JPS6360884B2 - - Google Patents

Info

Publication number
JPS6360884B2
JPS6360884B2 JP56132473A JP13247381A JPS6360884B2 JP S6360884 B2 JPS6360884 B2 JP S6360884B2 JP 56132473 A JP56132473 A JP 56132473A JP 13247381 A JP13247381 A JP 13247381A JP S6360884 B2 JPS6360884 B2 JP S6360884B2
Authority
JP
Japan
Prior art keywords
circuit
output
light receiving
light
receiving circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56132473A
Other languages
Japanese (ja)
Other versions
JPS5834312A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13247381A priority Critical patent/JPS5834312A/en
Publication of JPS5834312A publication Critical patent/JPS5834312A/en
Publication of JPS6360884B2 publication Critical patent/JPS6360884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors

Description

【発明の詳細な説明】 本発明は能動型測距装置、特に、交流的に変調
された光束を投射すると共にその反射光束を検知
することにより距離情報を得るような能動型測距
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an active distance measuring device, and particularly to an active distance measuring device that obtains distance information by projecting an alternating current modulated light beam and detecting the reflected light beam. It is.

上に述べた様な能動型測距装置については既に
種々提案され、そのうちの一部は実際にカメラ等
の自動焦点調節装置に於て実施されている。
Various types of active distance measuring devices as described above have already been proposed, and some of them are actually implemented in automatic focusing devices such as cameras.

その一例として例えば第1図に示す基本構成を
有する装置が既に提案されている。
As an example, an apparatus having the basic configuration shown in FIG. 1 has already been proposed.

すなわち、同図に於て、投光器1により例えば
発光ダイオードを用いて赤外光を断続的に投射し
ながら物体を走査する。受光回路2によりこのと
きの物体からの反射光を電気信号に変換及び増幅
した出力をハイパスフイルタ3で直流分等の低周
波成分を減衰させ増幅器4にて更に増幅する。
That is, in the figure, an object is scanned while a projector 1 intermittently projects infrared light using, for example, a light emitting diode. The light receiving circuit 2 converts and amplifies the reflected light from the object into an electrical signal, and the high-pass filter 3 attenuates low frequency components such as DC components, and the amplifier 4 further amplifies the output.

その出力信号から、赤外光の断続投射の周波数
に同期させて、投射時、非投射時の信号成分をそ
れぞれサンプルホールド回路7及びサンプルホー
ルド回路5にて、サンプリング及びホールデイン
グする。サンプルホールド回路7の出力、すなわ
ち投射時の信号をバツフア8を通した後、インバ
ータ9により演算基準レベルに対して反転した出
力と、もう一方のサンプルホールド回路5の出
力、すなわち、非投射時の信号であるバツフア6
の出力とを加算増幅器10にて加算及び増幅す
る。加算増幅器10は反転増幅器である。その出
力をローパスフイルター11に附与して高周波分
を減衰させた後、ピーク検出器12によりその電
圧最大値を検出する。
From the output signal, signal components during projection and during non-projection are sampled and held in sample hold circuit 7 and sample hold circuit 5, respectively, in synchronization with the frequency of intermittent projection of infrared light. After passing the output of the sample hold circuit 7, that is, the signal at the time of projection, through the buffer 8, the inverter 9 outputs the output inverted with respect to the calculation reference level, and the output of the other sample hold circuit 5, that is, the signal at the time of non-projection. Batsuhua 6 which is a signal
The summing amplifier 10 adds and amplifies the outputs of the . Summing amplifier 10 is an inverting amplifier. After the output is applied to a low-pass filter 11 to attenuate high frequency components, a peak detector 12 detects the maximum voltage value.

受光回路2は、例えば第2図のようにシリコン
フオトセル等の受光素子SPCを用いて受光した光
を電流に変換し、それに対応した出力電圧を演算
増幅器OPを用いて出力する構成をとる。受光素
子SPCの電流ipと回路の出力電圧voの関係は、 (R1+R2+jwcR1R2/1+jwcR3)・ip+VREF で表わされ、高域カツトオフ周波数HIGHと低域カ
ツトオフ周波数LpWは、HIGH =1/2πCR3 LpW =R1+R2/2πC(R1+R2+R2R3+R3R1) となり、帰還抵抗RFは、 ≫HIGHの場合 RF(HIGH) =R1+R2+R1+R2/R3LpWの場合 RF(LpW)=R1+R2 となる(第3図参照)。
For example, as shown in FIG. 2, the light receiving circuit 2 is configured to convert received light into a current using a light receiving element SPC such as a silicon photocell, and output a corresponding output voltage using an operational amplifier OP. The relationship between the current i p of the light receiving element SPC and the output voltage vo of the circuit is expressed as (R 1 + R 2 + jwcR 1 R 2 /1 + jwcR 3 ) · i p +V REF , and the high cut-off frequency HIGH and the low cut-off frequency LpW is HIGH = 1/2πCR 3 LpW = R 1 + R 2 / 2πC (R 1 + R 2 + R 2 R 3 + R 3 R 1 ), and the feedback resistance R F is ≫ If HIGH , R F(HIGH) = R 1 +R 2 +R 1 +R 2 /R 3 ≪ In the case of LpW , R F(LpW) = R 1 + R 2 (see Figure 3).

ここで、単なる抵抗だけの帰還回路では、直流
成分の受光により電源電圧の制限かからVoはす
ぐに飽和してしまうことと、低周波成分の雑音を
抑えるために、低周波数での利得を抑えて、投光
の点滅周波数付近での利得を上げてやる回路とな
つている。
Here, in a feedback circuit consisting of only a simple resistor, Vo will quickly saturate due to the limitation of the power supply voltage due to the reception of the DC component, and in order to suppress the noise of low frequency components, the gain at low frequencies will be suppressed. This is a circuit that increases the gain near the flashing frequency of the light.

例えばカメラ等に於ける通常撮影範囲の輝度で
は直流光による受光回路出力の飽和が起こらない
様に回路定数が設定されるが、太陽直射光等の過
大直流成分に対しては出力段が飽和し、第2図の
例であればエミツタホロア出力Voには電源電圧
Vccの変動がそのまま現れることになる。
For example, circuit constants are set so that the output of the light-receiving circuit does not saturate due to direct current light at the brightness within the normal shooting range of a camera, etc., but the output stage becomes saturated for excessive direct current components such as direct sunlight. , in the example shown in Figure 2, the power supply voltage is applied to the emitter follower output Vo.
Fluctuations in V cc will appear as they are.

一方、例えば、第4図に示すように電池Bを直
接に大電流を流す赤外発光ダイオードIREDの電
源にし、これからリツプルフイルタRPFを介し
たVccを他回路用電源に用いてもVccには投光制御
回路LPCによる赤外発光ダイオードIREDの点滅
に同期したリツプルが現れる。リツプルフイルタ
RPFの性能を高めることは、回路構成を複雑に
し、また小型機器に不適で、かつ、製造原価も高
くなる等の障害がある。また昇圧回路等を用いて
回路電源に供する場合でも回路電源に現れるリツ
プルを全く無くすことは同様に困難で、この場合
も、電源波形が受光回路出力として現われて来る
と云う障害がある。
On the other hand, for example, as shown in Fig. 4, if battery B is used as a power source for an infrared light emitting diode IRED that directly flows a large current, and V cc is then used as a power source for other circuits via a ripple filter RPF, the V cc Ripples appear in synchronization with the blinking of the infrared light emitting diode IRED by the light projection control circuit LPC. ripple filter
Increasing the performance of RPF requires a complicated circuit configuration, making it unsuitable for small devices, and increasing manufacturing costs. Furthermore, even when a booster circuit or the like is used as a circuit power supply, it is similarly difficult to completely eliminate ripples that appear in the circuit power supply, and even in this case, there is a problem in that the power supply waveform appears as the output of the light receiving circuit.

受光回路出力飽和時には、Vccのリツプルをそ
の周波数に同期してサンプリングすれば、例えば
前述した演算処理を終了した出力信号には、Vcc
のリツプル波形とサンプリングの位相いかんでは
レベルが現れてしまい誤測距となる。
When the output of the photodetector circuit is saturated, if the ripple of V cc is sampled in synchronization with its frequency, the output signal that has completed the arithmetic processing described above, for example, will have V cc
Depending on the ripple waveform and sampling phase, a level will appear, resulting in erroneous distance measurement.

一方、カメラに於ては、高輝度被写体撮影時に
適正露出を得るには、絞りを小口径にする必要が
あり、またレンズシヤツターカメラに用いられる
半開式シヤツターによるプログラムは実際そうな
る。この場合、被写界深度は非常に深くなつてお
り、レンズを遠近離合焦位置或いは無限遠合焦位
置に止めても、ほとんど合焦となることが期待さ
れる。
On the other hand, in a camera, in order to obtain proper exposure when photographing a high-brightness subject, it is necessary to use a small aperture aperture, and this is actually the case with programs using half-open shutters used in lens shutter cameras. In this case, the depth of field is very deep, and it is expected that the lens will almost always be in focus even if the lens is stopped at the distance focus position or the infinity focus position.

本発明は以上述べた様な事情に鑑みて為された
もので、交流的に変調された光束を投射すると共
にその反射光束を検知することにより距離情報を
得る様な、カメラ等の自動焦点調節装置として好
適な能動型測距装置として、直流入力成分に対し
ても或る程度応答する受光回路の出力段が太陽直
射光等による過大直流入力成分に対して飽和して
しまい、その出力として回路電源電圧の変動等、
距離情報以外の信号が現われることによる誤測距
の危惧を良好に解消せしめることを目的とし、斯
かる目的の下で本発明の能動型測距装置は、上記
受光回路に、過大直流入力成分に対しては無信号
相当を出力するように出力制限回路を付設したこ
とを特徴とするものである。
The present invention has been made in view of the above-mentioned circumstances, and is an automatic focus adjustment system for cameras, etc., which obtains distance information by projecting an alternating current modulated light flux and detecting the reflected light flux. As an active distance measuring device suitable for use as a device, the output stage of the light receiving circuit, which responds to a certain degree to DC input components, becomes saturated due to excessive DC input components such as direct sunlight, and the output of the circuit is Fluctuations in power supply voltage, etc.
The purpose of the active distance measuring device of the present invention is to eliminate concerns about erroneous distance measurement due to the appearance of signals other than distance information. In contrast, the present invention is characterized in that an output limiting circuit is attached so as to output a signal equivalent to no signal.

以下、本発明の好ましい実施例について第5〜
9図を参照して説明する。
Hereinafter, the fifth to fifth preferred embodiments of the present invention will be explained.
This will be explained with reference to FIG.

以下の実施例は、第1図の受光回路2に対応す
るもので、その他の回路構成については、前述の
ものと同様であるので説明は省略する。
The following embodiment corresponds to the light receiving circuit 2 shown in FIG. 1, and the other circuit configurations are the same as those described above, so the explanation will be omitted.

先ず、第5図、第6図は本発明の基本的実施例
を示すもので、Vccは電源電圧、VREF1は、演算増
幅器の基準電圧、OP1,OP2は演算増幅器、S1
S2は反射光検知用のシリコン・フオト・セル等の
受光素子、R1〜R8は抵抗、C1,C2はコンデンサ、
Q1,Q2はNPNトランジスタ、D1,D2,D3,D4
D5はダイオード、I1,I2は電流源、Voは受光回
路出力である。
First, FIGS. 5 and 6 show a basic embodiment of the present invention, where V cc is the power supply voltage, V REF1 is the reference voltage of the operational amplifier, OP 1 and OP 2 are the operational amplifiers, S 1 ,
S 2 is a light receiving element such as a silicon photo cell for detecting reflected light, R 1 to R 8 are resistors, C 1 and C 2 are capacitors,
Q 1 , Q 2 are NPN transistors, D 1 , D 2 , D 3 , D 4 ,
D 5 is a diode, I 1 and I 2 are current sources, and Vo is a light receiving circuit output.

第5図では、エミツタフオロアトランジスタ
Q1の出力段に、D1,D2の直列接続によるダイオ
ード2段を設け、回路出力Voの基準電圧よりも
かなり高い電圧、すなわち、通常輝度での回路出
力Voよりもかなり電圧である2VBE(VBEはダイオ
ード順方向電圧)でリミツタ(出力制限)作用を
行なわせる。過大輝度被写体に、カメラを向ける
と回路出力Voが飽和する前にVo>2VBEでリミツ
タが作用しトランジスタQ1を介して赤外発光ダ
イオードの点滅に同期した電源電圧Vccの変動は
回路出力Voに現れることはない。つまり、上記
受光素子S1,S2が受光する投射赤外光の受光状態
に無関係で上記電源電圧Vccの変動の影響も受け
ない一定の受光回路出力Voが後段の回路へ出力
される。
In Figure 5, the emitter follower transistor
Two stages of diodes are provided in the output stage of Q 1 by connecting D 1 and D 2 in series, and the voltage is much higher than the reference voltage of the circuit output Vo, that is, 2V, which is much higher than the circuit output Vo at normal brightness. BE ( VBE is diode forward voltage) acts as a limiter (output limit). When the camera is pointed at an excessively bright subject, before the circuit output Vo saturates, a limiter is activated when Vo > 2V BE , and the fluctuation of the power supply voltage V cc synchronized with the blinking of the infrared light emitting diode through transistor Q 1 becomes the circuit output. It never appears in Vo. In other words, a constant light-receiving circuit output Vo is output to the subsequent circuit, regardless of the reception state of the projected infrared light received by the light-receiving elements S 1 and S 2 and unaffected by fluctuations in the power supply voltage V cc .

したがつて、たとえば前述第1図の距離情報処
理系でのピーク検出器入力にはレベルが現れな
い。Vo≦2VBEではダイオードD1,D2はオフして
おり、前記リミツタは作動せず、通常測距を行な
う。
Therefore, for example, no level appears at the peak detector input in the distance information processing system shown in FIG. 1. When Vo≦2V BE , the diodes D 1 and D 2 are off, the limiter does not operate, and normal distance measurement is performed.

第5図の様なリミツタ接続を行なうと、リミツ
タ作動時にはトランジスタQ1を通して、かなり
の電流がダイオードD1,D2に流れ込むことが考
えられる為、例えば第6図の様に、D3,D4,D5
の直列接続によるダイオード3段のリミツタを設
けることによつてもより好適に同一目的を達し得
る。
If a limiter connection is made as shown in Fig. 5, a considerable amount of current may flow into the diodes D 1 and D 2 through the transistor Q 1 when the limiter is activated. 4 , D5
The same objective can be achieved more preferably by providing a limiter with three stages of diodes connected in series.

第5図や第6図で示した実施例では、電流源
I1,I2での電圧降下をαとして、リミツタの作動
は、Vcc>3VBE+αのときに限られるが、これは
リミツタとしてたまたまダイオード順方向電圧を
用い為であるが、例えば、後述第9図の様にすれ
ばリミツタ電圧を任意の順に設定可能であり、従
つて本発明の趣旨は第5,6図の実施例のみに限
定されるものではない。
In the embodiments shown in FIGS. 5 and 6, the current source
Assuming the voltage drop at I 1 and I 2 to be α, the limiter operates only when V cc > 3V BE + α, but this is because the limiter happens to use a diode forward voltage. By doing as shown in FIG. 9, the limiter voltages can be set in any order, so the gist of the present invention is not limited to the embodiments shown in FIGS. 5 and 6.

第7図、第8図、第9図は、第5図及び第6図
の実施例の変形実施例を示すものである。Vcc
電源電圧、VREF1は演算増幅器の基準電圧、VREF2
はリミツタ作動参照電圧、OP3,OP4,OP5は演
算増幅器、S3,S4,S5は受光素子、R9〜R19は抵
抗、C3,C4,C5はコンデンサ、Q3はNPNトラン
ジスタ、CO1はコンパレータ、Zは例えばダイオ
ード等の素子、Voは上記回路出力である。
7, 8 and 9 show modified embodiments of the embodiments of FIGS. 5 and 6. FIG. V cc is the supply voltage, V REF1 is the operational amplifier reference voltage, V REF2
is the limiter operating reference voltage, OP 3 , OP 4 , OP 5 are operational amplifiers, S 3 , S 4 , S 5 are light receiving elements, R 9 to R 19 are resistors, C 3 , C 4 , C 5 are capacitors, Q 3 is an NPN transistor, CO 1 is a comparator, Z is an element such as a diode, and Vo is the output of the above circuit.

第7図は、帰還回路に例えば任意数直列接続ダ
イオードを接続し前述と同様のリミツタを行なう
例、第8図は出力段にn個直列にダイオードを接
続し、nVBEで同様のリミツタを構成する例、第
9図はVREF2の電圧により、リミツタの作動電圧
を任意にとれ、VREF2でリミツタが作動するよう
にした例である。
Figure 7 shows an example in which an arbitrary number of series-connected diodes are connected to the feedback circuit to perform the same limiter as described above, and Figure 8 shows an example in which n diodes are connected in series to the output stage and a similar limiter is configured with nV BE . FIG. 9 shows an example in which the operating voltage of the limiter can be set arbitrarily depending on the voltage of V REF2 , and the limiter is operated at V REF2 .

また、第7図の変形実施例の趣旨は帰還ループ
での素子Zはダイオードに限るわけではなく、任
意の非線形素子等でも良い。
Furthermore, the gist of the modified embodiment shown in FIG. 7 is that the element Z in the feedback loop is not limited to a diode, but may be any nonlinear element.

以上詳述したように本発明によれば、交流的に
変調された光束を投射すると共にその反射光束を
検知することにより距離情報を得るよう能動型測
距装置として、直流入力成分に対対しても成る程
度応答する受光回路の出力段が太陽直射光等によ
る過大直流入力成分に対して飽和してしまい、そ
の出力として回路電源電圧の変動等、距離情報以
外の信号が現われてしまうことによる誤測距の危
惧が良好に解消されるようになるもので、特にカ
メラ等の自動焦点調節装置を意図した場合には高
輝度下では一般に絞り口径が小さくされ、従つて
濃度が深められると云うことからしても、この場
合の遠距離合焦位置或いは無限遠合焦位置へのレ
ンズ制御と云う合理的な制御態様に照し、極めて
有益なものである。又、回路構成的にも非常に簡
単で、極めて安価につくと云う利点も得られるも
のである。
As detailed above, according to the present invention, as an active distance measuring device that obtains distance information by projecting an alternating current modulated light beam and detecting the reflected light beam, The output stage of the photodetector circuit, which responds to a certain degree, becomes saturated with excessive DC input components caused by direct sunlight, etc., and errors occur when signals other than distance information, such as fluctuations in the circuit power supply voltage, appear as the output. This effectively eliminates concerns about distance measurement, and especially when intended for automatic focus adjustment devices such as cameras, the aperture aperture is generally made smaller under high brightness, and the density is therefore deepened. From this point of view, it is extremely useful in view of the rational control mode of controlling the lens to a long-distance focusing position or an infinite focusing position in this case. It also has the advantage of being extremely simple in circuit configuration and extremely inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来提案されている能動型測距装置の
一例の基本的構成を示すブロツク図、第2図は第
1図示受光回路の一具体例を示す部分回路接続
図、第3図は第2図示受光回路の帰還抵抗とカツ
トオフ周波数との関係を示す図、第4図は第1図
示投光系の一例を示す図、第5図、第6図、第7
図、第8図及び第9図は本発明の実施例を示す部
分回路接続図である。 S1,OP1,C1,Q1,R1〜R4;S2,OP2,C2
Q2,R5〜R8;S3,OP3,C3,R9〜R11;S4
OP4,C4,R12〜R14;S5,OP5,C5,R15〜R17
…受光回路の構成要素、D1,D2:D3〜D5:z:
Do〜D2o;CO1,R18,R19,Q3……出力制限回路
の構成要素。
FIG. 1 is a block diagram showing the basic configuration of an example of a conventionally proposed active distance measuring device, FIG. 2 is a partial circuit connection diagram showing a specific example of the light receiving circuit shown in FIG. 1, and FIG. 2 is a diagram showing the relationship between the feedback resistance and cut-off frequency of the light receiving circuit shown in Figure 4, Figure 4 is a diagram showing an example of the light projecting system shown in Figure 1, Figures 5, 6, and 7
8 and 9 are partial circuit connection diagrams showing embodiments of the present invention. S 1 , OP 1 , C 1 , Q 1 , R 1 to R 4 ; S 2 , OP 2 , C 2 ,
Q 2 , R 5 ~ R 8 ; S 3 , OP 3 , C 3 , R 9 ~ R 11 ; S 4 ,
OP4 , C4 , R12 ~ R14 ; S5 , OP5 , C5 , R15 ~ R17 ...
...Components of the light receiving circuit, D 1 , D 2 :D 3 to D 5 :z:
D o ~ D 2o ; CO 1 , R 18 , R 19 , Q 3 ... Components of the output limiting circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流的に変調された光束を投射すると共にそ
の反射光束を受光することより距離情報を得る能
動型測距装置において、上記交流的に変調された
光束を投射する為の電源により駆動される、上記
反射光束を受光する為の受光回路と、該受光回路
へ過大直流光成分が入力したことを該受光回路の
出力レベルが所定値に達したことにより検出し、
該受光回路の出力レベルが所定値に達した場合に
は、上記受光回路の受光状態に無関係で上記電源
出力の変動の影響を受けない一定の信号を上記距
離情報を得る為の後段の回路へ出力する判定回路
とを備えたことを特徴とする能動型測距装置。
1. An active ranging device that obtains distance information by projecting an alternating current modulated light beam and receiving its reflected light beam, which is driven by the power source for projecting the alternating current modulated light beam; a light receiving circuit for receiving the reflected light flux; detecting that an excessive DC light component is input to the light receiving circuit when the output level of the light receiving circuit reaches a predetermined value;
When the output level of the light receiving circuit reaches a predetermined value, a constant signal is sent to a subsequent circuit for obtaining the distance information, regardless of the light receiving state of the light receiving circuit and unaffected by fluctuations in the power supply output. An active distance measuring device comprising: a determination circuit that outputs an output.
JP13247381A 1981-08-24 1981-08-24 Active type distance measuring device Granted JPS5834312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13247381A JPS5834312A (en) 1981-08-24 1981-08-24 Active type distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13247381A JPS5834312A (en) 1981-08-24 1981-08-24 Active type distance measuring device

Publications (2)

Publication Number Publication Date
JPS5834312A JPS5834312A (en) 1983-02-28
JPS6360884B2 true JPS6360884B2 (en) 1988-11-25

Family

ID=15082192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13247381A Granted JPS5834312A (en) 1981-08-24 1981-08-24 Active type distance measuring device

Country Status (1)

Country Link
JP (1) JPS5834312A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545926Y2 (en) * 1985-05-01 1993-11-30
JPH064249Y2 (en) * 1986-03-12 1994-02-02 松下電工株式会社 Optical distance measuring device
JP2548430Y2 (en) * 1991-04-24 1997-09-24 三菱農機株式会社 Arrangement structure of longitudinal feed lever in transplanter
JP4573032B2 (en) * 2005-02-04 2010-11-04 富士フイルム株式会社 Auto focus system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116031A (en) * 1974-02-26 1975-09-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116031A (en) * 1974-02-26 1975-09-11

Also Published As

Publication number Publication date
JPS5834312A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
USRE35652E (en) Object distance detecting apparatus
US4935613A (en) Light projecting type distance measuring apparatus
JPS6360884B2 (en)
US4455070A (en) Compensating circuit for an infrared-ray signal detection device in an auto focus camera
JP2528844B2 (en) Automatic focusing device
JP2802785B2 (en) Camera exposure control method
JPH0365481B2 (en)
JPH01116510A (en) Light projecting system automatic focusing device
JP3015099B2 (en) Distance measuring device
JP2763800B2 (en) Distance measuring device
JPS5988721A (en) Range finder of camera
JP3121040B2 (en) Distance measuring device
JPS6222016A (en) Distance detector
JP3356299B2 (en) Distance measuring device
JPH0112251Y2 (en)
JP3082947B2 (en) Sensor amplifier
JPS60189520A (en) Power supply device
JP3332948B2 (en) camera
JPH0448209A (en) Subject distance detecting device
JPS59148034A (en) Range finder of camera
JP2005077938A (en) Light receiving device and camera installed with light receiving device
JPS61107111A (en) Range finder
JPH052128A (en) Range-finding device for camera
JPS63186219A (en) Autofocusing camera
JPS6310114A (en) Auto focus device