount of light of at least either of the first and second light sources 50, 51 is controlled by a light amount controlling means based on the photoelectrically converted signals, so that the amount of light from the first light source 50 is adapted to be equal or at a predetermined ratio to that of the second light source 51.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被測定物の反射光を
利用した測定装置で、例えば、自動車などの障害物検知
センサや車高測定或いはスプリングの撓み量測定、カメ
ラの距離測定などに利用するところの光学的測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device using reflected light of an object to be measured, for example, for detecting obstacles such as automobiles, vehicle height, spring deflection, camera distance, etc. It relates to an optical measuring device to be used.

【0002】[0002]

【従来の技術】被測定物の反射光を利用した測定装置と
して様々な構成のものがあるが、その一例を図8に示
す。11、12は、投光手段として備えたLEDなどの
第1光源、第2光源で、これらの光路長には距離dの差
がある。13、14は、受光手段として備えたフォトダ
イオ−ドなどの受光素子と受光レンズで、15は拡散反
射面を持つ被測定物である。
2. Description of the Related Art There are various measuring devices that utilize reflected light of an object to be measured, and one example thereof is shown in FIG. Reference numerals 11 and 12 denote a first light source and a second light source such as an LED provided as a light projecting means, and there is a difference in distance d between the optical path lengths thereof. Reference numerals 13 and 14 denote a light receiving element such as a photodiode and a light receiving lens provided as light receiving means, and 15 is an object to be measured having a diffuse reflection surface.

【0003】2つの光源11、12より投光された光は
被測定物15を照射し、この反射光が受光レンズ14に
より集光され受光素子13で受光される。第1光源11
による被測定物15の照度E1は、第1光源11の放射
強度をIとすると、 E1=I/(d+D)2 ・・・・・・・・・・(1) となる。被測定物15の反射率をρとすると、被測定物
15の輝度B1はρE1に比例し、比例定数をKとする
と、 B1=KρE1 ・・・・・・・・・・(2) となる。
The light projected from the two light sources 11 and 12 illuminates the object to be measured 15, and the reflected light is collected by the light receiving lens 14 and received by the light receiving element 13. First light source 11
When the radiation intensity of the first light source 11 is I, the illuminance E 1 of the DUT 15 due to the following equation is E 1 = I / (d + D) 2 (1) When the reflectance of the DUT 15 is ρ, the brightness B 1 of the DUT 15 is proportional to ρE 1 , and when the proportional constant is K, B 1 = KρE 1 2)

【0004】同様に、第2光源12による発光では、 E2=ID2 ・・・・・・・(3) B2=KρE2 ・・・・・・(4) となる。[0004] Similarly, in the light emission by the second light source 12, the E 2 = ID 2 ······· (3 ) B 2 = KρE 2 ······ (4).

【0005】次に、反射した光は受光レンズ14、受光
素子13により受光され、この測定された輝度B1、B2
の比より測定距離Dを求める。すなわち、
Next, the reflected light is received by the light receiving lens 14 and the light receiving element 13, and the measured brightness B 1 , B 2 is measured.
The measurement distance D is obtained from the ratio of That is,

【数1】 となる。[Equation 1] Becomes

【0006】これより、測定距離Dは反射率ρや比例定
数Kに関係なく定数dと輝度比(B2/B1)とにより求
めることができる。上記した距離Dの算出は、この測定
装置に備えた信号処理回路によって行なわれる。
From this, the measurement distance D can be obtained from the constant d and the luminance ratio (B 2 / B 1 ) irrespective of the reflectance ρ and the proportional constant K. The above-described calculation of the distance D is performed by the signal processing circuit provided in this measuring device.

【0007】[0007]

【発明が解決しようとする課題】上記した光学測定装置
は、被測定物の反射率や発光面及び受光面の汚れなどに
影響されることなく測定できる利点を有する反面、投光
する光量の比が変化してしまった場合には正確な距離測
定を行なえないという問題点を有している。
The above-mentioned optical measuring device has the advantage that it can be measured without being affected by the reflectance of the object to be measured and the contamination of the light emitting surface and the light receiving surface, but on the other hand, the ratio of the amount of light projected. However, there is a problem in that accurate distance measurement cannot be carried out if the value of the distance changes.

【0008】つまり、この測定装置は、第1光源11と
第2光源12との光量の比を一定とみなして距離Dの算
出を行なっているので、例えば、第1光源11が劣化し
て光量が低下した場合、第2光源12との間で光量の比
が変化してしまうので、算出された距離が不正確なもの
となる。
That is, since the measuring device calculates the distance D by considering the ratio of the light amounts of the first light source 11 and the second light source 12 to be constant, for example, the first light source 11 is deteriorated and the light amount is decreased. When the value decreases, the ratio of the amount of light with the second light source 12 changes, and the calculated distance becomes inaccurate.

【0009】本発明は、上記した問題点を解決するた
め、2つの光源を常に一定の割合の光量で発光させるこ
とのできるこの種の光学的測定装置の開発を目的とす
る。
In order to solve the above-mentioned problems, the present invention has an object of developing an optical measuring device of this kind which can always emit two light sources with a constant amount of light.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、2つの光源からの光を光路長を変えて
被測定物に投光する投光手段と、上記2つの光源の近く
でこれら光源から投光された光を受光して光電変換する
光量制御用の第1の受光手段と、被測定物の反射光を受
光して光電変換する測定用の第2の受光手段と、第1の
受光手段によって受光した光源別の光の光電変換信号か
ら上記2つの光源の光量が予め定めた一定の比となるよ
うに少なくとも一方の光源の光量を制御する光量制御手
段と、第2の受光手段によって受光した光源別の光の光
電変換信号から被測定物の輝度比を算出して測定情報を
出力する信号処理手段とより構成したことを特徴とする
光学的測定装置を提案する。
In order to achieve the above object, according to the present invention, light projecting means for projecting light from two light sources onto an object to be measured by changing the optical path length, and near the two light sources. A first light receiving means for controlling the amount of light for receiving and photoelectrically converting the light projected from these light sources, and a second light receiving means for measurement for receiving and photoelectrically converting the reflected light of the object to be measured, A light quantity control means for controlling the light quantity of at least one of the light sources so that the light quantity of the two light sources has a predetermined constant ratio from the photoelectric conversion signal of the light for each light source received by the first light receiving means; An optical measuring device is proposed, which comprises a signal processing means for calculating a luminance ratio of an object to be measured from a photoelectric conversion signal of light of each light source received by the light receiving means and outputting measurement information.

【0011】[0011]

【作用】光路長の異なる2つの光源から被測定物に投光
すると、これらの光源の近くに備えた第1の受光手段が
投光された光を光源別に光電変換する。このように変換
された光電変換信号に基づいて光量制御手段が上記2つ
の光源のうち、少なくとも一方の光源をこれら2つの光
源の光量の比が予め定めた一定の比となるよう制御す
る。これより、被測定物には光量の比が一定となった2
つの光が光路長の差に応じて異なる照度特性で照射され
る。
When light is projected onto the object to be measured from two light sources having different optical path lengths, the first light receiving means provided near these light sources photoelectrically convert the projected light for each light source. Based on the photoelectrically converted signal thus converted, the light amount control means controls at least one of the two light sources so that the ratio of the light amounts of these two light sources becomes a predetermined constant ratio. As a result, the ratio of the amount of light to the measured object became constant.
Two lights are emitted with different illuminance characteristics depending on the difference in optical path length.

【0012】被測定物に照射さた2つの光はその反射光
が第2の受光手段によって受光されて光源別の光の光電
変換信号となる。そして、この光電変換信号に基づいて
信号処理手段が被測定物の輝度比を算出して測定情報を
出力する。
The reflected light of the two lights applied to the object to be measured is received by the second light receiving means and becomes a photoelectric conversion signal of the light for each light source. Then, the signal processing means calculates the luminance ratio of the object to be measured based on the photoelectric conversion signal and outputs the measurement information.

【0013】[0013]

【実施例】次に、本発明の実施例について図面に沿って
説明する。図1は、本発明の第1実施例を示し、この実
施例における投光手段と第1、第2の受光手段の簡略図
である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, and is a simplified view of a light projecting means and first and second light receiving means in this embodiment.

【0014】光路長に距離dの差をもって配置したLE
Dなどの第1光源50と第2光源51とで投光手段を構
成し、これら第1光源50と第2光源51の近くには各
々斜め方向から各光源50、51に向けるようにして配
置した第1の受光手段としての受光素子52、53が設
けられている。
LEs arranged with a difference of the distance d in the optical path length
A first light source 50 such as D and a second light source 51 constitute a light projecting means, and the first light source 50 and the second light source 51 are arranged near the first light source 50 and the second light source 51 so as to face the respective light sources 50, 51 in an oblique direction. The light receiving elements 52 and 53 as the first light receiving means are provided.

【0015】被測定物54は、拡散反射面を備えてお
り、第1光源50から距離D+dだけ離れ、また、第2
光源51から距離Dだけ離れて配置されている。
The object 54 to be measured is provided with a diffuse reflection surface and is separated from the first light source 50 by a distance D + d, and the second
It is arranged at a distance D from the light source 51.

【0016】また、受光レンズ55と受光素子56から
なる第2の受光手段を設け、この第2の受光手段で被測
定物54からの反射光を受光するようになっている。上
記した受光素子52、53及び56にはフォトダイオ−
ドが用いられている。
A second light receiving means including a light receiving lens 55 and a light receiving element 56 is provided, and the second light receiving means receives the reflected light from the object 54 to be measured. The photo detectors 52, 53, and 56 described above have photodiodes.
Is used.

【0017】2つの光源50、51より光が投光される
と、第1光源50の光の一部を受光素子52が受光し、
第2光源51の光の一部を受光素子53が受光する。そ
して、受光素子52、53は各々受光した光を電気信号
に変換して出力信号を発生する。この出力信号は、測定
装置に備えた後述する光量制御回路57に取り込まれ
る。
When light is projected from the two light sources 50 and 51, a part of the light from the first light source 50 is received by the light receiving element 52,
The light receiving element 53 receives a part of the light of the second light source 51. The light receiving elements 52 and 53 convert the received light into electric signals and generate output signals. This output signal is taken in by a light amount control circuit 57, which will be described later, provided in the measuring device.

【0018】光量制御回路57は、第1光源50と第2
光源51との光量の比を算出し、この光量の比が予め定
めた一定の比とならない場合、第2光源51の光量を変
化させて一定の比を保つように制御する。
The light quantity control circuit 57 includes a first light source 50 and a second light source 50.
The ratio of the amount of light to the light source 51 is calculated, and when the ratio of the amount of light does not reach a predetermined constant ratio, the amount of light of the second light source 51 is changed so as to maintain the constant ratio.

【0019】なお、この光量制御回路57は、第1光源
50と第2光源51との光量の比を1:1と定めてあ
る。
The light quantity control circuit 57 defines the light quantity ratio between the first light source 50 and the second light source 51 to be 1: 1.

【0020】以下、図2をもって光量制御回路57につ
いて説明する。受光素子52、53から出力された光電
変換電流Ip、Isは増幅器58、59に送られて増幅
された後、整流平滑回路60、61で整流され平滑され
る。整流平滑された各々の出力電流Ip、Isは対数変
換回路62、63で電圧Vp、Vsに変換されると共に
対数変換される。
The light amount control circuit 57 will be described below with reference to FIG. The photoelectric conversion currents Ip and Is output from the light receiving elements 52 and 53 are sent to the amplifiers 58 and 59, amplified, and then rectified and smoothed by the rectifying and smoothing circuits 60 and 61. The rectified and smoothed output currents Ip and Is are converted into voltages Vp and Vs and logarithmically converted by logarithmic conversion circuits 62 and 63.

【0021】対数変換された電圧Vp、Vsは差動増幅
器64に入力されて電圧差が算出され、この電圧差が電
流制御回路65に送られる。電流制御回路65は、上記
した電圧差にもとづいてこの電圧差がゼロとなるように
第2光源51の発光出力を制御する。
The logarithmically converted voltages Vp and Vs are input to the differential amplifier 64, the voltage difference is calculated, and the voltage difference is sent to the current control circuit 65. The current control circuit 65 controls the light emission output of the second light source 51 based on the above voltage difference so that the voltage difference becomes zero.

【0022】例えば、第2光源51の光量が第1光源5
0の光量に比べて多い場合、電流制御回路65は第2光
源51を暗くするように第2光源51の電力増幅器66
を駆動する。そして、第1光源50の光と第2光源51
の光とが受光素子52、53によって受光され、これら
光源の光量が同じになるように上記と同様にして光量制
御される。差動増幅器64で算出された電圧差がゼロと
なったとき、電流制御回路65の制御が停止する。
For example, the amount of light of the second light source 51 is equal to that of the first light source 5.
When the amount of light is greater than 0, the current control circuit 65 causes the power amplifier 66 of the second light source 51 to darken the second light source 51.
To drive. Then, the light of the first light source 50 and the second light source 51
Light is received by the light receiving elements 52 and 53, and the light amount is controlled in the same manner as described above so that the light amounts of these light sources become the same. When the voltage difference calculated by the differential amplifier 64 becomes zero, the control of the current control circuit 65 stops.

【0023】一方、第2光源51の光量が第1光源50
の光量に比べて少ない場合、上記とは逆に電流制御回路
65が第2光源51を明るくするように電力増幅器66
を駆動する。電流制御回路65による制御は、上記した
電圧差がゼロとなるまで続けられる。
On the other hand, the light quantity of the second light source 51 is equal to that of the first light source 50.
In contrast to the above, the current control circuit 65 makes the second light source 51 brighter, conversely to the above.
To drive. The control by the current control circuit 65 is continued until the above voltage difference becomes zero.

【0024】これより、2つの光源50、51から投光
する光は等しい光となって被測定物54を照射する。な
お、図2において、67は第1光源50の電力増幅器、
68は主コントロ−ラである。
As a result, the light projected from the two light sources 50 and 51 becomes the same light and illuminates the object 54 to be measured. In FIG. 2, 67 is a power amplifier of the first light source 50,
68 is a main controller.

【0025】被測定物54の反射光は受光レンズ55に
より集光され受光素子56で受光される。受光素子56
は受光した光を電気信号に変換して出力信号を発生し、
この出力信号は主コントロ−ラ68に含まれた信号処理
回路に取り込まれ、被測定物54の輝度比から測定距離
Dが算出される。
The reflected light of the object 54 to be measured is condensed by the light receiving lens 55 and received by the light receiving element 56. Light receiving element 56
Converts the received light into an electrical signal to generate an output signal,
This output signal is taken into the signal processing circuit included in the main controller 68, and the measurement distance D is calculated from the luminance ratio of the DUT 54.

【0026】図3は主コントロ−ラ68に含まれた信号
処理回路の一例を示すブロック図である。
FIG. 3 is a block diagram showing an example of a signal processing circuit included in the main controller 68.

【0027】発振器70の出力パルスは発光切換回路7
1によって第1光源50の電力増幅器67と第2光源5
1の電力増幅器66とに交互に送られ、2つの光源5
0、51を交互に発光させる。
The output pulse of the oscillator 70 is a light emission switching circuit 7.
1, the power amplifier 67 of the first light source 50 and the second light source 5
1 power amplifier 66 and two light sources 5
0 and 51 are alternately emitted.

【0028】また、発光切換回路71は上記した発振器
70の出力パルスにしたがって受光のタイミングをとる
ための同期信号を受光切換回路72に送る。第1光源5
0と第2光源51との発光により被測定物54を照射
し、被測定物54の反射光が受光素子56で受光される
と、この反射光が光電変換されてその受光信号が増幅器
73で増幅され、受光切換回路72に伝えられる。
Further, the light emission switching circuit 71 sends to the light reception switching circuit 72 a synchronizing signal for timing the light reception according to the output pulse of the oscillator 70. First light source 5
0 and the second light source 51 illuminate the object to be measured 54, and when the reflected light of the object to be measured 54 is received by the light receiving element 56, this reflected light is photoelectrically converted, and the received light signal is amplified by the amplifier 73. It is amplified and transmitted to the light receiving switching circuit 72.

【0029】この受光切換回路72では、上記した発光
切換回路71からの同期信号により第1光源50若しく
は第2光源51のどちらかが発光されたかを判別し、こ
れにしたがい、第1演算回路74または第2演算回路7
5に受光信号を送る。
The light receiving switching circuit 72 determines whether the first light source 50 or the second light source 51 emits light based on the synchronization signal from the light emitting switching circuit 71, and accordingly, the first arithmetic circuit 74 is operated. Or the second arithmetic circuit 7
A light receiving signal is sent to 5.

【0030】この受光信号にもとづき、これら第1演算
回路74、第2演算回路75で各々第1光源50におけ
る被測定物54の輝度B1と第2光源51における被測
定物54の輝度B2を求める演算を行ない、この結果を
処理回路76に伝えて輝度比(B2/B1)の演算処理が
行なわれ、測定距離Dに関する出力信号が出力端子77
より出力される。
Based on the received light signal, the brightness B 1 of the object 54 to be measured in the first light source 50 and the brightness B 2 of the object 54 to be measured in the second light source 51 are respectively calculated by the first arithmetic circuit 74 and the second arithmetic circuit 75. Is calculated, the result is transmitted to the processing circuit 76, and the brightness ratio (B 2 / B 1 ) is calculated, and an output signal related to the measured distance D is output to the output terminal 77.
Will be output.

【0031】図4及び図5は本発明の第2実施例を示
し、図4はこの実施例における投光手段と第1、第2の
受光手段の簡略図であり、図5は光量制御回路のブロッ
ク図である。なお、本実施例の説明の中で第1実施例と
同一部材及び回路については同一符号を付してその説明
を省略する。
FIGS. 4 and 5 show a second embodiment of the present invention, FIG. 4 is a simplified diagram of the light projecting means and the first and second light receiving means in this embodiment, and FIG. 5 is a light quantity control circuit. It is a block diagram of. In the description of this embodiment, the same members and circuits as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0032】この実施例は、第1の受光手段を1つの受
光素子78で構成して部品点数を減らし、装置構成を簡
素化たものである。
In this embodiment, the first light receiving means is composed of one light receiving element 78, the number of parts is reduced, and the apparatus structure is simplified.

【0033】第1光源50と第2光源51とは上述した
信号処理回路によって交互に発光する。そして、発光し
た各々の光の一部を受光素子78が受光して電気信号に
変換し、この変換した信号にもとづいて光量制御回路7
9が第1光源50と第2光源51の光量の差を算出し、
この差に応じて第2光源51の光量を第1光源50の光
量と等しくするよう変化させる。なお、この光量制御回
路79についても、第1光源50と第2光源51との光
量の比を1:1と定めてある。
The first light source 50 and the second light source 51 emit light alternately by the signal processing circuit described above. Then, the light receiving element 78 receives a part of each emitted light and converts it into an electric signal, and based on the converted signal, the light amount control circuit 7
9 calculates the difference between the light amounts of the first light source 50 and the second light source 51,
According to this difference, the light amount of the second light source 51 is changed to be equal to the light amount of the first light source 50. In this light amount control circuit 79 as well, the ratio of the light amounts of the first light source 50 and the second light source 51 is set to 1: 1.

【0034】受光素子78から出力された光電変換電流
Ip、Isは増幅器80で増幅された後、対数増幅器8
1で電圧Vp、Vsに変換されると共に対数変換され
る。対数変換された電圧Vp、Vsは第1光源50の発
光によるものと、第2光源51の発光によるものとに分
離器83によって分離され、各々整流平滑回路84、8
5で整流平滑された後、差動増幅器86に入力され、こ
の差動増幅器86で電圧差が算出される。そして、この
電圧差にもとづいて電流制御回路87が第2光源51の
電力増幅器88を駆動し、第2光源51の光量が第1光
源50の光量に等しくなるまで制御する。
The photoelectric conversion currents Ip and Is output from the light receiving element 78 are amplified by the amplifier 80, and then the logarithmic amplifier 8
At 1, it is converted into voltages Vp and Vs, and also logarithmically converted. The logarithmically converted voltages Vp and Vs are separated by a separator 83 into a light emission from the first light source 50 and a light emission from the second light source 51, and rectifying and smoothing circuits 84 and 8 respectively.
After being rectified and smoothed by 5, the voltage is input to the differential amplifier 86, and the voltage difference is calculated by the differential amplifier 86. Then, the current control circuit 87 drives the power amplifier 88 of the second light source 51 based on this voltage difference, and controls until the light quantity of the second light source 51 becomes equal to the light quantity of the first light source 50.

【0035】このようにして光量制御された第1光源5
0、第2光源51の光は、第1実施例と同様にして被測
定物54に照射され、その反射光が受光レンズ55によ
り集光されて受光素子56で受光される。そして、受光
素子56の出力信号にもとづいて信号処理回路が測定距
離Dを算出する。なお、図5中の符号89は第1光源5
0の電力増幅器である。
The first light source 5 whose light quantity is controlled in this way
0, the light from the second light source 51 is applied to the DUT 54 in the same manner as in the first embodiment, and the reflected light is collected by the light receiving lens 55 and received by the light receiving element 56. Then, the signal processing circuit calculates the measurement distance D based on the output signal of the light receiving element 56. Reference numeral 89 in FIG. 5 indicates the first light source 5
0 power amplifier.

【0036】次に、本発明の第3実施例について説明す
る。図6は光量制御回路を示すブロック図であり、この
実施例における投光手段と第1、第2の受光手段につい
ては第1実施例の図1で示す構成と同様のものとなって
いる。また、本実施例の説明の中で、第1実施例と同一
部材及び回路については同一符号を付してその説明を省
略する。
Next, a third embodiment of the present invention will be described. FIG. 6 is a block diagram showing a light quantity control circuit, and the light projecting means and the first and second light receiving means in this embodiment are the same as those shown in FIG. 1 of the first embodiment. Further, in the description of the present embodiment, the same members and circuits as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0037】この実施例は、第1光源50の光量を第2
光源51の光量より大きいものとし、これら2つの光源
50、51を予め定めた一定の割合の光量で発光させる
ものである。例えば、第2光源51の光量が第1光源5
0の光量の1/2とすると、常にこの割合を保つように
光量制御回路90が第2光源51の光量を制御する。
In this embodiment, the light amount of the first light source 50 is changed to the second light amount.
It is assumed that the light amount of the light source 51 is larger than that of the light source 51, and these two light sources 50 and 51 are caused to emit light at a predetermined constant rate of light amount. For example, if the light amount of the second light source 51 is the first light source 5
When the light amount is 1/2 of 0, the light amount control circuit 90 controls the light amount of the second light source 51 so that this ratio is always maintained.

【0038】第1光源50と第2光源51との光量の割
合を上記した2:1とすると、第1光源50から発光さ
れた光を受光する受光素子52の出力信号は、ポテンシ
ョメ−タ91で1/2のデ−タ信号に変換され差動増幅
器92に入力される。また、第2光源51から発光され
た光を受光する受光素子53の出力信号は、そのままの
デ−タ信号として差動増幅器92に入力される。
When the ratio of the light amounts of the first light source 50 and the second light source 51 is 2: 1 as described above, the output signal of the light receiving element 52 which receives the light emitted from the first light source 50 is a potentiometer. It is converted into a 1/2 data signal at 91 and input to the differential amplifier 92. Further, the output signal of the light receiving element 53 that receives the light emitted from the second light source 51 is input to the differential amplifier 92 as a data signal as it is.

【0039】そして、差動増幅器92はこれらデ−タ信
号からその差を算出し、差信号を電流制御回路93に送
る。ここで、上記した差信号がゼロの場合、第1光源5
0と第2光源51との光量は予め定た2:1の割合とな
るので、第2光源51の発光出力は正常のものとなる。
Then, the differential amplifier 92 calculates the difference from these data signals and sends the difference signal to the current control circuit 93. Here, when the difference signal is zero, the first light source 5
The light amounts of 0 and the second light source 51 have a predetermined ratio of 2: 1, so that the light emission output of the second light source 51 becomes normal.

【0040】一方、差信号がゼロから変動した場合、こ
の変動分に応じて電流制御回路93が第2光源51の電
力増幅器94を駆動させて第2光源51の光量を変化さ
せる。この電流制御回路93の制御は、差信号がゼロと
なるまで続けられる。これより、被測定物54を照射す
る第1光源50と第2光源51の光量は常に2:1の割
合となる。
On the other hand, when the difference signal fluctuates from zero, the current control circuit 93 drives the power amplifier 94 of the second light source 51 according to the fluctuation amount to change the light amount of the second light source 51. The control of the current control circuit 93 is continued until the difference signal becomes zero. As a result, the light amounts of the first light source 50 and the second light source 51 which irradiate the DUT 54 are always 2: 1.

【0041】なお、図6中の符号95、96は増幅器、
97、98は整流平滑器、99は第1光源50の電力増
幅器である。
Reference numerals 95 and 96 in FIG. 6 are amplifiers,
97 and 98 are rectifying / smoothing devices, and 99 is a power amplifier of the first light source 50.

【0042】上記した第1、第2、第3実施例は共に第
1光源50の光量に合わせて第2光源51の光量を制御
する構成のものとなっているが、次に、第1光源50及
び第2光源51の両方の光量を制御することのできる光
量制御回路を備えた実施例について説明する。
The above-mentioned first, second and third embodiments all have a structure in which the light quantity of the second light source 51 is controlled according to the light quantity of the first light source 50. An embodiment including a light amount control circuit capable of controlling the light amounts of both the light source 50 and the second light source 51 will be described.

【0043】図7は本発明の第4実施例を示す光量制御
回路のブロック図である。この実施例における投光手段
と第1、第2の受光手段についても第1実施例の図1で
示す構成と同様のものとなっている。また、本実施例の
説明の中で、第1実施例と同一部材及び回路については
同符号を付してその説明を省略する。
FIG. 7 is a block diagram of a light quantity control circuit showing a fourth embodiment of the present invention. The light projecting means and the first and second light receiving means in this embodiment also have the same configuration as that of the first embodiment shown in FIG. In the description of this embodiment, the same members and circuits as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0044】この光量制御回路101においては、第1
光源50と第2光源51とが予め定めた一定の光量の割
合で発光するものとし、また、第1光源50の光量を第
2光源51の光量より大きいものとする。
In the light quantity control circuit 101, the first
It is assumed that the light source 50 and the second light source 51 emit light at a predetermined constant light amount ratio, and the light amount of the first light source 50 is larger than the light amount of the second light source 51.

【0045】例えば、第3実施例と同様に第2光源51
の光量が第1光源50の光量の1/2とすると、第1光
源50から発光された光を受光する受光素子52の出力
信号がポテンショメ−タ102で1/2のデ−タ信号に
変換され差動増幅器103に入力される。
For example, as in the third embodiment, the second light source 51
Is 1/2 of the light amount of the first light source 50, the output signal of the light receiving element 52 that receives the light emitted from the first light source 50 becomes a 1/2 data signal by the potentiometer 102. It is converted and input to the differential amplifier 103.

【0046】また、第2光源51から発光された光を受
光する受光素子53の出力信号は、そのままのデ−タ信
号として差動増幅器103に入力される。そして、差動
増幅器103は、この2つのデ−タ信号からその差を算
出し、差信号を電流制御回路104に送る。
The output signal of the light receiving element 53 which receives the light emitted from the second light source 51 is input to the differential amplifier 103 as a data signal as it is. Then, the differential amplifier 103 calculates the difference between these two data signals and sends the difference signal to the current control circuit 104.

【0047】このとき、差動増幅器103は、上記した
算出結果が+のとき、すなわち、第1光源50の光量が
第2光源51の光量の2倍以上となったとき、+の信号
を電流制御回路104に送る。
At this time, the differential amplifier 103 outputs a + signal as a current when the above-mentioned calculation result is +, that is, when the light amount of the first light source 50 is more than twice the light amount of the second light source 51. It is sent to the control circuit 104.

【0048】また、上記した算出結果が−のとき、すな
わち、第1光源50の光量が第2光源51の光量の2倍
以下となったとき、−の信号を同様に電流制御回路10
4に送る。
When the above calculation result is negative, that is, when the light quantity of the first light source 50 is less than or equal to twice the light quantity of the second light source 51, a signal of-is similarly given to the current control circuit 10.
Send to 4.

【0049】そして、電流制御回路104は+の信号を
受けた場合、第1光源50の電力増幅器105を駆動さ
せて第1光源50の光量を減少させる。また、電流制御
回路104が−の信号を受けた場合、第2光源51の電
力増幅器106を駆動させて第2光源51の光量を減少
させる。
When receiving the + signal, the current control circuit 104 drives the power amplifier 105 of the first light source 50 to reduce the light amount of the first light source 50. Further, when the current control circuit 104 receives a signal of −, the power amplifier 106 of the second light source 51 is driven to reduce the light amount of the second light source 51.

【0050】この電流制御回路104の制御は、差信号
がゼロとなるまで続けられる。これより、被測定物54
を照射する第1光源50と第2光源51の光量は常に
2:1の割合となる。
The control of the current control circuit 104 is continued until the difference signal becomes zero. From this, the measured object 54
The light amounts of the first light source 50 and the second light source 51 for irradiating the light are always in a ratio of 2: 1.

【0051】このように構成することにより、2つの光
源50、51は、一方の光源が暗くなった場合、この暗
くなった光源に合わせて他方の光源の光量が制御される
ので、光源の寿命を延ばすことができ、装置の耐久性が
向上する。なお、図7中の符号107、108は増幅
器、109、110は整流平滑回路である。
With this configuration, when one of the two light sources 50 and 51 becomes dark, the light amount of the other light source is controlled in accordance with the darkened light source, so that the life of the light source becomes longer. Can be extended and the durability of the device is improved. In FIG. 7, reference numerals 107 and 108 are amplifiers, and 109 and 110 are rectifying and smoothing circuits.

【0052】なお、上記した各実施例では、第1光源5
0と第2光源51とを交互に発光させるタイプの光学的
測定装置に関して説明したが、周波数や波長を変えた光
を同時に発光するようにした第1、第2光源を備えた光
学的測定装置についても同様に実施し得る。
In each of the above embodiments, the first light source 5
Although the optical measuring device of the type in which 0 and the second light source 51 are alternately emitted has been described, the optical measuring device provided with the first and second light sources that simultaneously emit light with different frequencies and wavelengths. Can be similarly implemented.

【0053】また、第1、第2実施例では、第1光源5
0と第2光源51との光量の比を1:1と定めたが、必
ずしも光量比をこのように定めることはなく、受光素子
52、53の増幅器58、59、受光素子56の増幅器
73の増幅率を変えて、これら受光素子52、53、5
6が出力する光源別の出力信号を1:1の割合とするよ
うに構成してもよい。
In the first and second embodiments, the first light source 5
Although the ratio of the amount of light between 0 and the second light source 51 is set to 1: 1, the ratio of the amount of light is not necessarily determined in this way. These light receiving elements 52, 53, 5 are changed by changing the amplification factor.
It may be configured such that the output signals of the respective light sources output by 6 have a ratio of 1: 1.

【0054】このようなことは、第3、第4実施例につ
いても同様であり、受光素子52、53の増幅器95、
96、受光素子56の増幅器73の増幅率を変えて、こ
れら増幅器が出力する光源別の出力信号を2:1の割合
とすれば、必ずしも第1光源50と第2光源51の光量
比を1/2にしなくてもよい。
The same applies to the third and fourth embodiments, and the amplifiers 95 of the light receiving elements 52 and 53,
96, if the amplification factor of the amplifier 73 of the light receiving element 56 is changed so that the output signal for each light source output by these amplifiers has a ratio of 2: 1, the light quantity ratio of the first light source 50 and the second light source 51 is not necessarily 1 It does not have to be / 2.

【0055】[0055]

【発明の効果】上記した通り、本発明に係る光学的測定
装置は、2つの光源の近くでこれら光源の光を受光し
て、光源別の光の光電変換信号を出力する光量制御用の
第1の受光手段と、この光源別の光の光電変換信号から
上記2つの光源の光量が予め定めた一定の比となるよう
に上記2つの光源のうち少なくとも一方の光源の光量を
制御する光量制御手段とを備えて構成したので、被測定
物には常に光量の比が一定となった2つの光を照射する
ことができる。
As described above, the optical measuring device according to the present invention receives light from two light sources in the vicinity of the two light sources and outputs a photoelectric conversion signal of the light for each light source. 1 light receiving means and light quantity control for controlling the light quantity of at least one of the two light sources so that the light quantity of the two light sources becomes a predetermined constant ratio from the photoelectric conversion signal of the light for each light source. Since it is configured by including the means, it is possible to irradiate the object to be measured with two lights having a constant light amount ratio.

【0056】これによって、一方の光源が劣化して光量
が低下した場合でも、被測定物までの距離を正確に算出
することができ極めて信頼性の高い測定装置となる。
As a result, even if one of the light sources deteriorates and the amount of light decreases, the distance to the object to be measured can be accurately calculated, resulting in a highly reliable measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示し、この実施例の測定
装置に備えた投光手段と第1、第2の受光手段の簡略図
である。
FIG. 1 shows a first embodiment of the present invention, and is a simplified diagram of a light projecting means and first and second light receiving means provided in a measuring apparatus of this embodiment.

【図2】第1実施例における光量制御回路を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a light amount control circuit in the first embodiment.

【図3】第1実施例における信号処理回路を示すブロッ
ク図である。
FIG. 3 is a block diagram showing a signal processing circuit in the first embodiment.

【図4】本発明の第2実施例を示し、この実施例の測定
装置に備えた投光手段と第1、第2の受光手段の簡略図
である。
FIG. 4 shows a second embodiment of the present invention, and is a simplified diagram of the light projecting means and the first and second light receiving means provided in the measuring apparatus of this embodiment.

【図5】第2実施例における光量制御回路を示すブロツ
ク図である。
FIG. 5 is a block diagram showing a light quantity control circuit in the second embodiment.

【図6】本発明の第3実施例の光量制御回路を示すブロ
ック図である。
FIG. 6 is a block diagram showing a light amount control circuit according to a third embodiment of the present invention.

【図7】本発明の第4実施例の光量制御回路を示すブロ
ック図である。
FIG. 7 is a block diagram showing a light amount control circuit according to a fourth embodiment of the present invention.

【図8】従来例として示した光学的測定装置の投光手段
と受光手段の簡略図である。
FIG. 8 is a simplified diagram of a light projecting unit and a light receiving unit of an optical measuring device shown as a conventional example.

【符号の説明】[Explanation of symbols]

50 第1光源 51 第2光源 52 受光素子 53 受光素子 54 被測定物 55 受光レンズ 56 受光素子 57 光量制御回路 78 受光素子 79、90、101 光量制御回路 50 first light source 51 second light source 52 light receiving element 53 light receiving element 54 object to be measured 55 light receiving lens 56 light receiving element 57 light quantity control circuit 78 light receiving elements 79, 90, 101 light quantity control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2つの光源からの光を光路長を変えて被
測定物に投光する投光手段と、上記2つの光源の近くで
これら光源から投光された光を受光して光電変換する光
量制御用の第1の受光手段と、被測定物の反射光を受光
して光電変換する測定用の第2の受光手段と、第1の受
光手段によって受光した光源別の光の光電変換信号から
上記2つの光源の光量が予め定めた一定の比となるよう
に少なくとも一方の光源の光量を制御する光量制御手段
と、第2の受光手段によって受光した光源別の光の光電
変換信号から被測定物の輝度比を算出して測定情報を出
力する信号処理手段とより構成したことを特徴とする光
学的測定装置。
1. Light projecting means for projecting light from two light sources onto an object to be measured by changing optical path lengths, and photoelectric conversion for receiving light projected from these light sources near the two light sources. First light receiving means for controlling the amount of light, second light receiving means for measurement that receives and photoelectrically converts the reflected light of the object to be measured, and photoelectric conversion of light for each light source received by the first light receiving means From a signal, a light amount control means for controlling the light amount of at least one of the light sources so that the light amount of the two light sources has a predetermined constant ratio, and a photoelectric conversion signal of light of each light source received by the second light receiving means. An optical measuring device comprising: a signal processing unit that calculates a luminance ratio of an object to be measured and outputs measurement information.
JP16679492A 1992-06-03 1992-06-03 Optical measuring apparatus Pending JPH0642915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16679492A JPH0642915A (en) 1992-06-03 1992-06-03 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16679492A JPH0642915A (en) 1992-06-03 1992-06-03 Optical measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0642915A true JPH0642915A (en) 1994-02-18

Family

ID=15837803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16679492A Pending JPH0642915A (en) 1992-06-03 1992-06-03 Optical measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0642915A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304821A (en) * 2000-02-16 2001-10-31 Fuji Photo Film Co Ltd Image pickup apparatus and range measuring method
JP2012037264A (en) * 2010-08-04 2012-02-23 Seiko Epson Corp Optical position detection device and apparatus with position detection function
JP2012037263A (en) * 2010-08-04 2012-02-23 Seiko Epson Corp Optical position detection device and device having position detection function
US8735825B2 (en) 2011-04-08 2014-05-27 Seiko Epson Corporation Optical position detection device
WO2014174779A1 (en) * 2013-04-26 2014-10-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor apparatus having a plurality of light sources
WO2014208087A1 (en) * 2013-06-27 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources
WO2015001770A1 (en) * 2013-07-01 2015-01-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202385A (en) * 1983-01-26 1983-11-25 Hitachi Ltd Oil supply mechanism for closed compressor
JPH0493706A (en) * 1990-08-10 1992-03-26 Stanley Electric Co Ltd Optical measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202385A (en) * 1983-01-26 1983-11-25 Hitachi Ltd Oil supply mechanism for closed compressor
JPH0493706A (en) * 1990-08-10 1992-03-26 Stanley Electric Co Ltd Optical measuring apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304821A (en) * 2000-02-16 2001-10-31 Fuji Photo Film Co Ltd Image pickup apparatus and range measuring method
JP2012037264A (en) * 2010-08-04 2012-02-23 Seiko Epson Corp Optical position detection device and apparatus with position detection function
JP2012037263A (en) * 2010-08-04 2012-02-23 Seiko Epson Corp Optical position detection device and device having position detection function
US8735825B2 (en) 2011-04-08 2014-05-27 Seiko Epson Corporation Optical position detection device
WO2014174779A1 (en) * 2013-04-26 2014-10-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor apparatus having a plurality of light sources
US9978148B2 (en) 2013-04-26 2018-05-22 Panasonic Intellectual Property Corporation Of America Motion sensor apparatus having a plurality of light sources
JPWO2014174779A1 (en) * 2013-04-26 2017-02-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Motion sensor device having a plurality of light sources
JPWO2014208087A1 (en) * 2013-06-27 2017-02-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Motion sensor device having a plurality of light sources
WO2014208087A1 (en) * 2013-06-27 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources
US9863767B2 (en) 2013-06-27 2018-01-09 Panasonic Intellectual Property Corporation Of America Motion sensor device having plurality of light sources
WO2015001770A1 (en) * 2013-07-01 2015-01-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Motion sensor device having plurality of light sources
CN104603574B (en) * 2013-07-01 2017-10-13 松下电器(美国)知识产权公司 Motion sensor device with multiple light sources
JPWO2015001770A1 (en) * 2013-07-01 2017-02-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Motion sensor device having a plurality of light sources
CN104603574A (en) * 2013-07-01 2015-05-06 松下电器(美国)知识产权公司 Motion sensor device having plurality of light sources
US10313599B2 (en) 2013-07-01 2019-06-04 Panasonic Intellectual Property Corporation Of America Motion sensor device having plurality of light sources

Similar Documents

Publication Publication Date Title
US4673274A (en) Automatic focusing apparatus for camera
US4849781A (en) Range detector
US5008695A (en) Rangefinder for camera
JPH0642915A (en) Optical measuring apparatus
US4913546A (en) Range finder
JPH01202614A (en) Active distance measuring apparatus
JPS6326877B2 (en)
US6647205B1 (en) Distance-measuring sensor, distance-measuring device and camera as well as distance-measuring method
JPH0658713A (en) Optical equipment for measurement
JPH0139524B2 (en)
JP2559393B2 (en) Distance detector
JPS61226607A (en) Range finder
JP2942046B2 (en) Optical ranging sensor
JPH0830653B2 (en) Distance detector
JPH0675131B2 (en) Zone focus camera distance measuring device
JPH0638069B2 (en) Differential refractometer
JP3009511B2 (en) Distance measuring device for camera
JPH0715544B2 (en) Camera photometer
JP3447508B2 (en) Distance measuring device and adjusting method thereof
JPH0440314A (en) Optical measuring instrument
JPH08297012A (en) Photoelectric position-detecting apparatus
JPH0575461A (en) Signal processing unit
JPH1163973A (en) Range finding module
JPH046410A (en) Photoelectric switch
JPH07106939A (en) Photoelectric sensor