JPS61277009A - Range finder - Google Patents

Range finder

Info

Publication number
JPS61277009A
JPS61277009A JP11884885A JP11884885A JPS61277009A JP S61277009 A JPS61277009 A JP S61277009A JP 11884885 A JP11884885 A JP 11884885A JP 11884885 A JP11884885 A JP 11884885A JP S61277009 A JPS61277009 A JP S61277009A
Authority
JP
Japan
Prior art keywords
light
signal
reference value
range finding
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11884885A
Other languages
Japanese (ja)
Other versions
JPH0435006B2 (en
Inventor
Haruhiko Momose
百瀬 治彦
Hirofumi Eguchi
江口 弘文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11884885A priority Critical patent/JPS61277009A/en
Publication of JPS61277009A publication Critical patent/JPS61277009A/en
Publication of JPH0435006B2 publication Critical patent/JPH0435006B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure a short distance and the distance of an object with high reflectivity by a simple signal processing circuit, by measuring a distance on the basis of a light receiving signal after the level of pulse light reflected from the object and received reached a predetermined value or less. CONSTITUTION:When a light emitting element is allowed to emit light and light receiving signal quantity is larger than a certain reference value, the range finding operation result thereof is not used and pulse light is again emitted to compare light receiving signal quantity with the reference value and the range finding operation result at the time when said signal quantity became smaller than the reference value is used. By this method, an accurate range finding result is obtained with respect to a short distance subject with high reflectivity. If the signal quantity obtained by first light emission is less than the reference value, the range finding operation result at that time is used to enable range finding. A light receiving signal AC1 is compared with the reference value determined by reference voltage VR in a comparator 18 and,when said signal AC1 is less than the reference value, said comparator 18 issues output. As a result, a sampling signal SP is outputted to a lens control circuit 17 from an AF control circuit 19 and the lens control circuit 17 takes in the output from a differential amplifier (subtractor) 16 as a range finding signal to control a lens system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカメラなどにおいて赤外発光ダイオードなどを
用いてアクティブ測距を行なう測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance measuring device that performs active distance measuring using an infrared light emitting diode or the like in a camera or the like.

(従来技術) 従来自動焦点カメラの測距方式の1つに、カメラ本体内
に発光素子と受光素子とを所定距離(基線長)隔てて設
け、発光素子から被写体に向けてパルス状の赤外ビーム
を発射し、被写体からのそ、の反射ビームを利用して基
線長と見込み角より三角測量式に被写体距離を求めるア
クティブ測距方式が知じれている。  − 第6図はアクティブ測距方式の原理を示しており、赤外
コントロールパルスにより駆動される赤外発光ダイオー
ド1から投光レンズ2@通して被写体3に赤外線の細い
ビームを投射する。被写体3により反射される赤外光ビ
ームは受光レンズ4を通して光位置検出器5上にスポッ
ト光として受光される。赤外スポット光の結像位置によ
り光位置検出器5の出力端子から出力する光電流を11
゜I2とすると、受光信号量の和(11+12)は被写
体距離の二乗に反比例し、被写体の反射率に比例する。
(Prior art) One of the distance measuring methods for conventional autofocus cameras is to install a light emitting element and a light receiving element within the camera body at a predetermined distance (baseline length), and emit pulsed infrared light from the light emitting element toward the subject. An active distance measuring method is known in which a beam is emitted and the reflected beam from the subject is used to determine the distance to the subject by triangulation from the baseline length and viewing angle. - Fig. 6 shows the principle of the active ranging method, in which a narrow beam of infrared rays is projected from an infrared light emitting diode 1 driven by an infrared control pulse to a subject 3 through a projection lens 2@. The infrared light beam reflected by the subject 3 is received as a spot light on the optical position detector 5 through the light receiving lens 4. The photocurrent output from the output terminal of the optical position detector 5 is set to 11 depending on the imaging position of the infrared spot light.
Assuming .degree.I2, the sum of the amount of received light signals (11+12) is inversely proportional to the square of the subject distance and proportional to the reflectance of the subject.

そこで遠方まで測距できるように発光量を大きくすると
、近距離、高反射率の被写体の場合は受光量が非常に大
きくなってしまい、信号の演算処理ができなくなってし
まう。たとえば、被写体距離が10m、被写体反射率が
20%の条件で受光信号を変換したときの出力がiom
vであるとすると、被写体距離が1m、被写体反射率が
100%の条件では変換出力が10Vにも達してしまう
Therefore, if the amount of light emitted is increased so that distance measurement can be carried out over a long distance, the amount of light received will become extremely large in the case of a close-distance object with a high reflectance, making it impossible to perform signal arithmetic processing. For example, the output when converting the received light signal under the conditions that the subject distance is 10 m and the subject reflectance is 20% is iom
If the voltage is V, the converted output will reach as much as 10 V under conditions where the subject distance is 1 m and the subject reflectance is 100%.

そこで受光信号処理回路のダイナミックレンジを広くす
る必要があり、従来ではそのたーめに電源電圧を昇圧し
たり、特開昭57−44809号におけるように受光素
子として用いた半導体装置検出器の2つの出力の和信号
により発光素子にパルス変調をかけ、その和信号が被写
体距離に関係なく常に一定となるように発光素子の出力
をフィードバック制御したり、特開昭59−60427
号公報におけるように、発光素子の出力を徐々に増加さ
せる投光駆動手段を設け、受光手段の2つの出力の和が
所定値に達したことを検出して測距する方法が提案され
ている。
Therefore, it is necessary to widen the dynamic range of the light-receiving signal processing circuit, and conventional methods have been to increase the power supply voltage or to increase the dynamic range of the semiconductor device detector used as the light-receiving element, as in Japanese Patent Laid-Open No. 57-44809. The light emitting element is pulse-modulated by the sum signal of two outputs, and the output of the light emitting element is feedback-controlled so that the sum signal is always constant regardless of the subject distance.
As in the above publication, a method has been proposed in which a light emitting driving means is provided to gradually increase the output of the light emitting element, and distance measurement is performed by detecting when the sum of two outputs of the light receiving means has reached a predetermined value. .

ところが上記の方法は昇圧回路が必要となるためコスト
高となり、発光出力制御回路が必要となるため信号処理
回路が複雑になるという問題がおる。
However, the above method requires a booster circuit, which increases the cost, and requires a light emission output control circuit, which makes the signal processing circuit complicated.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもので簡潔な信
号処理回路で近距離、高反射率の被写体の測距を可能に
することを目的とし、この目的を達成するために、被写
体から反射し受光されるパルス光のレベルが所定値以下
になってからの受光信号に基づいて測距するように構成
した。
(Purpose and Structure of the Invention) The present invention has been made in view of the above points, and aims to enable distance measurement of short-distance, high-reflectance objects using a simple signal processing circuit, and achieves this purpose. In order to do this, the distance measurement is performed based on the light reception signal after the level of the pulsed light reflected from the object and received becomes below a predetermined value.

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

本発明によるアクティブ測距方式に用いられる発光回路
として第5図(イ)、(ロ)、(ハ)に示すようなもの
があり、いずれも発光素子である赤外発光ダイオード6
と並列にコンデンサCが接続されている。(イ)は昇圧
回路7を用いた例、(ロ)、(ハ)は抵抗Rと電池8を
用いた例で、いずれも端子Aにパルス状コントロール信
号が加えられると、スイッチングトランジスタ9がオン
オフして赤外発光ダイオード6がパルス駆動されて発光
する。
There are light emitting circuits used in the active distance measuring method according to the present invention as shown in FIGS. 5(a), 5(b), and 5(c).
A capacitor C is connected in parallel with . (A) is an example using a booster circuit 7, (B) and (C) are examples using a resistor R and a battery 8. In both cases, when a pulse control signal is applied to terminal A, the switching transistor 9 is turned on and off. Then, the infrared light emitting diode 6 is pulse-driven and emits light.

これらの発光回路のコンデンサCと抵抗Rの値を適当に
選び連続的にパルス発光させると、後述する第2図に示
すように発光パワーは順次小さくなり、受光信号11.
12も当然順次小ざくなっていく。
When the values of the capacitor C and resistor R of these light emitting circuits are appropriately selected and pulsed light is emitted continuously, the light emitting power becomes gradually smaller as shown in FIG. 2, which will be described later, and the light receiving signal 11.
12 will naturally become smaller as well.

第1図は本発明による測距装置の一実施例を示しており
、図中5は発光素子としての赤外発光ダイオード6から
被写体に向けて発光され被写体で反射されてもどってく
る赤外光ビームを受光し、その受光位置に応じた光電流
■1.■2を出力する光位置検出器、9は赤外発光ダイ
オード6を駆動するスイッチングトランジスタである。
FIG. 1 shows an embodiment of a distance measuring device according to the present invention, and in the figure, 5 indicates infrared light emitted from an infrared light emitting diode 6 as a light emitting element toward a subject, reflected by the subject, and returned. Receive the beam and generate photocurrent according to the receiving position ■1. (2) An optical position detector that outputs 2; 9 is a switching transistor that drives an infrared light emitting diode 6;

第1図において、10および11は光位置検出器5から
出力する光電流11.■2の交流会だけを電圧に変換す
るI/V変換器であり、いずれも直流分カット用のCお
よびR1,R2と、オペアンプから成る電圧変換回路と
により構成されている。
In FIG. 1, reference numerals 10 and 11 refer to photocurrent 11.1 output from the optical position detector 5. (2) This is an I/V converter that converts only the 2nd exchange voltage into voltage, and both of them are composed of C, R1, and R2 for cutting the DC component, and a voltage conversion circuit consisting of an operational amplifier.

12、13LtI/V変換器10および11の出力を増
幅する増幅器、14.15は増幅器12.13により増
幅された受光像@A C2、A C1を対数変換する対
数変換器、16は2つの対数変換器14と15との差を
演算する減算器、17は減算器16から出力する被写体
距離に対応した電圧に基づいてレンズ系を移動するレン
ズ制御回路である。
12, 13 Amplifiers that amplify the outputs of the LtI/V converters 10 and 11, 14.15 a logarithmic converter that logarithmically converts the received light images @A C2 and A C1 amplified by the amplifiers 12 and 13, and 16 a logarithmic converter that logarithmically converts the received light images @A C2 and A C1 amplified by the amplifiers 12 and 13. A subtracter 17 that calculates the difference between the converters 14 and 15 is a lens control circuit that moves the lens system based on a voltage corresponding to the object distance output from the subtracter 16.

一方、′18は増幅器13からの受光信号AC1を基準
電圧VRと比較する比較器、19はレリー7−ズボタン
を押したときオンするレリーズスイッチSのオン動作に
よりスイッチングトランジスタ9を導通して赤外発光ダ
イオード6をパルス発光させるとともに比較器18の出
力に基づいてレンズ制御回路17にサンプリング信号S
Pを出力するAF制御回路である。この場合、2つの受
光信号AC,AC2のうちAClを用いたのは、被写体
が近い場合はAClがAc1よりはるかに太きくなるか
らであ、る。
On the other hand, '18 is a comparator that compares the light reception signal AC1 from the amplifier 13 with the reference voltage VR, and 19 is a comparator that conducts the switching transistor 9 by the on operation of the release switch S, which is turned on when the release button 7- is pressed. While causing the light emitting diode 6 to emit pulse light, a sampling signal S is sent to the lens control circuit 17 based on the output of the comparator 18.
This is an AF control circuit that outputs P. In this case, ACl is used among the two light reception signals AC and AC2 because ACl becomes much thicker than Ac1 when the subject is close.

いま上記のように構成した測距装置において、赤外発光
ダイオード6を発光させると、発光パワーは同一図(ロ
)に示すようになる。被写体によって反射された赤外光
ビームは光位置検出器5で受光されるが、光位置検出器
5から出力する光電流11.12は同図(ハ)、(ニ)
に示すように次第に減衰する。このとき増幅器12.1
3から出力する受光信号AC1,AC2を観測すると、
被写体が近距離で高反射率の場合は受光信号量が大きす
ぎて第2図(ホ)、(へ)に示すように信号が歪んでし
まい測距演算結果は誤ったものとなる。
In the distance measuring device configured as described above, when the infrared light emitting diode 6 is made to emit light, the emitted light power becomes as shown in the same figure (b). The infrared light beam reflected by the subject is received by the optical position detector 5, but the photocurrent 11.12 output from the optical position detector 5 is as shown in (c) and (d) in the same figure.
It gradually attenuates as shown in . At this time, the amplifier 12.1
Observing the received light signals AC1 and AC2 output from 3,
If the object is close and has a high reflectance, the amount of received light signal will be too large and the signal will be distorted as shown in FIGS.

しかし、連続してパルス発光させてゆくと、発光パワー
の減少とともに受光信号量も順次小さくなりおる時点か
ら信号の歪みがなくなる(第2図(ホ)、(へ)に斜線
を施して示しである)。そこでこのときの測距演算結果
を利用して測距すればよい。
However, when pulsed light is emitted continuously, the signal distortion disappears from the point at which the amount of received light signal gradually decreases as the emitted light power decreases (shown with diagonal lines in Figure 2 (E) and (F)). be). Therefore, distance measurement may be performed using the distance measurement calculation result at this time.

すなわち、発光素子をパルス発光させ、その受光信号量
がおる基準値(第2図の(ホ)に破線で示す)より大き
いときはその測距演算結果は使わず、再びパルス発光さ
せて受光信号量と基準値とを比較し、基準値より小さく
なったときの測距演算結果を用いれば近距離、高反射率
の被写体についても正確な測距結果が得られる。1回目
の発光によって1qられる信号量が基準値を下まわれば
、当然そのときの測距演算結果を用いて測距することが
できる。
In other words, when the light emitting element emits pulse light and the amount of the received light signal is larger than the reference value (shown by the broken line in (e) in Figure 2), the distance measurement calculation result is not used, and the light emitting element is emitted in pulses again to determine the received light signal. By comparing the amount with a reference value and using the distance measurement calculation result when the amount is smaller than the reference value, accurate distance measurement results can be obtained even for objects at short distances and with high reflectance. If the signal amount 1q caused by the first light emission is less than the reference value, distance measurement can be performed using the distance measurement calculation result at that time.

そこで比較器18において、受光信号AC1を基準電圧
VRにより決められた基準値と比較し、基準値を下回っ
たとき出力する。その結果、AF制御回路19からはレ
ンズ制御回路17にサンプリング信号SPが信号を出力
し、レンズ制御回路17はこのときの減緯器16からの
出力を測距信号として取り入れレンズ系を制御する。
Therefore, the comparator 18 compares the light reception signal AC1 with a reference value determined by the reference voltage VR, and outputs when it is less than the reference value. As a result, the AF control circuit 19 outputs the sampling signal SP to the lens control circuit 17, and the lens control circuit 17 receives the output from the declination device 16 at this time as a ranging signal and controls the lens system.

第3図は本発明による測距装置の他の実施例を示してお
り、図中第1図と同じ構成部分には同じ参照数字を付し
て示しその説明は省略した。この実施例は測距時に複数
回赤外パルスを発光させその受光信号を積分しその積分
値により同様の測距を行なうようにしたものである。
FIG. 3 shows another embodiment of the distance measuring device according to the present invention, in which the same components as in FIG. 1 are denoted by the same reference numerals and their explanations are omitted. In this embodiment, an infrared pulse is emitted a plurality of times during distance measurement, the received light signal is integrated, and the same distance measurement is performed based on the integrated value.

本実施例が第1図の実施例と異なる点は、I/V変換器
10および11の回路構成と、増幅器12と対数変換器
14との間および増幅器13と対数変換器15との間に
それぞれ受光信号AC2およびAClを積分する積分器
20および21を接続したことである。なお、この実施
例では、赤外発光ダイオード6を複数回発光させ、被写
体からの反射光を受光しその受光信号を積分する関係上
、積分器20.21にアナログスイッチが設けられてお
り、このアナログスイッチをAF制御回路19からの信
号SWで間欠的にオンオフして積分値を加算するように
している。
This embodiment differs from the embodiment shown in FIG. This is because integrators 20 and 21 are connected to integrate the received light signals AC2 and ACl, respectively. In this embodiment, integrators 20 and 21 are provided with analog switches in order to cause the infrared light emitting diode 6 to emit light multiple times, receive reflected light from the subject, and integrate the received light signal. The analog switch is intermittently turned on and off by a signal SW from the AF control circuit 19 to add the integral values.

第4図はこの実施例における第2図と同様の図で、同図
の(ハ)および(ニ)において斜線を施して示した部分
を積分器21および20で積分しており、受光信号AC
1が基準電圧VRで決まる基準値以下になったとき以後
信号の積分値を用いて測距している。AF制御回路19
は比較器18の出力に基づいてレンズ制御回路17にサ
ンプリング信号SPを出力し、レンズ制御回路17はこ
のときの対数変換器14.15で対数変換された積分値
から求めた測距値を用いてレンズ系を制御する。
FIG. 4 is a diagram similar to FIG. 2 in this embodiment, in which the shaded portions in (C) and (D) of the same figure are integrated by integrators 21 and 20, and the received light signal AC
1 becomes less than the reference value determined by the reference voltage VR, the distance is measured using the integral value of the signal. AF control circuit 19
outputs a sampling signal SP to the lens control circuit 17 based on the output of the comparator 18, and the lens control circuit 17 uses the distance measurement value obtained from the integral value logarithmically converted by the logarithmic converter 14.15 at this time. control the lens system.

(発明の効果) 以上説明したように、本発明は、コンデンサと並列に接
続した発光素子を用いてアクティブ測距を行なう測距装
置において、受光信号が所定値以下になるまで測距用の
発光を続け、所定値以下になったときまたはそれ以後に
受信する受光信号に基づいて測距するように構成したの
で、昇圧回路や複雑な信号処理回路を用いずに近距離、
高反射率の被写体の測距が可能になる。
(Effects of the Invention) As explained above, the present invention provides a distance measuring device that performs active distance measuring using a light emitting element connected in parallel with a capacitor, in which light is emitted for distance measuring until the received light signal becomes equal to or less than a predetermined value. The structure is configured to measure the distance based on the light reception signal received when or after the value falls below a predetermined value, so it can be used to measure short distances without using a booster circuit or complicated signal processing circuit.
Enables distance measurement of objects with high reflectance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測距装置の一実施例の回路図、第
2図は第1図に示した実施例における発光および受光信
号の波形図、第3図は本発明による測距装置の他の実施
例の回路図、第4図は第3図に示した実施例における発
光および受光信号の波形図、第5図(イ)、(ロ)、(
ハ)は本発明による測距装置で用いる発光回路の異なる
例、第6図は−アクティブ測距の原理を説明する図であ
る。 1.6・・・赤外発光ダイオード、2・・・投光レンズ
、3・・・被写体、4・・・受光レンズ、5・・・光位
置検出器、7・・・昇圧回路、8・・・電池、9・・・
スイッチングトランジスタ、10.11−I/V変換器
、12.13・・・増幅器、14.15・・・対数変換
器、16・・・減算器、17・・・レンズ制御回路、1
8・・・比較器、19・・・AF制御回路、20.21
・・・積分器特許出願人 小西六写真工業株式会社 代理人  弁理士  鈴 木 弘 男 手続補正書 昭和61年8月21日
FIG. 1 is a circuit diagram of an embodiment of a distance measuring device according to the present invention, FIG. 2 is a waveform diagram of light emission and light reception signals in the embodiment shown in FIG. 1, and FIG. 3 is a circuit diagram of an embodiment of a distance measuring device according to the present invention. A circuit diagram of another embodiment, FIG. 4 is a waveform diagram of the light emission and light reception signals in the embodiment shown in FIG. 3, and FIGS.
c) is a different example of a light emitting circuit used in the distance measuring device according to the present invention, and FIG. 6 is a diagram illustrating the principle of active distance measuring. 1.6... Infrared light emitting diode, 2... Emitter lens, 3... Subject, 4... Light receiving lens, 5... Optical position detector, 7... Boost circuit, 8...・Battery, 9...
Switching transistor, 10.11-I/V converter, 12.13... Amplifier, 14.15... Logarithmic converter, 16... Subtractor, 17... Lens control circuit, 1
8... Comparator, 19... AF control circuit, 20.21
...Integrator patent applicant Hiroshi Suzuki, agent of Konishiroku Photo Industry Co., Ltd. Patent attorney Procedural amendment dated August 21, 1986

Claims (1)

【特許請求の範囲】[Claims] 被測定物にスポット光を投光し、該被測定物で反射した
スポット光を受光し、その受光信号に基づいて被測定物
までの距離を測定する測距装置において、前記スポット
光をパルス光とし、前記受光信号のレベルが所定値以下
になったとき測距動作を指令する測距制御回路を設けた
ことを特徴とする測距装置。
In a distance measuring device that projects a spot light onto an object to be measured, receives the spot light reflected by the object, and measures the distance to the object based on the received light signal, the spot light is converted into pulsed light. A distance measuring device comprising: a distance measuring control circuit that commands a distance measuring operation when the level of the light reception signal becomes equal to or less than a predetermined value.
JP11884885A 1985-06-03 1985-06-03 Range finder Granted JPS61277009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11884885A JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11884885A JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Publications (2)

Publication Number Publication Date
JPS61277009A true JPS61277009A (en) 1986-12-08
JPH0435006B2 JPH0435006B2 (en) 1992-06-09

Family

ID=14746641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11884885A Granted JPS61277009A (en) 1985-06-03 1985-06-03 Range finder

Country Status (1)

Country Link
JP (1) JPS61277009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756930A1 (en) * 1996-12-06 1998-06-12 Schneider Electric Sa PHOTOELECTRIC CELL WITH LATCHABLE DIFFERENTIAL PROCESSING
JP2006242728A (en) * 2005-03-03 2006-09-14 Nidec Copal Corp Range finder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756930A1 (en) * 1996-12-06 1998-06-12 Schneider Electric Sa PHOTOELECTRIC CELL WITH LATCHABLE DIFFERENTIAL PROCESSING
JP2006242728A (en) * 2005-03-03 2006-09-14 Nidec Copal Corp Range finder

Also Published As

Publication number Publication date
JPH0435006B2 (en) 1992-06-09

Similar Documents

Publication Publication Date Title
US4621292A (en) Automatic focusing device for a video camera
US5008695A (en) Rangefinder for camera
US4935613A (en) Light projecting type distance measuring apparatus
US4533241A (en) Distance measuring device and automatic focusing system using same
JPS61277009A (en) Range finder
JPH0313565B2 (en)
JPS631918A (en) Distance detector
JP2638607B2 (en) Distance measuring device
JPS61226607A (en) Range finder
JPH01206212A (en) Measuring apparatus of distance
JPH0545926Y2 (en)
JP2888492B2 (en) Distance information output device
JPH0365481B2 (en)
JPH0536732B2 (en)
JPS6360884B2 (en)
JPS6177711A (en) Automatic focusing device
JPH0448209A (en) Subject distance detecting device
JPH04208909A (en) Distance detector
JPS622224A (en) Control device for automatic focusing
JPH0264486A (en) Distance measuring apparatus
JPS6087576A (en) Automatic focus control device of video camera
JP3127010B2 (en) Distance measuring device
JPH0448208A (en) Subject distance detecting device
JPH0576605B2 (en)
JPH0576604B2 (en)