JP2006242728A - Range finder - Google Patents

Range finder Download PDF

Info

Publication number
JP2006242728A
JP2006242728A JP2005058345A JP2005058345A JP2006242728A JP 2006242728 A JP2006242728 A JP 2006242728A JP 2005058345 A JP2005058345 A JP 2005058345A JP 2005058345 A JP2005058345 A JP 2005058345A JP 2006242728 A JP2006242728 A JP 2006242728A
Authority
JP
Japan
Prior art keywords
light
current
level
distance measuring
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058345A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shimoyamada
好孝 下山田
Tomio Kurosu
富男 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2005058345A priority Critical patent/JP2006242728A/en
Publication of JP2006242728A publication Critical patent/JP2006242728A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active range finder which can achieve both maintaining/improving performance of range-finding and increasing the life of the apparatus. <P>SOLUTION: The range finder comprises a light projection part 6 for emitting a light beam toward an object, a light receiving section 7 for receiving a return beam reflected off the object and outputting a detection signal, a operation part 8 for performing distance measurement with respect to the object on the basis of the detection signal, and a control section 9 for controlling the operations of the light projection part 6 and the light receiving section 7. The light projection part 6 includes a light emitting element 1 for emitting a light beam L in response to a driving current Iled and a driving circuit 10 for supplying the light emitting element 1 with the driving current Iled. The control section 9 controls a control circuit 10 of the light projection part 6 to emit light with the level of the driving current Iled gradually switched, monitors the amount of light received of the light receiving section 7 to detect a level suitable for range-finding, and performs range-finding using the driving current Iled with the detected level. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、検出信号に基づいて対象物までの測距を行う演算部と、投光部及び受光部の動作を制御する制御部とからなる光学式のアクティブ測距装置に関する。   The present invention includes a light projecting unit that projects a light beam onto an object, a light receiving unit that receives a light beam reflected and returned from the object and outputs a detection signal, and the object based on the detection signal. The present invention relates to an optical active distance measuring device including a calculation unit that performs distance measurement and a control unit that controls operations of a light projecting unit and a light receiving unit.

光学式の測距装置はカメラの自動焦点合わせや券売機の対人センサーなど多様な用途に使われている。特に、対象物に赤外線などの測距用光を投光し、その反射信号光を利用して、対象物の距離を求めるアクティブ測距装置は、コンパクトカメラのオートフォーカスなどに広く応用されている。   Optical distance measuring devices are used for various purposes such as automatic focusing of cameras and interpersonal sensors of ticket machines. In particular, an active distance measuring device that projects distance measuring light such as infrared rays onto an object and uses the reflected signal light to determine the distance of the object is widely applied to autofocus of compact cameras, etc. .

この様なアクティブ測距装置は、図12に示すような構成を基本としている。同図において、参照番号1は赤外発光ダイオード(IRled)などからなる発光素子、2はこの光を対象物3に集光投光するための投光レンズである。そして、その対象物3からの反射信号光を、投光レンズ2から基線長Bだけ離れた受光レンズ4と光位置検出素子(PSD)からなる受光素子5にて受光し、その受光位置xを求めると、受光レンズ4の焦点距離f及び基線長Bを用いて、L=B・f/xという関係により、対象物までの距離Lが求められる。   Such an active distance measuring device is basically configured as shown in FIG. In the figure, reference numeral 1 is a light emitting element composed of an infrared light emitting diode (IRled) and the like, and 2 is a light projecting lens for condensing and projecting this light on an object 3. Then, the reflected signal light from the object 3 is received by the light receiving element 5 including the light receiving lens 4 and the light position detecting element (PSD) separated from the light projecting lens 2 by the base line length B, and the light receiving position x is received. If it calculates | requires, the distance L to a target object will be calculated | required by the relationship of L = B * f / x using the focal distance f and the base line length B of the light-receiving lens 4. FIG.

この方式は、投光レンズ2及び受光レンズ4の幾何学的な位置の差を用いたもので、三角測距の原理に従っている。PSDなどからなる受光素子5は、光入射位置で光電流を発生するものであるが、両端電極までの導電部が抵抗成分を持つために、その光入射位置にしたがって2つの光電流信号I1,I2を出力する。これにより、受光位置xは両光電流信号I1,I2の比演算にて求められる。例えば、x=I1/(I1+I2)で与えられる。   This method uses a difference in geometric position between the light projecting lens 2 and the light receiving lens 4 and follows the principle of triangulation. The light receiving element 5 made of PSD or the like generates a photocurrent at the light incident position. However, since the conductive portion up to the both end electrodes has a resistance component, the two photocurrent signals I1, I2 are changed according to the light incident position. I2 is output. Thus, the light receiving position x is obtained by calculating the ratio between the two photocurrent signals I1 and I2. For example, x = I1 / (I1 + I2).

この様なアクティブ測距装置は、例えば以下の特許文献1ないし3に記載がある。
特開平01−199109号公報 特開平08−136247号公報 実開平05−043110号公報
Such an active distance measuring device is described in, for example, Patent Documents 1 to 3 below.
Japanese Patent Laid-Open No. 01-199109 JP 08-136247 A Japanese Utility Model Publication No. 05-043110

アクティブ測距装置の発光素子は、例えば赤外発光ダイオード(IRled)が多用されている。赤外発光ダイオードは駆動電流に応じて発光し、アクティブ測距に必要な投光を生成している。アクティブ測距の精度はシグナル対ノイズ比(S/N比)で決まる。S/N比を高めて測距を安定に行うため、IRledの発光強度は高い方がよい。発光強度が大きいほど、対象物から反射した光の受光量が増し、外乱光などの光ノイズや電気的なノイズに影響を受けることなく、正確な測距を行うことができる。したがって、測距性能の向上の観点から、駆動電流を高めに設定し充分な発光強度を得ることが好ましい。一方、赤外発光ダイオードなど電流駆動型の発光素子は、発光量に応じて寿命が決まるという性質がある。累積の発光量が増加するほど輝度が低下していき寿命が短くなる。したがって測距装置の耐久性の観点からは発光素子に供給する駆動電流を可能な限り抑制する事が好ましい。この様に、アクティブ測距装置は、測距性能の向上と装置の長寿命化とが両立せず、解決すべき課題となっている。   For example, an infrared light emitting diode (IRled) is frequently used as the light emitting element of the active distance measuring device. The infrared light emitting diode emits light in accordance with the drive current, and generates light necessary for active distance measurement. The accuracy of active ranging is determined by the signal-to-noise ratio (S / N ratio). In order to increase the S / N ratio and perform stable ranging, it is better that the IRled emission intensity is high. As the emission intensity increases, the amount of light reflected from the object increases, and accurate ranging can be performed without being affected by optical noise such as ambient light or electrical noise. Therefore, from the viewpoint of improving the distance measurement performance, it is preferable to obtain a sufficient light emission intensity by setting the drive current higher. On the other hand, current-driven light-emitting elements such as infrared light-emitting diodes have a property that their lifetime is determined according to the amount of light emission. As the cumulative amount of light emission increases, the luminance decreases and the lifetime becomes shorter. Therefore, from the viewpoint of durability of the distance measuring device, it is preferable to suppress the drive current supplied to the light emitting element as much as possible. As described above, the active distance measuring device is a problem to be solved because the improvement of the distance measuring performance and the life extension of the device are not compatible.

上述した従来の技術の課題に鑑み、本発明は測距性能の維持向上と発光素子の長寿命化とを両立可能なアクティブ方式の測距装置を提供する事を目的とする。かかる目的を達成する為に以下の手段を講じた。即ち本発明は、対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、該検出信号に基づいて該対象物までの測距を行う演算部と、該投光部及び受光部の動作を制御する制御部とからなる測距装置であって、前記投光部は、駆動電流に応じて光束を放射する発光素子と、該発光素子に駆動電流を供給する駆動回路とを含み、前記制御部は、該投光部の駆動回路を制御して該駆動電流のレベルを段階的に切り替えて投光を行なうとともに、該受光部の受光量をモニタして測距に適したレベルを検出し、該検出されたレベルの駆動電流を用いて測距を行うことを特徴とする。   In view of the above-described problems of the conventional technology, an object of the present invention is to provide an active distance measuring device capable of achieving both maintenance and improvement of distance measuring performance and extending the life of a light emitting element. In order to achieve this purpose, the following measures were taken. That is, the present invention includes a light projecting unit that projects a light beam onto an object, a light receiving unit that receives a light beam reflected and returned from the object and outputs a detection signal, and a detection signal based on the detection signal. A distance measuring device comprising a calculation unit for measuring a distance to an object and a control unit for controlling operations of the light projecting unit and the light receiving unit, wherein the light projecting unit emits a light beam according to a drive current. And a driving circuit that supplies a driving current to the light emitting element, and the control unit controls the driving circuit of the light projecting unit to switch the level of the driving current step by step to perform light projection. And measuring the amount of light received by the light receiving unit to detect a level suitable for distance measurement, and performing distance measurement using the drive current of the detected level.

好ましくは、前記制御部は、高レベルから低レベルに向かって該駆動電流のレベルを段階的に切り替える。又前記駆動回路は、各々レベルの異なる定電流を出力する複数個の定電流源と、該制御部からの制御に応じて該複数個の定電流源を選択的に組み合わせて、レベルが段階的に切り替わる電流を生成するスイッチ手段と、該生成された電流を増幅し駆動電流として該発光素子に供給する増幅手段とからなる。例えば前記増幅手段は、カレントミラー回路からなる。   Preferably, the control unit switches the level of the drive current stepwise from a high level to a low level. Further, the drive circuit selectively combines the plurality of constant current sources that output constant currents of different levels and the plurality of constant current sources in accordance with the control from the control unit, so that the level is stepwise. Switch means for generating a current to be switched between and amplifying means for amplifying the generated current and supplying it to the light emitting element as a drive current. For example, the amplification means comprises a current mirror circuit.

本発明によれば、アクティブ測距装置は投光部を制御して駆動電流のレベルを段階的に例えば高レベルから低レベルに向かって切り替えて投光を行うと共に、受光部の受光量をモニタして測距に適したレベルを検出し、この検出されたレベルに対応したレベルの駆動電流を用いて測距を行う。本発明では、受光量が測距に適したレベルに達した時点で駆動電流のレベルを固定し、発光量を抑えている。無駄な発光を節約する事で発光素子の長寿命化が図れる。また、駆動電流を抑える事で電力消費の節約に繋がる。一方、測距の対象物の状態に応じ、受光量が測距に適したレベルとなるように制御されている。これにより、測距性能を損なう恐れはない。以上により、発光素子の長寿命化と測距性能の維持を両立したアクティブ測距装置を得る事ができる。   According to the present invention, the active distance measuring device controls the light projecting unit to switch the drive current level stepwise from, for example, a high level to a low level to perform light projection, and monitor the amount of light received by the light receiving unit. Then, a level suitable for distance measurement is detected, and distance measurement is performed using a drive current of a level corresponding to the detected level. In the present invention, when the amount of received light reaches a level suitable for distance measurement, the level of the drive current is fixed to suppress the amount of light emission. By saving unnecessary light emission, the life of the light emitting element can be extended. In addition, reducing the drive current leads to saving of power consumption. On the other hand, the amount of received light is controlled so as to be at a level suitable for distance measurement according to the state of the object for distance measurement. Thereby, there is no possibility that the distance measurement performance is impaired. As described above, it is possible to obtain an active distance measuring device that achieves both long life of the light emitting element and maintenance of distance measuring performance.

本発明では特に、駆動電流のレベルを段階的に(デジタル的に)切り替えて投光を行うと共に、受光部の受光量をモニタして測距に適したレベルを検出する。これに対し、駆動電流を例えば低レベルから高レベルに連続的に掃引しながら(アナログ的に掃引しながら)投光を行うと共に、受光部の受光量をモニタして測距に適したレベルに達したら駆動電流の掃引を停止して測距を行う構成も考えられる。アナログ方式の場合、受光量が測距に適したレベルに達した時点で駆動電流を保持固定する必要がある為、別途サンプルホールド回路などを組み込まなければならず、回路構成が複雑になると共に精度が悪くなる。これに対し、本発明はデジタル切り替え方式とする事で、回路構成が簡略化されると共に精度も向上する。   In the present invention, in particular, the level of the drive current is switched stepwise (digitally) to perform projection, and the amount of light received by the light receiving unit is monitored to detect a level suitable for distance measurement. In contrast, for example, light is projected while continuously sweeping the drive current from a low level to a high level (analogly sweeping), and the amount of light received by the light receiving unit is monitored to a level suitable for distance measurement. A configuration is also conceivable in which the drive current sweep is stopped when the distance is reached and distance measurement is performed. In the case of the analog method, since it is necessary to hold and fix the drive current when the amount of received light reaches a level suitable for distance measurement, a sample hold circuit must be incorporated separately, which makes the circuit configuration complicated and accurate. Becomes worse. On the other hand, the present invention adopts a digital switching system, whereby the circuit configuration is simplified and the accuracy is improved.

以下図面を参照して本発明の実施の形態を詳細に説明する。まず最初に本発明の背景を明らかにする為、図1を参照して定電圧駆動方式のアクティブ測距装置を参考例として説明する。図示するように測距装置は、投光部6と受光部7と演算部を構成する演算回路8と制御部を構成するシーケンサー9とで構成されている。投光部6は対象物に対して光束を投光する。受光部7は対象物から反射して戻ってくる光束を受光して検出信号I1,I2を出力する。演算回路8は検出信号I1,I2に基づいて対象物までの測距を行う。具体的には、検出信号I1,I2の比演算を行って測距データを得る。測距データはサンプルホールド回路12で一旦サンプルホールドされた後、アンプA3を介して外部機器に出力される。シーケンサー9は投光部6及び受光部7の動作を制御する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, in order to clarify the background of the present invention, a constant voltage driving type active distance measuring device will be described as a reference example with reference to FIG. As shown in the figure, the distance measuring device includes a light projecting unit 6, a light receiving unit 7, a calculation circuit 8 that forms a calculation unit, and a sequencer 9 that forms a control unit. The light projecting unit 6 projects a light beam onto the object. The light receiving unit 7 receives the light beam reflected and returned from the object and outputs detection signals I1 and I2. The arithmetic circuit 8 measures the distance to the object based on the detection signals I1 and I2. Specifically, distance measurement data is obtained by performing a ratio calculation of the detection signals I1 and I2. The distance measurement data is once sample-held by the sample hold circuit 12, and then output to an external device via the amplifier A3. The sequencer 9 controls the operations of the light projecting unit 6 and the light receiving unit 7.

投光部6は駆動電流Iledに応じて光束を放射する発光素子1と、発光素子1に駆動電流Iledを供給する駆動回路10とで構成されている。発光素子1は例えば赤外発光ダイオードを用いる事ができる。駆動回路10は二端子型発光素子1のカソードに接続した負荷抵抗Rledと駆動トランジスタTrとを含む。駆動トランジスタTrのベースはシーケンサー9に接続し、コレクタは負荷抵抗Rledの一端に接続し、エミッタは接地されている。駆動回路10はさらに増幅器AとトランジスタTr1とで構成された定電圧回路を含んでいる。二端子型増幅器A(オペアンプ)の一方の入力端子はシーケンサー9に接続しており、定電圧Vledの供給を受ける。増幅器Aの他方の入力端子は、二端子型発光素子1のアノードに接続している。増幅器Aの出力端子はトランジスタTr1のベースに接続している。トランジスタTr1のエミッタは電源Vccに接続し、コレクタは発光素子1のアノードに接続している。   The light projecting unit 6 includes a light emitting element 1 that emits a light beam in response to a driving current Iled, and a driving circuit 10 that supplies the driving current Iled to the light emitting element 1. For example, an infrared light emitting diode can be used as the light emitting element 1. The drive circuit 10 includes a load resistor Rled connected to the cathode of the two-terminal light emitting element 1 and a drive transistor Tr. The base of the drive transistor Tr is connected to the sequencer 9, the collector is connected to one end of the load resistor Rled, and the emitter is grounded. The drive circuit 10 further includes a constant voltage circuit composed of an amplifier A and a transistor Tr1. One input terminal of the two-terminal amplifier A (op-amp) is connected to the sequencer 9 and is supplied with a constant voltage Vled. The other input terminal of the amplifier A is connected to the anode of the two-terminal light emitting device 1. The output terminal of the amplifier A is connected to the base of the transistor Tr1. The emitter of the transistor Tr1 is connected to the power supply Vcc, and the collector is connected to the anode of the light emitting element 1.

増幅器AとトランジスタTr1からなる定電圧回路は、シーケンサー9から供給される制御電圧Vledに応じ、これと等しい定電圧Vledを発光素子1のアノードに印加し、これを定電圧駆動している。具体的には、発光素子1の電圧降下分をVf、駆動トランジスタTrの電圧降下分をVtrとすると、駆動電流Iledは(Vled−Vf−Vtr)/Rledで与えられる。実際には、シーケンサー9が駆動トランジスタTrのベースに制御パルスを印加すると、駆動トランジスタTrが導通し、発光素子1に上記の駆動電流Iledが流れ、結果的に制御電圧Vledに応じた輝度Lで発光素子1が発光する事になる。この様に従来のアクティブ測距装置は、対象物の条件によらず常に一定の制御電圧Vledで発光輝度Lを決めていた。   The constant voltage circuit composed of the amplifier A and the transistor Tr1 applies a constant voltage Vled equal to the control voltage Vled supplied from the sequencer 9 to the anode of the light emitting element 1 and drives it at a constant voltage. Specifically, if the voltage drop of the light emitting element 1 is Vf and the voltage drop of the drive transistor Tr is Vtr, the drive current Iled is given by (Vled−Vf−Vtr) / Rled. Actually, when the sequencer 9 applies a control pulse to the base of the drive transistor Tr, the drive transistor Tr becomes conductive, and the drive current Iled flows through the light emitting element 1, and as a result, the luminance L corresponds to the control voltage Vled. The light emitting element 1 emits light. As described above, the conventional active distance measuring device always determines the light emission luminance L with the constant control voltage Vled regardless of the condition of the object.

受光部7は例えばPSDからなる受光素子5と、その両端に接続された増幅器A1,A2とからなる。一方の増幅器A1は受光素子5の一端から出力された受光電流を増幅して検出電流I1を演算回路8に供給する。他方の増幅器A2は受光素子5の他方の電極から出力された受光電流を増幅して検出電流I2を演算回路8側に供給する。なお、各増幅器A1,A2の入出力間には定常電流引き抜き回路(DCC)が接続されている。この定常電流引き抜き回路DCCはシーケンサー9により制御されており、受光電流から周囲光などに起因する定常電流成分(直流成分)を引き抜き、信号成分のみを演算回路8側に供給できるようにしている。   The light receiving unit 7 includes a light receiving element 5 made of, for example, PSD and amplifiers A1 and A2 connected to both ends thereof. One amplifier A <b> 1 amplifies the light reception current output from one end of the light receiving element 5 and supplies the detection current I <b> 1 to the arithmetic circuit 8. The other amplifier A2 amplifies the light reception current output from the other electrode of the light receiving element 5 and supplies the detection current I2 to the arithmetic circuit 8 side. A steady current drawing circuit (DCC) is connected between the input and output of each amplifier A1, A2. The steady current extraction circuit DCC is controlled by the sequencer 9 so that a steady current component (DC component) caused by ambient light or the like is extracted from the received light current and only the signal component can be supplied to the arithmetic circuit 8 side.

受光部7側の受光素子5は対象物から反射した光の受光位置に応じた検出信号I1,I2を演算回路8側に出力する。演算回路8は検出信号I1,I2の比演算を行って測距データを得る。この段階でシーケンサー9はスイッチSW1を開閉制御し、サンプルホールド回路12に測距データをサンプルホールドする。サンプルホールドされた測距データは増幅器A3を介して装置の本体側に出力される。   The light receiving element 5 on the light receiving unit 7 side outputs detection signals I1 and I2 corresponding to the light receiving position of the light reflected from the object to the arithmetic circuit 8 side. The arithmetic circuit 8 calculates the ratio of the detection signals I1 and I2 to obtain distance measurement data. At this stage, the sequencer 9 controls the opening and closing of the switch SW1, and samples and holds the distance measurement data in the sample and hold circuit 12. The distance measurement data sampled and held is output to the main body of the apparatus via the amplifier A3.

図2はアクティブ測距装置の他の参考例を示す回路図である。図1に示したアクティブ測距装置が定電圧駆動を採用していたのに対し、図2に示した参考例は定電流駆動を採用している。受光部7、演算部8、シーケンサー9及びサンプルホールド回路12の部分は図1の参考例と同様であるが、投光部6の構成が相違している。   FIG. 2 is a circuit diagram showing another reference example of the active distance measuring device. The active distance measuring device shown in FIG. 1 employs constant voltage drive, whereas the reference example shown in FIG. 2 employs constant current drive. The light receiving unit 7, the calculation unit 8, the sequencer 9, and the sample hold circuit 12 are the same as those in the reference example of FIG. 1, but the configuration of the light projecting unit 6 is different.

図示するように投光部6は、駆動電流Iledに応じて光束を放射する発光素子1と、発光素子1に駆動電流Iledを供給する駆動回路10とを含む。発光素子1は例えば赤外LEDなどの二端子型デバイスである。駆動回路10は2入力1出力型の増幅器(オペアンプ)Aと駆動トランジスタTrと負荷抵抗Rledとで構成されている。駆動トランジスタTrのコレクタは二端子型発光素子1のカソードに接続している。なおアノードは電源Vccに接続している。駆動トランジスタTrのエミッタは負荷抵抗Rledを介して接地されている。駆動トランジスタTrのベースは増幅器Aの出力端子に接続されている。増幅器Aの一方の入力端子はシーケンサー9に接続されており、制御パルスの供給を受ける。この制御パルスは電圧がVledで時間幅がTonとなっている。増幅器Aの他方の入力端子は駆動トランジスタTrのエミッタに接続している。駆動回路10はかかる構成により、発光素子1に対する定電流源となっている。シーケンサー9から供給される制御パルスに応じ、駆動回路10はIled=Vled/Rledで表される定電流Iledを所定の発光時間Tonだけ発光素子1に流す。発光素子1は一定の駆動電流Iledに応じた輝度で発光する。   As shown in the figure, the light projecting unit 6 includes a light emitting element 1 that emits a light beam in accordance with the driving current Iled, and a driving circuit 10 that supplies the driving current Iled to the light emitting element 1. The light emitting element 1 is a two-terminal device such as an infrared LED. The drive circuit 10 includes a 2-input 1-output type amplifier (op-amp) A, a drive transistor Tr, and a load resistor Rled. The collector of the driving transistor Tr is connected to the cathode of the two-terminal light emitting element 1. The anode is connected to the power source Vcc. The emitter of the drive transistor Tr is grounded via the load resistor Rled. The base of the drive transistor Tr is connected to the output terminal of the amplifier A. One input terminal of the amplifier A is connected to the sequencer 9 and receives a control pulse. This control pulse has a voltage of Vled and a time width of Ton. The other input terminal of the amplifier A is connected to the emitter of the drive transistor Tr. With this configuration, the drive circuit 10 is a constant current source for the light emitting element 1. In response to the control pulse supplied from the sequencer 9, the drive circuit 10 causes a constant current Iled expressed by Iled = Vled / Rled to flow through the light emitting element 1 for a predetermined light emission time Ton. The light emitting element 1 emits light with a luminance corresponding to a constant driving current Iled.

図1及び図2に示した参考例にかかる測距装置は、赤外LEDなどの二端子型デバイスを発光素子に用いている。周知のように、LEDは発光量や発光時間の累積によって輝度が低下し、寿命に限りがある。LEDの寿命は、発光電流、温度、発光時間、繰り返し発光インターバルなどの諸パラメーターによって顕著な影響を受け、耐久性に限りがある。   The distance measuring device according to the reference example shown in FIGS. 1 and 2 uses a two-terminal device such as an infrared LED as a light emitting element. As is well known, the luminance of an LED decreases due to the amount of light emission and the time of light emission, and its lifetime is limited. The lifetime of the LED is significantly affected by various parameters such as light emission current, temperature, light emission time, and repetitive light emission interval, and its durability is limited.

従来の測距装置では用途によって要求される寿命がまず決定される。この要求寿命あるいは耐久性を満たすように、所定の発光電流レベルや発光時間が決まる。当然ながら、発光電流レベルを低めに設定し且つ発光時間を短く設定した方が、寿命の長期化に繋がる。   In a conventional distance measuring device, the life required by the application is first determined. A predetermined light emission current level and light emission time are determined so as to satisfy the required life or durability. Naturally, setting the light emission current level lower and setting the light emission time shorter leads to longer life.

反面アクティブ測距装置は周囲光(ノイズ)と発光(信号)との強度差が大きいほど、S/N比がよくなり、基本測距性能が高い。したがって、測距性能の観点からは可能な限り駆動電流を高めに設定して発光量を増やし、遠距離で且つ低反射率の対象物でも精度よく測れる事が好ましい。以上により、耐久性能の向上と基本測距性能の向上は互いに相反した関係となっている。現実的には、製品に要求される耐久性能により発光量が決められ、その規制の中で可能な限り精度を高める工夫がなされる。例えば許される範囲で同一の対象物に測距を繰り返し、得られた結果を平均演算処理して、最終的な距離データを得ているのが現状である。   On the other hand, the active distance measuring device has a higher S / N ratio and higher basic distance measuring performance as the difference in intensity between ambient light (noise) and light emission (signal) increases. Therefore, from the viewpoint of ranging performance, it is preferable that the driving current is set as high as possible to increase the amount of light emission, and it is possible to accurately measure an object at a long distance and low reflectance. As described above, the improvement in durability performance and the improvement in basic ranging performance are in a mutually contradictory relationship. In reality, the amount of light emission is determined by the durability performance required for the product, and ingenuity is devised to improve the accuracy as much as possible. For example, distance measurement is repeated on the same object within an allowable range, and the obtained result is averaged to obtain final distance data.

図1および図2に示した従来のアクティブ測距装置は、発光強度や発光時間を予め固定的に設定しており、対象物の状態とは関係なく測距を行うものである。しかしながら、実際の測距では対象物の距離が変化し、さらにその表面反射率も変化するものである。例えば、対象物が0.5〜3mの範囲で前後に位置し、表面反射率が9〜72%の間でばらつくと仮定すると、距離が3mで反射率が9%の対象物が最も受光量が少なくなる。これに対し、0.5mの位置にあり且つ表面反射率が72%の対象物は、受光量が先の例の288倍になる。この比率は光量的シミュレーションで得られるものである。換言すると、最良の条件下で必要とされる発光量は、最悪条件で必要とされる発光量の288分の1でよい事になる。例えば、距離が3mで表面反射率が9%の対象物の測距を行うため、1Aの駆動電流が必要な場合、0.5mで表面反射率が72%の対象物では約3.5mAの発光電流でよい事になる。   In the conventional active distance measuring device shown in FIGS. 1 and 2, the light emission intensity and the light emission time are fixedly set in advance, and distance measurement is performed regardless of the state of the object. However, in the actual distance measurement, the distance of the object changes, and the surface reflectance also changes. For example, if it is assumed that the object is positioned in the front and back in the range of 0.5 to 3 m and the surface reflectance varies between 9 and 72%, the object having the distance of 3 m and the reflectance of 9% is the most received light amount. Less. On the other hand, the amount of light received by an object at a position of 0.5 m and a surface reflectance of 72% is 288 times that of the previous example. This ratio is obtained by light quantity simulation. In other words, the light emission amount required under the best condition may be 1 / 288th of the light emission amount required under the worst condition. For example, when measuring a target with a distance of 3 m and a surface reflectance of 9%, when a driving current of 1 A is required, an object with a surface reflectance of 0.5 m and a reflectance of 72% is about 3.5 mA. The light emission current is good.

例えば図2に示したアクティブ測距装置で駆動電流を1Aに設定すると、距離が3mで表面反射率が9%の対象物では適正な発光量となるのに対し、0.5mで表面反射率が72%の対象物では1A−3.5mA=996.5mAの駆動電流分に相当する発光が不要なものとなる。このロスがあるため、アクティブ測距装置の耐久性を改善する事ができない。   For example, when the driving current is set to 1 A in the active distance measuring device shown in FIG. 2, an object having a distance of 3 m and a surface reflectance of 9% has an appropriate light emission amount, whereas the surface reflectance is 0.5 m. In the case of a 72% target, light emission corresponding to the drive current of 1A-3.5 mA = 996.5 mA becomes unnecessary. Due to this loss, the durability of the active distance measuring device cannot be improved.

図3は本発明の基になった測距装置のプロトタイプを示す回路図である。理解を容易にするため、図1及び図2に示した参考例にかかるアクティブ測距装置と対応する部分には対応する参照番号を付してある。図示するように、本アクティブ測距装置は、対象物に対して光束を投光する投光部6と、対象物から反射して戻ってくる光束を受光して検出信号I1,I2を出力する受光部7と、検出信号I1,I2に基づいて対象物までの測距を行う演算回路(演算部)8と、投光部6及び受光部7の動作を制御するシーケンサー(制御部)9とで構成されている。   FIG. 3 is a circuit diagram showing a prototype of a distance measuring device on which the present invention is based. For easy understanding, portions corresponding to those of the active distance measuring device according to the reference example shown in FIGS. 1 and 2 are denoted by corresponding reference numerals. As shown in the figure, this active distance measuring device receives a light beam 6 reflected from the object and outputs detection signals I1 and I2 by projecting a light beam to the object. A light receiving unit 7, a calculation circuit (calculation unit) 8 that measures a distance to an object based on the detection signals I 1 and I 2, and a sequencer (control unit) 9 that controls operations of the light projecting unit 6 and the light receiving unit 7. It consists of

投光部6はLEDなどからなる発光素子1と駆動回路10とで構成されている。二端子型発光素子1のアノードは電源Vccに接続され、カソードは駆動回路10に接続されている。駆動回路10は2入力1出力型の増幅器(オペアンプ)Aと駆動トランジスタTrと負荷抵抗Rledとで構成されている。駆動トランジスタTrのコレクタは発光素子1のカソードに接続し、エミッタは負荷抵抗Rledを介して接地されている。トランジスタTrのベースは増幅器Aの出力端子に接続している。増幅器Aの一方の入力端子(以下本明細書では入力ノードと称する)には制御電圧Vswpが印加され、他方の入力端子はトランジスタTrのエミッタに接続している。これにより駆動回路10はIled=Vswp/Rledで規定される駆動電流Iledを発光素子1に流す。この結果、発光素子1は制御電圧Vswpに応じた輝度Lで発光する。   The light projecting unit 6 includes a light emitting element 1 made of an LED or the like and a drive circuit 10. The anode of the two-terminal light emitting element 1 is connected to the power supply Vcc, and the cathode is connected to the drive circuit 10. The drive circuit 10 includes a 2-input 1-output type amplifier (op-amp) A, a drive transistor Tr, and a load resistor Rled. The collector of the drive transistor Tr is connected to the cathode of the light emitting element 1, and the emitter is grounded via the load resistor Rled. The base of the transistor Tr is connected to the output terminal of the amplifier A. A control voltage Vswp is applied to one input terminal (hereinafter referred to as an input node in this specification) of the amplifier A, and the other input terminal is connected to the emitter of the transistor Tr. As a result, the drive circuit 10 passes a drive current Iled defined by Iled = Vswp / Rled to the light emitting element 1. As a result, the light emitting element 1 emits light with a luminance L corresponding to the control voltage Vswp.

入力ノードには定電流源iと負荷容量CとスイッチSWが接続しており、駆動回路10の一部となっている。定電流源iは電源Vccと入力ノードとの間に接続されている。負荷容量Cは入力ノードと接地ラインとの間に接続されている。スイッチSWも入力ノードと接地ラインとの間に接続されている。このスイッチSWの開閉はシーケンサー9から供給される制御パルスによって制御される。   A constant current source i, a load capacitor C, and a switch SW are connected to the input node and are a part of the drive circuit 10. The constant current source i is connected between the power supply Vcc and the input node. The load capacitor C is connected between the input node and the ground line. The switch SW is also connected between the input node and the ground line. The opening / closing of the switch SW is controlled by a control pulse supplied from the sequencer 9.

受光部7は受光素子5と一対の増幅器A1,A2とで構成されている。受光素子5は例えば位置検出素子(PSD)からなり、対象物から戻ってきた光の受光位置に応じた光信号を一対の電極から出力する。増幅器A1,A2は受光素子5の各両電極から出力された光信号を増幅し、検出信号I1,I2として演算回路8側に出力する。各増幅器A1,A2の入出力端子間には、定常成分を引き抜くためのDCCが接続されている。   The light receiving unit 7 includes a light receiving element 5 and a pair of amplifiers A1 and A2. The light receiving element 5 is composed of, for example, a position detecting element (PSD), and outputs an optical signal corresponding to the light receiving position of the light returned from the object from a pair of electrodes. The amplifiers A1 and A2 amplify optical signals output from both electrodes of the light receiving element 5, and output the amplified signals to the arithmetic circuit 8 side as detection signals I1 and I2. A DCC for extracting a steady component is connected between the input / output terminals of the amplifiers A1 and A2.

演算回路8は受光部7から出力された検出信号I1,I2の比演算を行って測距データを得る。この測距データはサンプルホールド回路12でサンプルホールドされた後、アンプA3を介して機器本体側に出力される。   The arithmetic circuit 8 calculates the ratio of the detection signals I1 and I2 output from the light receiving unit 7 to obtain distance measurement data. The distance measurement data is sampled and held by the sample and hold circuit 12 and then output to the apparatus main body via the amplifier A3.

シーケンサー9は上述した制御パルスを投光部6側に供給すると共に、外付けで一対の比較器C1,C2を備えている。比較器C1の正入力端子には受光部7側から検出電流I1が供給され、他方の入力端子にはシーケンサー9側から所定の参照電圧Vrefが供給される。比較器C1の出力端子はシーケンサー9に接続されている。同様に比較器C2の正入力端子は受光部7側から検出電流I2が供給され、負入力端子にはシーケンサー9側から所定の参照電圧Vrefが供給され、出力端子はシーケンサー9に接続されている。かかる構成において、シーケンサー9及び一対の比較器C1,C2などで構成される制御部は、投光部6の駆動回路10を制御して駆動電流Iledを低レベルから高レベルに掃引しながら投光を行うと共に、受光部7の受光量をモニタして、測距に適したレベルに達したら駆動電流Iledの掃引を停止して測距を実行し、且つサンプルホールド回路12のスイッチSW1を制御して測距結果を確定する。   The sequencer 9 supplies the above-described control pulse to the light projecting unit 6 side, and includes a pair of external comparators C1 and C2. The detection current I1 is supplied from the light receiving unit 7 side to the positive input terminal of the comparator C1, and a predetermined reference voltage Vref is supplied from the sequencer 9 side to the other input terminal. The output terminal of the comparator C1 is connected to the sequencer 9. Similarly, a detection current I2 is supplied to the positive input terminal of the comparator C2 from the light receiving unit 7 side, a predetermined reference voltage Vref is supplied to the negative input terminal from the sequencer 9 side, and an output terminal is connected to the sequencer 9. . In such a configuration, the control unit composed of the sequencer 9 and the pair of comparators C1, C2, etc. controls the drive circuit 10 of the light projecting unit 6 and projects the light while sweeping the drive current Iled from the low level to the high level. The amount of light received by the light receiving unit 7 is monitored, and when the level reaches a level suitable for distance measurement, the sweep of the drive current Iled is stopped to perform distance measurement, and the switch SW1 of the sample hold circuit 12 is controlled. Confirm the distance measurement result.

図4は、図3に示したプロトタイプの測距装置の動作説明に供するタイミングチャートである。待機期間T0では、スイッチSWがオン状態にあり、入力ノードが接地されているのでVswpはゼロレベルにある。したがって駆動電流Iledが流れないので発光強度Lもゼロである。また、受光部7側は対象物から何ら受光しないので、比較器C1またはC2の出力はない。続いてタイミングT1で測距が起動すると、シーケンサー9は制御パルスを出力してスイッチSWをオンからオフにする。これにより、定電流源iから供給された電流が負荷容量Cに充電され始めるので、入力ノードの電位Vswpは低レベルから高レベルに向かって直線的に上昇していく。これに伴いIled=Vswp/Rledで表される駆動電流が低レベルから高レベルに向かって掃引され、結果として発光強度Lが徐々に増加していく。これに合わせ、受光部7側での受光量も増加していく。   FIG. 4 is a timing chart for explaining the operation of the prototype distance measuring device shown in FIG. In the standby period T0, the switch SW is in the on state and the input node is grounded, so that Vswp is at the zero level. Therefore, since the drive current Iled does not flow, the light emission intensity L is also zero. Further, since the light receiving unit 7 side does not receive any light from the object, there is no output from the comparator C1 or C2. Subsequently, when ranging starts at timing T1, the sequencer 9 outputs a control pulse to turn the switch SW from on to off. As a result, the current supplied from the constant current source i starts to be charged into the load capacitor C, and the potential Vswp of the input node rises linearly from the low level to the high level. Along with this, the drive current expressed by Iled = Vswp / Rled is swept from the low level to the high level, and as a result, the emission intensity L gradually increases. In accordance with this, the amount of light received on the light receiving unit 7 side also increases.

タイミングT2になると、受光量に対応した検出電流I1,I2のレベルが予め設定した参照電圧Vrefを越えるようになる。この参照電圧Vrefは受光量が測距に適した範囲となるように予めシーケンサー9側で設定されている。検出信号I1,I2のレベルがVrefを越えた時点で、比較器C1,C2の出力がローレベルからハイレベルに反転する。これに応じシーケンサー9は制御パルスを解除し、スイッチSWはオフからオンになる。入力ノードはスイッチSWにより接地されるので、Vswpは急激にゼロレベルに落ちる。したがって発光強度Lもゼロとなる。実際にはタイミングT2の段階の発光強度Lをしばらく保持しながら測距を行うことで、必要な距離データが得られる。その後でシーケンサー9は制御パルスを解除し、発光素子を消灯することになる。   At timing T2, the levels of the detection currents I1 and I2 corresponding to the amount of received light exceed the preset reference voltage Vref. This reference voltage Vref is set in advance on the sequencer 9 side so that the amount of received light is in a range suitable for distance measurement. When the levels of the detection signals I1 and I2 exceed Vref, the outputs of the comparators C1 and C2 are inverted from the low level to the high level. In response to this, the sequencer 9 releases the control pulse, and the switch SW is turned on from off. Since the input node is grounded by the switch SW, Vswp suddenly falls to zero level. Therefore, the emission intensity L is also zero. In practice, the necessary distance data can be obtained by measuring the distance while maintaining the emission intensity L at the stage of the timing T2. After that, the sequencer 9 releases the control pulse and turns off the light emitting element.

以上の説明から明らかなように、発光スタートのタイミングT1でVswpの電圧を時間と共に拡大スイープする。例えば対応する駆動電流Iledが0mA〜1.2Aまで変化するようスイープする。同時に、受光部7側に戻ってくる反射光量を比較器C1,C2でモニタし、測距をするための光量として充分な受光量に達したら、スイープを停止して発光を終わらせる。受光部7側の受光量モニタリングは、検出電流I1,I2をそれぞれモニタし両方とも参照電圧Vref以上となることで、判定を下す。あるいは簡易的に、受光素子5の合計光量を表すI1+I2を一個の比較器でモニタしてもよい。また、判別のためのレベルを決めるVrefは、周囲の明るさや温度などにより補正を適宜加えるようにしてもよい。   As is clear from the above description, the voltage Vswp is swept in an expanded manner with time at the light emission start timing T1. For example, the corresponding drive current Iled is swept so as to change from 0 mA to 1.2 A. At the same time, the amount of reflected light returning to the light receiving unit 7 is monitored by the comparators C1 and C2, and when the amount of light received is sufficient as the amount of light for distance measurement, the sweep is stopped and light emission is ended. The received light amount monitoring on the light receiving unit 7 side makes a determination by monitoring the detection currents I1 and I2 and both are equal to or higher than the reference voltage Vref. Alternatively, I1 + I2 representing the total light amount of the light receiving element 5 may be monitored with a single comparator. Further, Vref for determining the level for determination may be appropriately corrected according to ambient brightness, temperature, and the like.

図3に示したプロトタイプの測距装置は、駆動電流Iledを連続的に掃引しながら測距に適したレベルを求め、これを保持固定して実際の測距を行う。いわゆるアナログ方式である為、測距に適した駆動電流を保持固定する為、駆動回路10は容量CやスイッチSWなどからなるサンプルホールド回路が必要になる。また、アナルグ方式なので、必ずしも精密に駆動電流を制御できない。そこで本発明は、このアナログ方式のプロトタイプを改良し、デジタル方式の測距装置を提供するものである。図5は、本発明にかかるアクティブ測距装置の実施形態を示す回路図である。理解を容易にする為、図3に示したアナログ方式のアクティブ測距装置と対応する部分には対応する参照番号を付してある。図示するように、デジタル方式の本アクティブ測距装置は、対象物に対して光束を投光する投光部6と、対象物から反射して戻ってくる光束を受光して検出信号I1,I2を出力する受光部7と、検出信号I1,I2に基づいて対象物までの測距を行う演算回路(演算部)8と、投光部6及び受光部7の動作を制御するシーケンサー(制御部)9とで構成されている。   The prototype distance measuring device shown in FIG. 3 obtains a level suitable for distance measurement while continuously sweeping the drive current Iled, and performs actual distance measurement by holding and fixing this level. Since it is a so-called analog system, the drive circuit 10 needs a sample hold circuit including a capacitor C and a switch SW in order to hold and fix a drive current suitable for distance measurement. In addition, the driving current cannot be accurately controlled because of the analog method. Accordingly, the present invention provides an improved digital type distance measuring device by improving the analog type prototype. FIG. 5 is a circuit diagram showing an embodiment of an active distance measuring device according to the present invention. In order to facilitate understanding, parts corresponding to those of the analog type active distance measuring device shown in FIG. 3 are denoted by corresponding reference numerals. As shown in the figure, the digital active distance measuring device includes a light projecting unit 6 for projecting a light beam onto an object, and a detection signal I1, I2 by receiving the light beam reflected and returned from the object. , A calculation circuit (calculation unit) 8 for measuring the distance to the object based on the detection signals I1 and I2, and a sequencer (control unit) for controlling the operations of the light projecting unit 6 and the light receiving unit 7. ) 9.

投光部6はLEDなどからなる発光素子1と駆動回路10とで構成されている。二端子型発光素子1のアノードは電源Vccに接続され、カソードは駆動回路10に接続されている。駆動回路10は2入力1出力型の増幅器(オペアンプ)Aと駆動トランジスタTrと負荷抵抗Rledとで構成されている。駆動トランジスタTrのコレクタは発光素子1のカソードに接続し、エミッタは負荷抵抗Rledを介して接地されている。トランジスタTrのベースは増幅器Aの出力端子に接続している。増幅器Aの一方の入力端子(入力ノード)には段階的に変化する制御電圧が印加され、他方の入力端子はトランジスタTrのエミッタに接続している。   The light projecting unit 6 includes a light emitting element 1 made of an LED or the like and a drive circuit 10. The anode of the two-terminal light emitting element 1 is connected to the power supply Vcc, and the cathode is connected to the drive circuit 10. The drive circuit 10 includes a 2-input 1-output type amplifier (op-amp) A, a drive transistor Tr, and a load resistor Rled. The collector of the drive transistor Tr is connected to the cathode of the light emitting element 1, and the emitter is grounded via the load resistor Rled. The base of the transistor Tr is connected to the output terminal of the amplifier A. A control voltage that changes stepwise is applied to one input terminal (input node) of the amplifier A, and the other input terminal is connected to the emitter of the transistor Tr.

駆動回路10は、さらに複数個の定電流源14とスイッチ手段15と抵抗Rとを備えている。本実施形態では定電流源14が5個用いられており、それぞれ定電流i,2i,4i,8i,16iを供給する。スイッチ手段15は5個のスイッチからなり、各々対応する定電流源と増幅器Aの入力ノードとの間に接続されている。抵抗Rは同じく入力ノードと接地電位との間に接続されている。5個のスイッチからなるスイッチ手段15は、シーケンサー9からの制御に応じて5個の定電流源14を選択的に組み合わせて、レベルがiから31iまで段階的に切り替わるステップ電流Istpを生成する。このステップ電流Istpは抵抗Rを通って接地ラインに流れる。したがって、抵抗Rの両端に現れる電圧はR・Istp=R・ni(nは1〜31)で表される。この電圧R・niが制御電圧として増幅器Aの入力ノードに印加される。増幅器AはVled=Iled・Rledが制御電圧R・niと同じになる様に、増幅動作を行う。したがってIled・Rled=R・niから、Iled=R・ni/Rledで表される。nが1〜31まで段階的に変化するので、ゲインR/Rledで増幅された駆動電流Iledもそのレベルが1〜31まで段階的に変化する。以上により、駆動回路10はIled=R・ni/Rledで規定される駆動電流Iledを発光素子1に流す。この結果、発光素子1はIledに応じて段階的に変化する輝度で発光する。   The drive circuit 10 further includes a plurality of constant current sources 14, switch means 15, and a resistor R. In this embodiment, five constant current sources 14 are used to supply constant currents i, 2i, 4i, 8i, and 16i, respectively. The switch means 15 comprises five switches, each connected between the corresponding constant current source and the input node of the amplifier A. The resistor R is also connected between the input node and the ground potential. The switch means 15 composed of five switches selectively combines the five constant current sources 14 in accordance with control from the sequencer 9 to generate a step current Istp whose level is switched in steps from i to 31i. This step current Istp flows through the resistor R to the ground line. Therefore, the voltage appearing at both ends of the resistor R is represented by R · Istp = R · ni (n is 1 to 31). This voltage R · ni is applied to the input node of the amplifier A as a control voltage. The amplifier A performs an amplification operation so that Vled = Iled · Rled is equal to the control voltage R · ni. Therefore, from Iled · Rled = R · ni, Iled = R · ni / Rled. Since n changes stepwise from 1 to 31, the level of the drive current Iled amplified by the gain R / Rled also changes stepwise from 1 to 31. As described above, the drive circuit 10 causes the light-emitting element 1 to pass the drive current Iled defined by Iled = R · ni / Rled. As a result, the light emitting element 1 emits light with a luminance that changes stepwise according to Iled.

受光部7は受光素子5と一対の増幅器A1,A2とで構成されている。受光素子5は例えば2分割SPDからなり、対象物から戻ってきた光の受光位置に応じた光信号を一対の電極から出力する。増幅器A1,A2は受光素子5の各電極から出力された光信号を増幅し、検出信号I1,I2として演算回路8側に出力する。各増幅器A1,A2の入出力端子間には、定常成分を引き抜く為のDCCが接続されている。   The light receiving unit 7 includes a light receiving element 5 and a pair of amplifiers A1 and A2. The light receiving element 5 is composed of, for example, a two-part SPD, and outputs an optical signal corresponding to the light receiving position of the light returned from the object from a pair of electrodes. The amplifiers A1 and A2 amplify optical signals output from the respective electrodes of the light receiving element 5, and output the amplified signals as detection signals I1 and I2 to the arithmetic circuit 8 side. A DCC for extracting a steady component is connected between the input / output terminals of the amplifiers A1 and A2.

演算回路8は受光部7から出力された検出信号I1,I2の差演算を行って測距データを得る。この測距データはサンプルホールド回路12でサンプルホールドされた後、アンプA3を介して機器本体側に出力される。   The arithmetic circuit 8 calculates the difference between the detection signals I1 and I2 output from the light receiving unit 7 to obtain distance measurement data. The distance measurement data is sampled and held by the sample and hold circuit 12 and then output to the apparatus main body via the amplifier A3.

シーケンサー9は投光部6側のスイッチ手段15を切り替え制御する為の制御信号を供給すると共に、一対の比較器C1,C2を備えている。比較器C1の正入力端子には受光部7側から検出電流I1が供給され、他方の入力端子にはシーケンサー9側から所定の参照電圧Vrefが供給される。比較器C1の出力端子はシーケンサー9に接続されている。同様に比較機器C2の正入力端子は受光部7側から検出電流I2が供給され、負入力端子にはシーケンサー9側から所定の参照電圧Vrefが供給され、出力端子はシーケンサー9に接続されている。かかる構成において、シーケンサー9及び一対の比較器C1,C2などで構成される制御部は、投光部6の駆動回路10を制御して駆動電流Iledのレベルを段階的に切り替えて投光を行うと共に、受光部7の受光量をモニタして測距に適したレベルを検出し、この検出されたレベルの駆動電流Iledを用いて測距を実行し、且つサンプルホールド回路12のスイッチSW1を制御して測定結果を確定する。   The sequencer 9 supplies a control signal for switching and controlling the switch means 15 on the light projecting unit 6 side, and includes a pair of comparators C1 and C2. The detection current I1 is supplied from the light receiving unit 7 side to the positive input terminal of the comparator C1, and a predetermined reference voltage Vref is supplied from the sequencer 9 side to the other input terminal. The output terminal of the comparator C1 is connected to the sequencer 9. Similarly, a detection current I2 is supplied from the light receiving unit 7 side to the positive input terminal of the comparison device C2, a predetermined reference voltage Vref is supplied from the sequencer 9 side to the negative input terminal, and an output terminal is connected to the sequencer 9. . In such a configuration, the control unit including the sequencer 9 and the pair of comparators C1 and C2 controls the drive circuit 10 of the light projecting unit 6 to perform light projection by switching the level of the drive current Iled step by step. At the same time, the amount of light received by the light receiving unit 7 is monitored to detect a level suitable for distance measurement, the distance is measured using the drive current Iled of the detected level, and the switch SW1 of the sample hold circuit 12 is controlled. To confirm the measurement result.

図6は、ステップ電流Istpの時間変化を示すグラフである。本実施例では、ステップ電流Istpを高レベル(31i)から低レベル(i)に向かって段階的に切り替えている。例えばシーケンサー9によって5個の定電流源14を全てオンすると、ステップ電流Istpはi+2i+4i+8i+16i=31iとなって最大レベルのステップ電流Istp=31iを出力する。また、5個の定電流源14のうち一番出力の小さな定電流源を選択すると、ステップ電流Istp=iとなって、最小レベルの電流が得られる。この様に、シーケンサー9はスイッチ手段15を適切に切り替え制御して、ステップ電流Istpのレベルが31i〜iまで段階的に減少するように制御している。これに応じ、駆動電流Iledも段階的に高レベルから低レベルまで変化する。これと同時に、受光部7側に戻ってくる反射光量を比較器C1,C2でモニタし、測距をする為の光量として必要且つ充分な受光量に達したら、駆動電流の段階的な切り替えを停止する。受光部7側の受光量モニタリングは、検出信号I1,I2をそれぞれモニタし両方とも参照電圧Vref以上となることで判定を下す。あるいは簡易的に、受光素子5の合計光量を表すI1+I2を1個の比較器でモニタしても良い。また、判別の為のレベルを決める参照電圧Vrefは、周囲の明るさや温度などにより補正を適宜加える様にしても良い。   FIG. 6 is a graph showing the time change of the step current Istp. In this embodiment, the step current Istp is switched stepwise from the high level (31i) to the low level (i). For example, when all five constant current sources 14 are turned on by the sequencer 9, the step current Istp becomes i + 2i + 4i + 8i + 16i = 31i, and the step current Istp = 31i at the maximum level is output. When the constant current source with the smallest output is selected from the five constant current sources 14, the step current Istp = i is obtained, and the current at the minimum level is obtained. In this way, the sequencer 9 appropriately controls the switching means 15 so that the level of the step current Istp decreases stepwise from 31i to i. In response to this, the drive current Iled also changes stepwise from a high level to a low level. At the same time, the amount of reflected light returning to the light receiving unit 7 side is monitored by the comparators C1 and C2, and when the amount of received light that is necessary and sufficient for distance measurement is reached, the drive current is switched stepwise Stop. The amount of received light monitoring on the light receiving unit 7 side is determined by monitoring the detection signals I1 and I2 and both are equal to or higher than the reference voltage Vref. Alternatively, I1 + I2 representing the total light amount of the light receiving element 5 may be monitored with a single comparator. Further, the reference voltage Vref that determines the level for determination may be appropriately corrected according to ambient brightness, temperature, and the like.

図7は、投光部6に含まれる駆動回路10の他の実施形態を示す回路図である。図5に示した先の実施形態では。オペアンプAを用いてステップ電流Istpを増幅し駆動電流Iledを得ていた。この方式は抵抗Rにステップ電流Istpを流し、その時生じる電圧降下分をオペアンプAの入力ノードに供給するものである。その際、32レベル分の分解能を得る為、抵抗Rの一端に加わる電源電圧Vccをある程度高く設定しなければならない。そこで図7に示した実施形態では、オペアンプに代えてカレントミラー回路をカスケード接続することで、増幅回路を構成している。この様にすれば、電源電圧Vccを低電圧化する事が可能である。具体的に見ると、複数個の定電流源14とスイッチ手段15とによって生成されるステップ電流Istpは、三段に接続されたカレントミラー回路M1、M2,M3を介して、駆動トランジスタTrのベースに供給される。例えば第一段のカレントミラー回路M1の増幅率は20対1である。第二段のカレントミラー回路M2の増幅率は例えば10対1に設定されている。三段目のカレントミラー回路M3の増幅率は5対1に設定されている。この結果1000倍に増幅されたステップ電流Istpが駆動トランジスタTrに流れる。本実施形態は、純粋に電流増幅回路で投光部の駆動回路10を構成する事ができる。   FIG. 7 is a circuit diagram showing another embodiment of the drive circuit 10 included in the light projecting unit 6. In the previous embodiment shown in FIG. The operational current A was used to amplify the step current Istp to obtain the drive current Iled. In this method, a step current Istp is passed through a resistor R, and the voltage drop generated at that time is supplied to the input node of the operational amplifier A. At this time, in order to obtain a resolution of 32 levels, the power supply voltage Vcc applied to one end of the resistor R must be set to be high to some extent. Therefore, in the embodiment shown in FIG. 7, an amplifier circuit is configured by cascading current mirror circuits instead of the operational amplifier. In this way, the power supply voltage Vcc can be lowered. Specifically, the step current Istp generated by the plurality of constant current sources 14 and the switch means 15 is supplied to the base of the drive transistor Tr via the current mirror circuits M1, M2, M3 connected in three stages. To be supplied. For example, the amplification factor of the first stage current mirror circuit M1 is 20: 1. The amplification factor of the second-stage current mirror circuit M2 is set to 10 to 1, for example. The amplification factor of the third-stage current mirror circuit M3 is set to 5: 1. As a result, the step current Istp amplified 1000 times flows to the drive transistor Tr. In this embodiment, the drive circuit 10 of the light projecting unit can be configured purely with a current amplifier circuit.

図8は、本発明にかかる測距装置をICに組み込んだ実施例を示す回路図である。図示するように、測距ICは、8つの接続端子を備えている。この内、入力端子IRDには外付けの発光素子1が接続する。又制御端子CNTR及びADJは外部から制御信号CNTR及びADJを夫々入力する。出力端子Doutは測距結果を示す出力信号Doutを外部に出力する。本実施例では、この測距結果を表す信号は二値であり測定対象物が遠近いずれかに位置する事を示す。電源端子VBは外部から電源電位VBを供給する。接地端子GNDは接地される。残りの端子OSCには外付けの容量が接続される。また端子Vrefにも外付けの抵抗が接続される。   FIG. 8 is a circuit diagram showing an embodiment in which the distance measuring device according to the present invention is incorporated in an IC. As shown in the figure, the distance measuring IC includes eight connection terminals. Among these, the external light emitting element 1 is connected to the input terminal IRD. The control terminals CNTR and ADJ receive control signals CNTR and ADJ from the outside, respectively. The output terminal Dout outputs an output signal Dout indicating the distance measurement result to the outside. In the present embodiment, the signal representing the distance measurement result is binary, indicating that the measurement object is located either near or near. The power supply terminal VB supplies a power supply potential VB from the outside. The ground terminal GND is grounded. External capacitors are connected to the remaining terminals OSC. An external resistor is also connected to the terminal Vref.

測距ICは受光素子5として2分割型のSPDを内蔵している。この2分割SPDには内蔵ヘッドアンプ11が接続されている。ヘッドアンプ11は加算(+)と減算(−)に切り替え可能である。加算側では、2分割SPDから出力される信号を加算して増幅する。その出力結果は受光量モニタリングに用いる。一方減算側は一対のSPDの差分を求めこれを増幅する。その出力結果は測距に用いられる。具体的には、対象物の遠近判定に用いられる。ヘッドアンプ11の出力には増幅器17,18が二段に接続され、その後にサンプルホールド回路12が接続されている。ヘッドアンプ11からの出力は二段のアンプ17,18で増幅された後、サンプルホールド回路12でサンプルホールドされる。各増幅器17,18には受光信号からバックグランドをキャンセルする為に参照電圧Vref1が供給されている。サンプルホールド回路12には比較器Cが接続されており、その比較結果は内部信号Coutとして出力される。比較器Cはサンプルホールド回路12に保持された信号と所定の参照電圧Vref2を比較する。この比較器Cは受光量判定と遠近判定の両方に用いられる。その際、参照電圧Vref2は適宜切り替えられる。   The distance measuring IC incorporates a two-part SPD as the light receiving element 5. A built-in head amplifier 11 is connected to the two-split SPD. The head amplifier 11 can be switched between addition (+) and subtraction (−). On the addition side, the signals output from the 2-split SPD are added and amplified. The output result is used for monitoring the amount of received light. On the other hand, the subtraction side obtains the difference between the pair of SPDs and amplifies it. The output result is used for distance measurement. Specifically, it is used for perspective determination of an object. Amplifiers 17 and 18 are connected to the output of the head amplifier 11 in two stages, and a sample hold circuit 12 is connected thereafter. The output from the head amplifier 11 is amplified by the two-stage amplifiers 17 and 18 and then sampled and held by the sample and hold circuit 12. A reference voltage Vref1 is supplied to each of the amplifiers 17 and 18 in order to cancel the background from the received light signal. A comparator C is connected to the sample and hold circuit 12, and the comparison result is output as an internal signal Cout. The comparator C compares the signal held in the sample hold circuit 12 with a predetermined reference voltage Vref2. This comparator C is used for both the received light amount determination and the perspective determination. At that time, the reference voltage Vref2 is appropriately switched.

測距ICは赤外LEDなどからなる発光素子1を外付けしている。この発光素子1には内蔵駆動回路10が接続している。この内蔵駆動回路10は各々レベルの異なる定電流を出力する複数個の定電流源14と、複数個の定電流源14を選択的に組み合わせて、レベルが段階的に切り替わるステップ電流Istpを生成するスイッチ手段15と、生成されたステップ電流Istpを増幅し駆動電流Iledとして発光素子1に供給する増幅手段とで構成されている。本実施例ではこの増幅手段はカスケード接続されたカレントミラー回路からなる。   The distance measuring IC has a light emitting element 1 made of an infrared LED or the like externally attached. A built-in drive circuit 10 is connected to the light emitting element 1. The built-in drive circuit 10 selectively combines a plurality of constant current sources 14 that output constant currents of different levels and a plurality of constant current sources 14 to generate a step current Istp whose level is switched stepwise. The switch means 15 and the amplifying means for amplifying the generated step current Istp and supplying it to the light emitting element 1 as the drive current Iled. In this embodiment, the amplifying means is composed of cascaded current mirror circuits.

測距ICはさらに内蔵のシーケンサー9として制御ロジック回路を含んでいる。この制御ロジック回路は制御信号CNTR,ADJと内部信号Coutに応じて動作し、測距結果を表す出力信号Doutを出力する。その際、制御ロジック回路はヘッドアンプ11に対して加算/減算切り替えを行う。また比較器Cに対して必要に応じ参照電圧Vref2の切り替えを行う。加えて駆動回路10に対して駆動電流(発光電流)の段階的な切り替え制御を行う。なお、制御ロジック回路9には発振回路OSCが接続されており、10kHzないし150kHzの動作用クロック信号を供給している。加えて測距ICはレギュレーターVregを備えており、電源端子VBを介して外部から供給される電源電圧VBを調整して、内部電源電圧Vccを生成している。本実施例では外部電源電圧VBは6〜2.4Vである。これに対し内部電源電圧Vccは2.2Vに調整されている。   The distance measuring IC further includes a control logic circuit as a built-in sequencer 9. This control logic circuit operates in response to the control signals CNTR and ADJ and the internal signal Cout, and outputs an output signal Dout representing the distance measurement result. At that time, the control logic circuit performs addition / subtraction switching with respect to the head amplifier 11. Further, the reference voltage Vref2 is switched for the comparator C as necessary. In addition, stepwise switching control of the drive current (light emission current) is performed on the drive circuit 10. An oscillation circuit OSC is connected to the control logic circuit 9 and supplies an operation clock signal of 10 kHz to 150 kHz. In addition, the distance measuring IC includes a regulator Vreg, and adjusts a power supply voltage VB supplied from the outside via a power supply terminal VB to generate an internal power supply voltage Vcc. In this embodiment, the external power supply voltage VB is 6 to 2.4V. On the other hand, the internal power supply voltage Vcc is adjusted to 2.2V.

図9は、図8に示した測距ICの動作説明に供するタイミングチャートである。時間軸Tに沿って外部電源電圧VB、外部制御信号CNTR,ADJ、駆動電流Iled、内部信号Cout及び出力信号Doutの変化を表している。なお内部信号Coutは外部信号と区別するためカッコを付けてある。合わせて内部リセット信号Resetもタイミングチャートに載せてある。タイミングT0で電源が挿入され、外部電源電圧VBが立ち上がる。これに合わせ、出力信号Dout及び内部信号Coutがハイレベルに初期化される。電源投入に合わせパワーオンリセットがかかり内部リセット信号Resetが立ち上がる。これにより、測距ICに内蔵されている制御ロジック回路9などにリセットがかかり、待機状態となる。例えばヘッドアンプが加算側にリセットされる。   FIG. 9 is a timing chart for explaining the operation of the distance measuring IC shown in FIG. Changes in the external power supply voltage VB, the external control signals CNTR and ADJ, the drive current Iled, the internal signal Cout, and the output signal Dout along the time axis T are shown. The internal signal Cout is parenthesized to distinguish it from the external signal. In addition, an internal reset signal Reset is also shown in the timing chart. The power supply is inserted at timing T0, and the external power supply voltage VB rises. In accordance with this, the output signal Dout and the internal signal Cout are initialized to a high level. When the power is turned on, a power-on reset is performed and the internal reset signal Reset is raised. As a result, the control logic circuit 9 or the like built in the distance measuring IC is reset and enters a standby state. For example, the head amplifier is reset to the addition side.

続いてタイミングT1で外部制御信号CNTR及びADJが立ち上がると、動作を開始する。第一段階としてまず駆動電流Iledの設定動作が行われる。具体的には、タイミングT1からタイミングT4に向かって駆動電流Iledが高レベルから低レベルまで段階的に切り替えられる。これに応じて受光量が段階的に下がっていく。始めにタイミングT1−T2の間で最大レベルの駆動電流Iledが出力される。これに応じ受光量は通常の場合適切な量を表すVref2よりも超えているので内部信号Coutはハイレベルからローレベルに切り替わる。以後Iledは段階的に低下していくが依然として適切なレベルを上回っているのでCoutはローレベルに止まっている。タイミングT3まで来たときIledが適切なレベルに達したので、内部信号Coutはローレベルからハイレベルに切り替わる。この時の駆動電流Iledのレベルが測距用に設定される。この後タイミングT4で制御信号ADJがハイレベルからローレベルに戻り、第一段階が終了する。   Subsequently, when the external control signals CNTR and ADJ rise at timing T1, the operation is started. As the first stage, first, the setting operation of the drive current Iled is performed. Specifically, the drive current Iled is switched stepwise from the high level to the low level from the timing T1 to the timing T4. Correspondingly, the amount of received light decreases step by step. First, the drive current Iled at the maximum level is output between timings T1 and T2. Accordingly, the amount of received light exceeds Vref2 representing an appropriate amount in a normal case, so that the internal signal Cout is switched from the high level to the low level. Thereafter, Iled gradually decreases, but still exceeds an appropriate level, so Cout remains at a low level. Since Iled has reached an appropriate level at time T3, the internal signal Cout is switched from the low level to the high level. At this time, the level of the drive current Iled is set for distance measurement. Thereafter, at timing T4, the control signal ADJ returns from the high level to the low level, and the first stage is completed.

引き続きタイミングT4以降第二段階の測距動作が行われる。その際、制御ロジック回路はヘッドアンプを減算側に切り替えるとともに、参照電圧Vref1,Vref2を受光量検出用から測距用に切り替える。続いて測距であるが、具体的にはタイミングT4〜T5まで発光素子を所定回数(本実施例では128)発光させる間、内部比較信号Coutの出力をカウントする。Coutはハイレベルのとき対象物が遠距離にある事を表し、ローレベルのとき対象物が近距離にある事を表す二値信号である。Coutのカウント結果が、例えば128/2+1回以上ローレベルなら、出力信号Doutをローレベルとして対象物が近距離にある事を表す。この出力判定を128回発光を繰り返す毎に行う。例えばタイミングT4からタイミングT5までの第1回判定では、Doutがハイレベルにあり、対象物が遠距離にある事を判定している。次のタイミングT5−T6では、内部信号Coutがハイレベルとローレベルで変動しているが、依然としてハイレベルのカウント数が多いので、Doutはハイレベルに位置している。次のタイミングT6以降になるとCoutのカウントが逆転し、ローレベルの回数が増え、Doutもこれに応じてハイレベルからローレベルに切り替わっている。即ちタイミングT4以降の過程は、対象物が遠方から接近してくる状態を表しており、丁度タイミングT6で対象物が遠距離範囲から近距離範囲に入った事を表している。   Subsequently, the second-stage ranging operation is performed after timing T4. At that time, the control logic circuit switches the head amplifier to the subtraction side, and switches the reference voltages Vref1 and Vref2 from detection of received light amount to detection of distance. Subsequently, ranging, specifically, the output of the internal comparison signal Cout is counted while the light emitting element emits light a predetermined number of times (128 in this embodiment) from timing T4 to T5. Cout is a binary signal indicating that the object is at a long distance when it is at a high level and that the object is at a short distance when it is at a low level. If the count result of Cout is low level, for example, 128/2 + 1 times or more, the output signal Dout is set to low level, indicating that the object is at a short distance. This output determination is performed every time the light emission is repeated 128 times. For example, in the first determination from timing T4 to timing T5, it is determined that Dout is at a high level and the object is at a long distance. At the next timing T5-T6, the internal signal Cout fluctuates between the high level and the low level. However, since the count number of the high level is still large, Dout is positioned at the high level. After the next timing T6, the count of Cout is reversed, the number of times of the low level is increased, and Dout is switched from the high level to the low level accordingly. That is, the process after the timing T4 represents a state in which the object is approaching from a distance, and represents that the object has just entered the short distance range from the long distance range at the timing T6.

以上の動作から明らかなように、本発明の測距ICは必要以上に赤外LED素子の駆動電流を流す事なく、赤外LED素子の長寿命化が図れ、且つ特別仕様の高価な高耐久性赤外LED素子を使用しなくても、通常の安価な赤外LED素子を用いる事ができる。なお図8の実施例ではIC化された回路のロジックで制御を行っているが、これに代えてCPUでソフト的に制御を行っても良い。   As is clear from the above operation, the distance measuring IC of the present invention can extend the life of the infrared LED element without flowing the drive current of the infrared LED element more than necessary, and is an expensive and highly durable special specification. Even if a neutral infrared LED element is not used, a normal inexpensive infrared LED element can be used. In the embodiment of FIG. 8, the control is performed by the logic of the circuit formed as an IC. However, instead of this, the control may be performed by software by the CPU.

図10は、本発明にかかる測距装置の一応用例を示す模式図であり、人検知センサーとして用いられる。図示するように、壁面32に備え付けられた小便器31には、小便器31に洗浄水を供給するための給水管33と、汚水を排出するための配水管34とが接続されている。給水管33の途中には電磁弁35が配設されている。電磁弁35は図示しないコイルと同コイルに設けた弁体とを有し、コイルの非励磁時(通常の状態)には閉弁されて給水管33を遮断すると共に、コイルの励磁と共に開弁して給水管33を開通させるようにオン/オフ制御される。そして、この電磁弁35の開弁動作によって給水管33を通して小便器31に洗浄水が供給される。小便器31の上方には本発明にかかる測距装置0が配設されており、これにて小便器31の使用者の有無が検知される。制御回路37はCPU,ROM,RAMなどを有するマイクロコンピュータであり、小便器31の上方において壁面32に埋設されている。同制御回路37には測距装置0及び電磁弁35が接続されており、制御回路37は測距装置0の検知結果を入力し、その検知結果に基づいて電磁弁35に対し駆動信号を出力する。即ち、使用者が所定の距離範囲に入った後、立ち去った時点で洗浄水を流すように制御する。   FIG. 10 is a schematic diagram showing an application example of the distance measuring device according to the present invention, which is used as a human detection sensor. As shown in the figure, a urinal 31 provided on the wall surface 32 is connected to a water supply pipe 33 for supplying washing water to the urinal 31 and a water distribution pipe 34 for discharging sewage. An electromagnetic valve 35 is disposed in the middle of the water supply pipe 33. The electromagnetic valve 35 has a coil (not shown) and a valve body provided in the coil, and is closed when the coil is not excited (normal state) to shut off the water supply pipe 33 and open with the excitation of the coil. Thus, on / off control is performed so that the water supply pipe 33 is opened. Then, the washing water is supplied to the urinal 31 through the water supply pipe 33 by the opening operation of the electromagnetic valve 35. The distance measuring device 0 according to the present invention is disposed above the urinal 31 so that the presence or absence of the user of the urinal 31 is detected. The control circuit 37 is a microcomputer having a CPU, ROM, RAM, and the like, and is embedded in the wall surface 32 above the urinal 31. A distance measuring device 0 and an electromagnetic valve 35 are connected to the control circuit 37, and the control circuit 37 inputs a detection result of the distance measuring device 0 and outputs a drive signal to the electromagnetic valve 35 based on the detection result. To do. That is, control is performed so that the washing water flows when the user leaves after entering the predetermined distance range.

図11は、本発明にかかる測距装置の他の応用例を示す模式図である。図11は、自動取引装置の1つの実施形態であるATMの外観構成を示す斜視図である。このATMは少なくとも前面部が屋外などに露出するように設置されるものであり、装置本体には、シャッタにより開閉自在な紙幣入出金口41、利用者との対話用の表示装置としてのCRT42及びキー入力部43、利用者認証用のカードが装着されるカード装着部44、装置本体の前面部に配設された対人センサーとしての測距装置0などが備えられ、本体内には紙幣処理部が搭載されている。測距装置0は投光部6及び受光部7からなる。ATMは使用者が居ないとき待機状態もしくは節電状態におかれる。この場合でも測距装置0は動作状態にある。測距装置0が使用者の接近を感知すると、ATMは待機状態から稼動状態に復帰する。   FIG. 11 is a schematic diagram showing another application example of the distance measuring apparatus according to the present invention. FIG. 11 is a perspective view showing an external configuration of an ATM which is one embodiment of an automatic transaction apparatus. This ATM is installed so that at least the front part is exposed to the outdoors, etc. The apparatus main body includes a bill deposit / withdrawal port 41 that can be opened and closed by a shutter, a CRT 42 as a display device for dialog with a user, A key input unit 43, a card mounting unit 44 on which a user authentication card is mounted, a distance measuring device 0 as an interpersonal sensor disposed on the front surface of the apparatus main body, and the like are provided. Is installed. The distance measuring device 0 includes a light projecting unit 6 and a light receiving unit 7. The ATM is placed in a standby state or a power saving state when there is no user. Even in this case, the distance measuring device 0 is in an operating state. When the distance measuring device 0 detects the approach of the user, the ATM returns from the standby state to the operating state.

測距装置の参考例を示す回路図である。It is a circuit diagram which shows the reference example of a distance measuring device. 測距装置の他の参考例を示す回路図である。It is a circuit diagram which shows the other reference example of a distance measuring device. 測距装置の別の参考例を示す回路図である。It is a circuit diagram which shows another reference example of a distance measuring device. 図3に示した参考例の動作説明に供するタイミングチャートである。It is a timing chart with which it uses for operation | movement description of the reference example shown in FIG. 本発明にかかる測距装置の実施形態を示す回路図である。1 is a circuit diagram showing an embodiment of a distance measuring device according to the present invention. 図5に示した実施形態の動作説明に供する模式図である。It is a schematic diagram with which it uses for operation | movement description of embodiment shown in FIG. 本発明にかかる測距装置の他の実施形態の主要部を示す回路図である。It is a circuit diagram which shows the principal part of other embodiment of the distance measuring device concerning this invention. 本発明にかかる測距装置の実施例を示す回路図である。It is a circuit diagram which shows the Example of the distance measuring device concerning this invention. 図8に示した実施例の動作説明に供するタイミングチャートである。It is a timing chart with which it uses for operation | movement description of the Example shown in FIG. 本発明にかかる測距装置の一応用例を示す模式的な断面図である。It is typical sectional drawing which shows one application example of the distance measuring device concerning this invention. 同じく他の応用例を示す模式的な斜視図である。It is a typical perspective view which similarly shows the other application example. 従来の測距装置の原理を示す模式図である。It is a schematic diagram which shows the principle of the conventional ranging apparatus.

符号の説明Explanation of symbols

0・・・測距装置、1・・・発光素子、5・・・受光素子、6・・・投光部、7・・・受光部、8・・・演算回路、9・・・シーケンサー、10・・・駆動回路、14・・・定電流源、15・・・スイッチ手段、A・・・増幅器、M・・・カレントミラー回路
DESCRIPTION OF SYMBOLS 0 ... Distance measuring device, 1 ... Light emitting element, 5 ... Light receiving element, 6 ... Light emitting part, 7 ... Light receiving part, 8 ... Arithmetic circuit, 9 ... Sequencer, DESCRIPTION OF SYMBOLS 10 ... Drive circuit, 14 ... Constant current source, 15 ... Switch means, A ... Amplifier, M ... Current mirror circuit

Claims (4)

対象物に対して光束を投光する投光部と、対象物から反射して戻ってくる光束を受光して検出信号を出力する受光部と、該検出信号に基づいて該対象物までの測距を行う演算部と、該投光部及び受光部の動作を制御する制御部とからなる測距装置であって、
前記投光部は、駆動電流に応じて光束を放射する発光素子と、該発光素子に駆動電流を供給する駆動回路とを含み、
前記制御部は、該投光部の駆動回路を制御して該駆動電流のレベルを段階的に切り替えて投光を行なうとともに、該受光部の受光量をモニタして測距に適したレベルを検出し、該検出されたレベルの駆動電流を用いて測距を行うことを特徴とする測距装置。
A light projecting unit that projects a light beam onto the object, a light receiving unit that receives the light beam reflected and returned from the object and outputs a detection signal, and a measurement to the object based on the detection signal. A distance measuring device comprising a calculation unit that performs distance and a control unit that controls operations of the light projecting unit and the light receiving unit,
The light projecting unit includes a light emitting element that emits a light beam according to a driving current, and a driving circuit that supplies a driving current to the light emitting element,
The control unit controls the driving circuit of the light projecting unit to switch the level of the drive current stepwise to perform light projection, and monitors the amount of light received by the light receiving unit to obtain a level suitable for distance measurement. A distance measuring device that detects and performs distance measurement using a drive current of the detected level.
前記制御部は、高レベルから低レベルに向かって該駆動電流のレベルを段階的に切り替えることを特徴とする請求項1記載の測距装置。   The distance measuring apparatus according to claim 1, wherein the control unit switches the level of the drive current stepwise from a high level to a low level. 前記駆動回路は、各々レベルの異なる定電流を出力する複数個の定電流源と、該制御部からの制御に応じて該複数個の定電流源を選択的に組み合わせて、レベルが段階的に切り替わる電流を生成するスイッチ手段と、該生成された電流を増幅し駆動電流として該発光素子に供給する増幅手段とからなることを特徴とする請求項1記載の測距装置。   The driving circuit selectively combines the plurality of constant current sources that output constant currents having different levels and the plurality of constant current sources in accordance with control from the control unit, and the levels are stepwise. 2. The distance measuring apparatus according to claim 1, comprising switch means for generating a switching current and amplification means for amplifying the generated current and supplying the generated current to the light emitting element as a drive current. 前記増幅手段は、カレントミラー回路からなることを特徴とする請求項3記載の測距装置。   4. A distance measuring apparatus according to claim 3, wherein said amplifying means comprises a current mirror circuit.
JP2005058345A 2005-03-03 2005-03-03 Range finder Pending JP2006242728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058345A JP2006242728A (en) 2005-03-03 2005-03-03 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058345A JP2006242728A (en) 2005-03-03 2005-03-03 Range finder

Publications (1)

Publication Number Publication Date
JP2006242728A true JP2006242728A (en) 2006-09-14

Family

ID=37049297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058345A Pending JP2006242728A (en) 2005-03-03 2005-03-03 Range finder

Country Status (1)

Country Link
JP (1) JP2006242728A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064283A (en) * 1983-09-19 1985-04-12 Asahi Optical Co Ltd Light emitting type distance measuring apparatus
JPS61277009A (en) * 1985-06-03 1986-12-08 Konishiroku Photo Ind Co Ltd Range finder
JPH01206212A (en) * 1988-02-12 1989-08-18 Omron Tateisi Electron Co Measuring apparatus of distance
JPH05107358A (en) * 1991-10-18 1993-04-27 Sharp Corp Range finder circuit
JPH08219768A (en) * 1995-02-17 1996-08-30 Mitsubishi Electric Corp Distance-measuring signal processor
JPH0914912A (en) * 1995-04-26 1997-01-17 Sony Corp Method and apparatus for measuring distance
JP2002098525A (en) * 2000-07-07 2002-04-05 Fuji Photo Optical Co Ltd Range finder
JP2003169251A (en) * 2001-09-20 2003-06-13 Sony Corp Solid-state image pickup unit and control method thereof
JP2004294325A (en) * 2003-03-27 2004-10-21 Fuji Photo Optical Co Ltd Range finder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064283A (en) * 1983-09-19 1985-04-12 Asahi Optical Co Ltd Light emitting type distance measuring apparatus
JPS61277009A (en) * 1985-06-03 1986-12-08 Konishiroku Photo Ind Co Ltd Range finder
JPH01206212A (en) * 1988-02-12 1989-08-18 Omron Tateisi Electron Co Measuring apparatus of distance
JPH05107358A (en) * 1991-10-18 1993-04-27 Sharp Corp Range finder circuit
JPH08219768A (en) * 1995-02-17 1996-08-30 Mitsubishi Electric Corp Distance-measuring signal processor
JPH0914912A (en) * 1995-04-26 1997-01-17 Sony Corp Method and apparatus for measuring distance
JP2002098525A (en) * 2000-07-07 2002-04-05 Fuji Photo Optical Co Ltd Range finder
JP2003169251A (en) * 2001-09-20 2003-06-13 Sony Corp Solid-state image pickup unit and control method thereof
JP2004294325A (en) * 2003-03-27 2004-10-21 Fuji Photo Optical Co Ltd Range finder

Similar Documents

Publication Publication Date Title
US8681192B2 (en) Sensor device and electronic apparatus
US8629779B2 (en) Adapting a scanning point of a sample and hold circuit of an optical smoke detector
CN104641562B (en) Analog-to-digital conversion circuit, sensor device, portable phone and digital camera
JP2774955B2 (en) Ambient light detector, light source lighting controller and reader
WO2015011916A1 (en) Current measurement device
JP3337404B2 (en) Dust sensor device with sensitivity correction function
US6259514B1 (en) Rangefinder apparatus
JP2006242728A (en) Range finder
JP4817368B2 (en) Fire detector
JP3885489B2 (en) Photoelectric sensor
JP2006153813A (en) Distance measuring apparatus
JP2006153814A (en) Distance measuring apparatus
JP5017078B2 (en) Alarm
JP2014006092A (en) State detection device
JP2002107145A (en) Range finder and adjuster therefor
US7015849B2 (en) Control circuit
CN106353835A (en) Photoelectric sensor
JP3694018B2 (en) Ranging device
JP2836025B2 (en) Focus adjustment signal processor
US6188844B1 (en) Rangerfinder apparatus
JP3762589B2 (en) Ranging device
JP4074828B2 (en) Ranging sensor
JP3130559B2 (en) Active distance measuring device
US9274214B2 (en) Apparatus for controlling driving of lighting-emitting diode and method of providing control signal thereof
JP4047738B2 (en) Multi-optical axis photoelectric switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02