JPH0435006B2 - - Google Patents

Info

Publication number
JPH0435006B2
JPH0435006B2 JP11884885A JP11884885A JPH0435006B2 JP H0435006 B2 JPH0435006 B2 JP H0435006B2 JP 11884885 A JP11884885 A JP 11884885A JP 11884885 A JP11884885 A JP 11884885A JP H0435006 B2 JPH0435006 B2 JP H0435006B2
Authority
JP
Japan
Prior art keywords
light
distance measurement
pair
light reception
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11884885A
Other languages
Japanese (ja)
Other versions
JPS61277009A (en
Inventor
Haruhiko Momose
Hirofumi Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11884885A priority Critical patent/JPS61277009A/en
Publication of JPS61277009A publication Critical patent/JPS61277009A/en
Publication of JPH0435006B2 publication Critical patent/JPH0435006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカメラなどにおいて赤外発光ダイオー
ドなどを用いてアクテイブ測距を行なう測距装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance measuring device that performs active distance measuring using an infrared light emitting diode or the like in a camera or the like.

(従来技術) 従来自動焦点カメラの測距方式の1つに、カメ
ラ本体内に発光素子と受光素子とを所定距離(基
線長)隔てて設け、発光素子から被写体に向けて
パルス状の赤外ビームを発射し、被写体からのそ
の反射ビームを利用して基線長と見込み角より三
角測量式に被写体距離を求めるアクテイブ測距方
式が知られている。
(Prior art) One of the distance measuring methods for conventional autofocus cameras is to install a light emitting element and a light receiving element within the camera body at a predetermined distance (baseline length), and emit pulsed infrared light from the light emitting element toward the subject. An active distance measuring method is known in which a beam is emitted and the reflected beam from the object is used to determine the distance to the object by triangulation from the baseline length and viewing angle.

第6図はアクテイブ測距方式の原理を示してお
り、赤外コントロールパルスにより駆動される赤
外発光ダイオード1から投光レンズ2を通して被
写体3に赤外線の細いビームを投射する。被写体
3により反射される赤外光ビームは受光レンズ4
を通して光位置検出器5上にスポツト光として受
光される。赤外スポツト光の結像位置により光位
置検出器5の出力端子から出力する光電流をI1
I2とすると、受光信号量の和(I1+I2)は被写体
距離の二乗に反比例し、被写体の反射率に比例す
る。そこで遠方まで測距できるように発光量を大
きくすると、近距離、高反射率の被写体の場合は
受光量が非常に大きくなつてしまい、信号の演算
処理ができなくなつてしまう。たとえば、被写体
距離が10m、被写体反射率が20%の条件で受光信
号を変換したときの出力が10mVであるとする
と、被写体距離が1m、被写体反射率が100%の条
件では変換出力が10Vにも達してしまう。
FIG. 6 shows the principle of the active distance measuring method, in which a narrow beam of infrared rays is projected onto a subject 3 through a projection lens 2 from an infrared light emitting diode 1 driven by an infrared control pulse. The infrared light beam reflected by the subject 3 is transmitted to the light receiving lens 4.
The light is received as a spot light on the optical position detector 5 through the light. Depending on the imaging position of the infrared spot light, the photocurrent output from the output terminal of the optical position detector 5 is I 1 ,
Assuming I 2 , the sum of the received light signal amounts (I 1 +I 2 ) is inversely proportional to the square of the subject distance and proportional to the reflectance of the subject. Therefore, if the amount of light emitted is increased so that distance measurement can be carried out over a long distance, the amount of light received will become extremely large in the case of a close-distance object with a high reflectance, making it impossible to perform signal calculation processing. For example, if the output when the received light signal is converted is 10 mV when the subject distance is 10 m and the subject reflectance is 20%, then the converted output will be 10 V when the subject distance is 1 m and the subject reflectance is 100%. It also reaches.

そこで受光信号処理回路のダイナミツクレンジ
を広くする必要があり、従来ではそのために電源
電圧を昇圧したり、特開昭57−44809号における
ように受光素子として用いた半導体位置検出器の
2つの出力の和信号により発光素子にパルス変調
をかけ、その和信号が被写体距離に関係なく常に
一定となるように発光素子の出力をフイードバツ
ク制御したり、特開昭59−60427号公報における
ように、発光素子の出力を徐々に増加させる投光
駆動手段を設け、受光手段の2つの出力の和が所
定値に達したことを検出して測距する方法が提案
されている。
Therefore, it is necessary to widen the dynamic range of the light-receiving signal processing circuit, and in the past, for this purpose, the power supply voltage was boosted, or the two outputs of a semiconductor position detector used as a light-receiving element were Pulse modulation is applied to the light emitting element by the sum signal of A method has been proposed in which a light emitting drive means for gradually increasing the output of the element is provided, and distance measurement is performed by detecting when the sum of two outputs of the light receiving means has reached a predetermined value.

ところが上記の方法は昇圧回路が必要となるた
めコスト高となり、発光出力制御回路が必要とな
るため信号処理回路が複雑になるという問題があ
る。
However, the above method requires a booster circuit, resulting in high cost, and requires a light emission output control circuit, resulting in a complicated signal processing circuit.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもの
で、簡潔な信号処理回路で近距離、高反射率の被
写体の測距を可能にすることを目的とし、この目
的を達成するために、被測定物に投光するスポツ
ト光を連続的にパルス発光させる投光手段と、前
記被測定物で反射したスポツト光を受光し1対の
受光信号を出力する受光手段と、前記1対の受光
信号に基づいて演算し測距信号を得る測距演算回
路とを有する測距装置において、前記連続的にパ
ルス発光させるスポツト光の出力を時間とともに
減少させる減少手段を前記投光手段に備え、前記
1対の受光信号における出力の大なる方の受光信
号のレベルと予め設定した基準値とを比較する比
較手段と、前記出力の大なる方の受光信号のレベ
ルが前記基準値以下になつたときの1対の受光信
号およびそれ以降の1対の受光信号の両方または
いづれか一方に基づいて演算し測距信号を得るよ
うに前記測距演算回路を制御する制御回路とを設
けたものである。
(Object and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to enable distance measurement of short-distance, high-reflectance objects using a simple signal processing circuit. In order to achieve this, a light projecting means for continuously emitting pulses of the spot light projected onto the object to be measured; a light receiving means for receiving the spot light reflected by the object to be measured and outputting a pair of light reception signals; In the distance measuring device comprising a distance measuring calculation circuit that calculates a distance measuring signal based on the pair of light reception signals, the light emitting means includes a reducing means for decreasing the output of the spot light emitted in continuous pulses over time. means for comparing the level of the received light signal of the pair of light received signals with a larger output and a preset reference value; and a control circuit that controls the distance measurement calculation circuit to calculate and obtain a distance measurement signal based on either or both of the pair of light reception signals when the signal becomes below and the pair of light reception signals thereafter. It is something that

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

本発明によるアクテイブ測距方式に用いられる
発光回路として第5図イ,ロ,ハに示すようなも
のがあり、いずれも発光素子である赤外発光ダイ
オード6と並列にコンデンサCが接続されてい
る。イは昇圧回路7を用いた例、ロ,ハは抵抗R
と電池8を用いた例で、いずれも端子Aにパルス
状コントロール信号が加えられると、スイツチン
グトランジスタ9がオンオフして赤外発光ダイオ
ード6がパルス駆動されて発光する。
There are light emitting circuits used in the active distance measuring method according to the present invention as shown in FIGS. . A is an example using the booster circuit 7, B and C are resistors R
In both cases, when a pulsed control signal is applied to the terminal A, the switching transistor 9 is turned on and off, and the infrared light emitting diode 6 is pulse-driven to emit light.

これらの発光回路のコンデンサCと抵抗Rの値
を適当に選び連続的にパルス発光させると、後述
する第2図に示すように発光パワーは順次小さく
なり、発光信号I1,I2も当然順次小さくなつてい
く。
If the values of the capacitor C and resistor R of these light emitting circuits are appropriately selected and pulsed light is emitted continuously, the light emitting power will gradually decrease as shown in Figure 2, which will be described later, and the light emitting signals I 1 and I 2 will naturally also gradually decrease. It's getting smaller.

第1図は本発明による測距装置の一実施例を示
しており、図中5は発光素子としての赤外発光ダ
イオード6から被写体に向けて発光され被写体で
反射されてもどつてくる赤外光ビームを受光し、
受光位置に応じた光電流I1,I2を出力する光位置
検出器、9は赤外発光ダイオード6を駆動するス
イツチングトランジスタである。
FIG. 1 shows an embodiment of the distance measuring device according to the present invention, and in the figure, reference numeral 5 indicates infrared light emitted from an infrared light emitting diode 6 as a light emitting element toward a subject, and returning after being reflected by the subject. receive the beam,
An optical position detector 9 outputs photocurrents I 1 and I 2 according to the light receiving position, and 9 is a switching transistor that drives the infrared light emitting diode 6.

第1図において、10および11は光位置検出
器5から出力する光電流I1,I2の交流分だけを電
圧に変換するI/V変換器であり、いずれも直流分
カツト用のCおよびR1,R2と、オペアンプから
成る電圧変換回路とにより構成されている。1
2,13はI/V変換器10および11の出力を増
幅する増幅器、14,15は増幅器12,13に
より増幅された受光信号AC2,AC1を対数変換す
る対数変換器、16は2つの対数変換器14と1
5との差を演算する減算器、17は減算器16か
ら出力する被写体距離に対応した電圧に基づいて
レンズ系を移動するレンズ制御回路である。
In FIG. 1, 10 and 11 are I/V converters that convert only the alternating current components of the photocurrents I 1 and I 2 output from the optical position detector 5 into voltage, and both are I/V converters for cutting the direct current component and It consists of R 1 , R 2 and a voltage conversion circuit consisting of an operational amplifier. 1
2 and 13 are amplifiers that amplify the outputs of the I/V converters 10 and 11, 14 and 15 are logarithmic converters that logarithmically convert the received light signals AC 2 and AC 1 amplified by the amplifiers 12 and 13, and 16 are two Logarithmic converter 14 and 1
A subtracter 17 that calculates the difference between the subtractor 16 and 5 is a lens control circuit that moves the lens system based on the voltage output from the subtracter 16 that corresponds to the subject distance.

一方、18は増幅器13からの受光信号AC1
基準電圧VRと比較する比較器、19はレリーズ
ボタンを押したときオンするレリーズスイツチS
のオン動作によりスイツチングトランジスタ9を
導通して赤外発光ダイオード6をパルス発光させ
るとともに比較器18の出力に基づいてレンズ制
御回路17にサンプリング信号SPを出力するAF
制御回路である。この場合、2つの受光信号
AC1,AC2のうちAC1を用いたのは、被写体が近
い場合はAC1がAC2よりはるかに大きくなるから
である。
On the other hand, 18 is a comparator that compares the light reception signal AC 1 from the amplifier 13 with the reference voltage VR , and 19 is a release switch S that is turned on when the release button is pressed.
The AF turns on the switching transistor 9 to cause the infrared light emitting diode 6 to emit pulsed light, and outputs the sampling signal SP to the lens control circuit 17 based on the output of the comparator 18.
It is a control circuit. In this case, two received light signals
Of AC 1 and AC 2 , AC 1 was used because AC 1 is much larger than AC 2 when the subject is close.

いま上記のように構成した測距装置において、
赤外発光ダイオード6を発光させると、発光パワ
ーは第2図ロに示すようになる。被写体によつて
反射された赤外光ビームは光位置検出器5で受光
されるが、光位置検出器5から出力する光電流
I1,I2は同図ハ,ニに示すように次第に減衰す
る。このとき増幅器12,13から出力する受光
信号AC1,AC2を観測すると、被写体が近距離で
高反射率の場合は受光信号量が大きすぎて第2図
ホ,ヘに示すように信号が歪んでしまい測距演算
結果は誤つたものとなる。しかし、連続してパル
ス発光させてゆくと、発光パワーの減少とともに
受光信号量も順次小さくなりある時点から信号の
歪みがなくなる(第2図ホ,ヘに斜線を施して示
してある)。そこでこのときの測距演算結果を利
用して測距すればよい。
In the distance measuring device configured as above,
When the infrared light emitting diode 6 emits light, the light emitting power becomes as shown in FIG. 2B. The infrared light beam reflected by the subject is received by the optical position detector 5, but the photocurrent output from the optical position detector 5
I 1 and I 2 gradually attenuate as shown in C and D of the same figure. At this time, when the received light signals AC 1 and AC 2 outputted from the amplifiers 12 and 13 are observed, if the subject is close and has a high reflectance, the amount of received light signals is too large and the signals are distorted as shown in Figure 2 E and F. This will cause the distance measurement calculation result to be incorrect. However, when pulsed light is emitted continuously, the amount of received light signal gradually decreases as the emitted light power decreases, and the signal distortion disappears after a certain point (as shown by diagonal lines in E and F in FIG. 2). Therefore, distance measurement may be performed using the distance measurement calculation result at this time.

すなわち、発光素子をパルス発光させ、その受
光信号量がある基準値(第2図のホに破線で示
す)より大きいときはその測距演算結果は使わ
ず、再びパルス発光させて受光信号量と基準値と
を比較し、基準値より小さくなつたときの測距演
算結果を用いれば近距離、高反射率の被写体につ
いても正確な測距結果が得られる。1回目の発光
によつて得られる信号量が基準値を下まわれば、
当然そのときの測距演算結果を用いて測距するこ
とができる。
In other words, when the light emitting element emits pulse light and the received light signal amount is larger than a certain reference value (shown by the broken line in E in Figure 2), the distance measurement calculation result is not used, and the light emitting element is pulsed again and the received light signal amount is calculated. By comparing the distance measurement with a reference value and using the distance measurement calculation result when the value becomes smaller than the reference value, accurate distance measurement results can be obtained even for a close-distance, high-reflectance subject. If the signal amount obtained by the first light emission is below the reference value,
Naturally, distance measurement can be performed using the distance measurement calculation result at that time.

そこで比較器18において、受光信号AC1を基
準電圧VRにより決められた基準値と比較し、基
準値を下回つたとき出力する。その結果、AF制
御回路19からはレンズ制御回路17にサンプリ
ング信号SPが信号を出力し、レンズ制御回路1
7はこのときの減算器16からの出力を測距信号
として取り入れレンズ系を制御する。
Therefore, the comparator 18 compares the light reception signal AC1 with a reference value determined by the reference voltage VR , and outputs when it falls below the reference value. As a result, the AF control circuit 19 outputs the sampling signal SP to the lens control circuit 17, and the lens control circuit 1
7 takes in the output from the subtracter 16 at this time as a ranging signal and controls the lens system.

第3図は本発明による測距装置の他の実施例を
示しており、図中第1図と同じ構成部分には同じ
参照数字を付して示しその説明は省略した。この
実施例は測距時に複数回赤外パルスを発光させそ
の受光信号を積分しその積分値により同様の測距
を行なうようにしたものである。
FIG. 3 shows another embodiment of the distance measuring device according to the present invention, in which the same components as in FIG. 1 are denoted by the same reference numerals and their explanations are omitted. In this embodiment, an infrared pulse is emitted a plurality of times during distance measurement, the received light signal is integrated, and the same distance measurement is performed based on the integrated value.

本実施例が第1図の実施例と異なる点は、I/V
変換器10および11の回路構成と、増幅器12
と対数変換器14との間および増幅器13と対数
変換器15との間にそれぞれ受光信号AC2および
AC1を積分する積分器20および21を接続した
ことである。なお、この実施例では、赤外発光ダ
イオード6を複数回発光させ、被写体からの反射
光を受光しその受光信号を積分する関係上、積分
器20,21にアナログスイツチが設けられてお
り、このアナログスイツチをAF制御回路19か
らの信号SWで間欠的にオンオフした積分値を加
算するようにしている。
The difference between this embodiment and the embodiment shown in Fig. 1 is that the I/V
Circuit configuration of converters 10 and 11 and amplifier 12
and the logarithmic converter 14 and between the amplifier 13 and the logarithmic converter 15 , respectively.
This is because integrators 20 and 21 that integrate AC 1 are connected. In this embodiment, analog switches are provided in the integrators 20 and 21 in order to cause the infrared light emitting diode 6 to emit light multiple times, receive reflected light from the subject, and integrate the received light signal. The integral value of the analog switch intermittently turned on and off by the signal SW from the AF control circuit 19 is added.

第4図はこの実施例における第2図と同様の図
で、受光信号AC1が基準電圧VRで決まる基準値
以下になつた時以後の信号、すなわち第4図ハお
よびニにおいて斜線を施して示した部分の信号を
積分器21および20で積分し、その積分値を用
いて測距している。AF制御回路19は比較器1
8の出力に基づいてレンズ制御回路17にサンプ
リング信号SPを出力し、レンズ制御回路17は
このときの対数変換器14,15で対数変換され
た積分値から求めた測距値を用いてレンズ系を制
御する。
FIG. 4 is a diagram similar to FIG. 2 in this embodiment, and the signals after the received light signal AC 1 becomes less than the reference value determined by the reference voltage V R are shown with diagonal lines in C and D of FIG. The signal of the portion indicated by is integrated by integrators 21 and 20, and the distance is measured using the integrated value. AF control circuit 19 is comparator 1
A sampling signal SP is output to the lens control circuit 17 based on the output of control.

(発明の効果) 以上説明したように、本発明は、コンデンサと
並列に接続した発光素子を用いてアクテイブ測距
を行なう測距装置において、1対の受光信号にお
ける出力の大なる方の受光信号のレベルが基準値
以下になつたときの1対の受光信号に基づいて演
算し測距信号を得るように構成したので、昇圧回
路や複雑な信号処理回路を用いずに近距離、高反
射率の被写体の測距が可能になる。
(Effects of the Invention) As explained above, the present invention provides a distance measuring device that performs active distance measurement using a light emitting element connected in parallel with a capacitor. The structure is configured to calculate and obtain a distance measurement signal based on a pair of received light signals when the level of It becomes possible to measure the distance of subjects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測距装置の一実施例の回
路図、第2図は第1図に示した実施例における発
光および受光信号の波形図、第3図は本発明によ
る測距装置の他の実施例の回路図、第4図は第3
図に示した実施例における発光および受光信号の
波形図、第5図イ,ロ,ハは本発明による測距装
置で用いる発光回路の異なる例、第6図はアクテ
イブ測距の原理を説明する図である。 1,6……赤外発光ダイオード、2……投光レ
ンズ、3……被写体、4……受光レンズ、5……
光位置検出器、7……昇圧回路、8……電池、9
……スイツチングトランジスタ、10,11……
I/V変換器、12,13……増幅器、14,15
……対数変換器、16……減算器、17……レン
ズ制御回路、18……比較器、19……AF制御
回路、20,21……積分器。
FIG. 1 is a circuit diagram of an embodiment of a distance measuring device according to the present invention, FIG. 2 is a waveform diagram of light emission and light reception signals in the embodiment shown in FIG. 1, and FIG. 3 is a circuit diagram of an embodiment of a distance measuring device according to the present invention. A circuit diagram of another embodiment, FIG.
Waveform diagrams of the light emission and light reception signals in the embodiment shown in the figure, Figure 5 A, B, and C are different examples of the light emitting circuit used in the distance measuring device according to the present invention, and Figure 6 explains the principle of active distance measurement. It is a diagram. 1, 6... Infrared light emitting diode, 2... Emitter lens, 3... Subject, 4... Light receiving lens, 5...
Optical position detector, 7... Boost circuit, 8... Battery, 9
...Switching transistor, 10, 11...
I/V converter, 12, 13...amplifier, 14, 15
... Logarithmic converter, 16 ... Subtractor, 17 ... Lens control circuit, 18 ... Comparator, 19 ... AF control circuit, 20, 21 ... Integrator.

Claims (1)

【特許請求の範囲】 1 被測定物に投光するスポツト光を連続的にパ
ルス発光させる投光手段と、前記被測定物で反射
したスポツト光を受光し1対の受光信号を出力す
る受光手段と、前記1対の受光信号に基づいて演
算し測距信号を得る測距演算回路とを有する測距
装置において、前記連続的にパルス発光させるス
ポツト光の出力を時間とともに減少させる減少手
段を前記投光手段に備え、前記1対の受光信号に
おける出力の大なる方の受光信号のレベルと予め
設定した基準値とを比較する比較手段と、前記出
力の大なる方の受光信号のレベルが前記基準値以
下になつたときの1対の受光信号およびそれ以降
の1対の受光信号の両方またはいづれか一方に基
づいて演算し測距信号を得るように前記測距演算
回路を制御する制御回路とを設けたことを特徴と
する測距装置。 2 前記出力の大なる方の受光信号のレベルが前
記基準値以下になつたときの1対の受光信号を積
分した積分値に基づいて演算し測距信号を得るよ
うに前記測距演算回路を制御する制御回路を設け
たことを特徴とする特許請求の範囲第1項に記載
の測距装置。
[Scope of Claims] 1. Light projecting means for continuously emitting pulsed spot light onto the object to be measured, and light receiving means for receiving the spot light reflected by the object to be measured and outputting a pair of light reception signals. and a distance measurement calculation circuit that calculates a distance measurement signal based on the pair of light reception signals, and the reduction means for reducing the output of the continuously pulsed spot light over time. The light projecting means is provided with a comparing means for comparing the level of the received light signal of the pair of light receiving signals with a larger output with a preset reference value; a control circuit that controls the distance measurement calculation circuit to calculate and obtain a distance measurement signal based on either or both of the pair of light reception signals when the light reception signal becomes below the reference value and the pair of light reception signals thereafter; A distance measuring device characterized by being provided with. 2. The distance measurement calculation circuit is configured to calculate and obtain a distance measurement signal based on an integral value obtained by integrating the pair of light reception signals when the level of the light reception signal with the larger output becomes equal to or less than the reference value. The distance measuring device according to claim 1, further comprising a control circuit for controlling the distance measuring device.
JP11884885A 1985-06-03 1985-06-03 Range finder Granted JPS61277009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11884885A JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11884885A JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Publications (2)

Publication Number Publication Date
JPS61277009A JPS61277009A (en) 1986-12-08
JPH0435006B2 true JPH0435006B2 (en) 1992-06-09

Family

ID=14746641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11884885A Granted JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Country Status (1)

Country Link
JP (1) JPS61277009A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756930B1 (en) * 1996-12-06 1999-01-08 Schneider Electric Sa LOCKABLE DIFFERENTIAL TREATMENT PHOTOELECTRIC CELL
JP2006242728A (en) * 2005-03-03 2006-09-14 Nidec Copal Corp Range finder

Also Published As

Publication number Publication date
JPS61277009A (en) 1986-12-08

Similar Documents

Publication Publication Date Title
US5008695A (en) Rangefinder for camera
US4935613A (en) Light projecting type distance measuring apparatus
US4533241A (en) Distance measuring device and automatic focusing system using same
JPH0435006B2 (en)
JPH0313565B2 (en)
JPS61226607A (en) Range finder
JPH0562882U (en) Distance measuring device
JPH08178647A (en) Photoelectric sensor
JPH10267648A (en) Optical displacement gauge
JPH01206212A (en) Measuring apparatus of distance
JPH0562883U (en) Distance measuring device
JPH0365481B2 (en)
JP2942593B2 (en) Subject distance detection device
JPH0660818B2 (en) Optical measuring device
JPH0545926Y2 (en)
JPS622224A (en) Control device for automatic focusing
JPS6360884B2 (en)
JPH0264486A (en) Distance measuring apparatus
JPH01291111A (en) Active type auto focus circuit
JPS6344114A (en) Optical displacement measuring instrument
JP2763828B2 (en) Apparatus and method for automatically adjusting video camera focus
JP3234999B2 (en) Camera ranging device
JPS622232A (en) Automatic focusing device for camera
JPH0575461A (en) Signal processing unit
JPH0576605B2 (en)