JPH04307387A - Range finder device - Google Patents

Range finder device

Info

Publication number
JPH04307387A
JPH04307387A JP7092991A JP7092991A JPH04307387A JP H04307387 A JPH04307387 A JP H04307387A JP 7092991 A JP7092991 A JP 7092991A JP 7092991 A JP7092991 A JP 7092991A JP H04307387 A JPH04307387 A JP H04307387A
Authority
JP
Japan
Prior art keywords
apd
output
laser oscillator
amplifier
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7092991A
Other languages
Japanese (ja)
Inventor
Kohei Noro
野呂 浩平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7092991A priority Critical patent/JPH04307387A/en
Publication of JPH04307387A publication Critical patent/JPH04307387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To prevent an erroneous measurement from being made even at a short distance by changing a bias of an avalanche diode (APD) which performs a photoelectric conversion of light emitted from a laser oscillator and reflected by a target and then returned with an output of a mirror integration equipment. CONSTITUTION:A sensitivity of an APD 4 is changed by allowing a bias voltage to be varied with an output of a mirror integration equipment 9 and sensitivity becomes small at a short distance. Therefore, even if a strong reception light enters, an output of a trans-impedance amplifier 5 is not saturated and does not output any double pulses. Then, laser beam is emitted from a laser oscillator 1 and a time from that moment to a time when a target receives the reflected light is counted by a counter 10, thus enabling a distance to be known without resulting in an erroneous distance measurement.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はレーザを用いた測距装
置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improvement in a distance measuring device using a laser.

【0002】0002

【従来の技術】図5は従来の測距装置を示す構成図であ
り、1はレーザ発振器、2は送信光学系、3は受信光学
系、4はAPD(アバランシェフォトダイオード)、5
はトランスインピーダンスアンプ、6はAGC(オート
ゲインコントロール)アンプ、7はアンプ、8は光検出
器、9はミラー積分器、10はカウンタである。
2. Description of the Related Art FIG. 5 is a configuration diagram showing a conventional distance measuring device, in which 1 is a laser oscillator, 2 is a transmitting optical system, 3 is a receiving optical system, 4 is an APD (avalanche photodiode), and 5 is a transmitting optical system.
is a transimpedance amplifier, 6 is an AGC (auto gain control) amplifier, 7 is an amplifier, 8 is a photodetector, 9 is a Miller integrator, and 10 is a counter.

【0003】図5において、レーザ発振器1がレーザ光
を発振すると、光検出器8がレーザ発振のタイミングに
電気信号(スタートパルス)を発生し、この信号でカウ
ンタ10の計数を開始させる。他方、レーザ発振器1か
ら出た光は送信光学系2を介して目標を照射する。目標
で反射して帰って来たレーザ光は受信光学系3でAPD
4の検出面に集光され、電流信号に変換される。この電
流信号はトランスインピーダンスアンプ5で電圧信号に
変換され、さらにAGCアンプ6とアンプ7で増幅され
、目標から反射して帰って来た光に対応する電気信号(
ストップパルス)となる。このストップパルスでカウン
タ10の計数を停止させる。つまりカウンタ10ではレ
ーザ光の出た瞬間から、目標よりの反射光があった瞬間
までの時間差を計測している。光速Cは一定であるので
、この時間差tは測距したい目標までの距離Rに比例し
て式(1)と示されるので、距離Rを知ることができる
。 R=Ct/2          (1)
In FIG. 5, when a laser oscillator 1 oscillates a laser beam, a photodetector 8 generates an electric signal (start pulse) at the timing of laser oscillation, and this signal causes a counter 10 to start counting. On the other hand, the light emitted from the laser oscillator 1 irradiates the target via the transmission optical system 2. The laser beam reflected by the target and returned is sent to the receiving optical system 3 via APD.
The light is focused on the detection surface 4 and converted into a current signal. This current signal is converted into a voltage signal by a transimpedance amplifier 5, and further amplified by an AGC amplifier 6 and an amplifier 7, and an electric signal corresponding to the light reflected from the target (
stop pulse). This stop pulse causes the counter 10 to stop counting. In other words, the counter 10 measures the time difference from the moment the laser beam is emitted to the moment the reflected light from the target is received. Since the speed of light C is constant, this time difference t is proportional to the distance R to the target to be measured and is expressed by equation (1), so the distance R can be known. R=Ct/2 (1)

【0004】
一方、アンプ7の出力の信号強度(ストップパルス強度
)は測距離に対して図6のaのようになり、至近距離か
らの雨やエアロゾルからのバックスキャッタは図6のb
のようになっているので、cのような一定の閾値でスト
ップパルスを検出すると、至近距離で雨やエアロゾルか
らのバックスキャッタを誤測距してしまう。そこで図5
のAGCアンプ6のゲインを近距離で下げてストップパ
ルス検出の閾値を図6のdのように変化させると、雨や
エアロゾルからのバックスキャッタは誤測距せず、信号
(ストップパルス)は測距するというようにすることが
できる。この手法をTPG(Time  Progra
mmed  Gain)という。
0004
On the other hand, the signal strength (stop pulse strength) of the output of the amplifier 7 is as shown in Fig. 6 a for distance measurement, and the backscatter from rain or aerosol from close range is as shown in Fig. 6 b.
Therefore, if a stop pulse is detected using a fixed threshold value such as c, backscatter from rain or aerosol will be incorrectly measured at close range. Therefore, Figure 5
If the gain of the AGC amplifier 6 is lowered at short distances and the threshold value for stop pulse detection is changed as shown in d in Figure 6, backscatter from rain or aerosol will not cause erroneous distance measurement, and the signal (stop pulse) will not be detected. It can be done by distance. This method is called TPG (Time Program
mmed Gain).

【0005】従来はTPGをかけるのに、図5に示すよ
うにAGCアンプ6とミラー積分器9を用いている。光
検出器8がスタートパルスを出した瞬間からミラー積分
器9が動作を始め、図7のeのような電圧波形を、AG
Cアンプ6のゲインコントロール入力に加える。AGC
アンプ6のゲインは、ゲインコントロール入力の電圧が
高いほど、低いのでAGCアンプ6のゲインは図7のf
のようになりTPGとして動作する。
Conventionally, to apply TPG, an AGC amplifier 6 and a Miller integrator 9 are used as shown in FIG. The mirror integrator 9 starts operating from the moment the photodetector 8 issues a start pulse, and the voltage waveform as shown in e in FIG.
Add to gain control input of C amplifier 6. AGC
The gain of the amplifier 6 is lower as the voltage of the gain control input is higher, so the gain of the AGC amplifier 6 is as shown in f in Fig. 7.
It becomes as follows and operates as TPG.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来のA
GCアンプ6を用いた測距装置では、近距離を測距した
場合強力な受信エコーがあり、トランスインピーダンス
アンプ5の出力が飽和して図8のgのようなダブルパル
スを発生する。このダブルパルスを図8のhのような閾
値で検出すると、実目標からのストップパルスともう1
つのストップパルスを発生する。つまり誤測距するとい
う欠点があった。
[Problem to be solved by the invention] The conventional A as described above
In a distance measuring device using a GC amplifier 6, when a short distance is measured, there is a strong received echo, and the output of the transimpedance amplifier 5 is saturated, generating a double pulse as shown in g in FIG. If this double pulse is detected using a threshold value such as h in Figure 8, it will be detected as a stop pulse from the actual target and another one.
Generates two stop pulses. In other words, there was a drawback of incorrect distance measurement.

【0007】この発明は上記のような問題点を解決する
ためになされたもので、近距離で誤測距しない測距装置
を提供するものである。
The present invention has been made to solve the above-mentioned problems, and provides a distance measuring device that does not erroneously measure distances at short distances.

【0008】[0008]

【課題を解決するための手段】この発明に係る測距装置
では、AGCアンプ6を用いず、APD4のバイアスを
ミラー積分器9の出力で変化させるようにしたものであ
る。
[Means for Solving the Problems] In the distance measuring device according to the present invention, the AGC amplifier 6 is not used, and the bias of the APD 4 is changed by the output of the Miller integrator 9.

【0009】またこの発明に係る測距装置はAPDのバ
イアスを変化させるミラー積分器9を用いずに受信光学
系3とAPD4の間に光変調器を備え、これを駆動する
駆動回路を設けたものである。
Further, the distance measuring device according to the present invention does not use the mirror integrator 9 that changes the bias of the APD, but instead includes an optical modulator between the receiving optical system 3 and the APD 4, and a drive circuit for driving the optical modulator. It is something.

【0010】0010

【作用】この発明はAPDのバイアスをミラー積分器9
の出力でコントロールしているので、APD4の感度が
時間とともに変化し、TPGに用いることができる。さ
らにTPGにより近距離でAPDの感度が低くなるので
、強力な受信エコーが入ってもトランスインピーダンス
アンプ5が飽和することは無い。つまり近距離でストッ
プパルスがダブルパルスとなることは無く、誤測距する
ようなことは無い。
[Operation] This invention applies the bias of the APD to the mirror integrator 9.
Since it is controlled by the output of APD 4, the sensitivity of APD 4 changes over time and can be used for TPG. Furthermore, since the TPG lowers the sensitivity of the APD at short distances, the transimpedance amplifier 5 will not become saturated even if a strong received echo is received. In other words, the stop pulse does not become a double pulse at short distances, and there is no possibility of erroneous distance measurement.

【0011】またこの発明は光変調器と駆動回路を用い
た場合、光変調器の透過率とAPDの感度を掛け合わせ
たAPDの実効感度が時間変化するのでTPGに用いる
ことができる。さらに近距離で光変調器の透過率が小さ
くなるので、強力な受信エコーが入っても、APDの実
効感度が下がるから、トランスインピーダンスアンプが
飽和してダブルパルスを発生することは無い。
Furthermore, when an optical modulator and a drive circuit are used, the present invention can be used in a TPG because the effective sensitivity of the APD, which is the product of the transmittance of the optical modulator and the sensitivity of the APD, changes over time. Furthermore, since the transmittance of the optical modulator decreases at short distances, even if a strong received echo enters, the effective sensitivity of the APD decreases, so the transimpedance amplifier will not become saturated and generate a double pulse.

【0012】0012

【実施例】実施例1 図1はこの発明の一実施例を示す構成図で、1〜5、7
〜10は従来と同じものである。図1においてレーザ発
振器1からレーザ光が出た瞬間から、目標で反射してき
た光を受けた瞬間までの時間をカウンタ10で計数して
距離を知る動作は従来と全く同一である。ただしTPG
機能はAPD4とミラー積分器9で構成されていて、後
述のように、APD4の感度は近距離で低くなるのでT
PGとして用いることができる。
[Example] Example 1 Figure 1 is a block diagram showing an example of this invention.
-10 are the same as the conventional one. In FIG. 1, the operation of calculating the distance by counting the time with the counter 10 from the moment the laser beam is emitted from the laser oscillator 1 to the moment the beam is reflected by the target is exactly the same as in the conventional method. However, T.P.G.
The function is composed of APD 4 and mirror integrator 9, and as explained later, the sensitivity of APD 4 decreases at short distances, so T
Can be used as PG.

【0013】ここで図1の場合のTPG動作の説明をす
る。APD4の感度は図2に示すようなバイアス依存性
を示す。そこでAPD4のバイアス電圧を図3のaのよ
うに、ミラー積分器9の出力で、変化させれば図3のb
のような感度変動をしTPGとして用いることができる
The operation of the TPG in the case of FIG. 1 will now be explained. The sensitivity of APD4 shows bias dependence as shown in FIG. Therefore, if the bias voltage of the APD 4 is changed by the output of the Miller integrator 9 as shown in a of FIG.
It can be used as a TPG with sensitivity fluctuations such as.

【0014】さらに、近距離ではAPD4の感度が小さ
くなるので、強力な受信光が入ってもトランスインピー
ダンスアンプ5の出力は飽和せず、従ってダブルパルス
も出ず、誤測距も起きない。具体的に数値を示すと、従
来の測距装置のAPDは感度が34A/Wと一定であっ
たのに対し、この発明の場合、近距離で0.34A/W
程度となるため、近距離からの強大な入力光があっても
1/100程度に小さくなるのでトランスインピーダン
スアンプ5は飽和を起こさない。
Furthermore, since the sensitivity of the APD 4 decreases at short distances, the output of the transimpedance amplifier 5 does not become saturated even when strong received light enters, so that no double pulses are generated and no erroneous distance measurements occur. To give concrete numerical values, while the APD of conventional distance measuring devices had a constant sensitivity of 34 A/W, in the case of this invention, the sensitivity was 0.34 A/W at short distances.
Therefore, even if there is a strong input light from a short distance, the light will be reduced to about 1/100, so that the transimpedance amplifier 5 will not be saturated.

【0015】実施例2 図4にこの発明の他の実施例を示す。3,4,8は図1
と同じものである。図4では省略してあるが、図1の1
,2,5,7,10も同様に構成されているものとする
。受信光学系3とAPD4の間に光変調器11を備え、
これを駆動回路12で駆動している。この場合も駆動回
路12の出力で光変調器11の透過率つまりAPDの実
効感度を変化させてTPGに用いている。従って近距離
で光変調器11の透過率、つまりAPD4の実効感度、
が小さくなるので、近距離からの強大な光入力があって
もトランスインピーダンスアンプ5は飽和しない。
Embodiment 2 FIG. 4 shows another embodiment of the present invention. 3, 4, and 8 are in Figure 1
is the same as Although omitted in Figure 4, 1 in Figure 1
, 2, 5, 7, and 10 are also configured in the same manner. An optical modulator 11 is provided between the receiving optical system 3 and the APD 4,
This is driven by a drive circuit 12. In this case as well, the output of the drive circuit 12 is used to change the transmittance of the optical modulator 11, that is, the effective sensitivity of the APD, and is used for the TPG. Therefore, the transmittance of the optical modulator 11 at a short distance, that is, the effective sensitivity of the APD 4,
is small, so the transimpedance amplifier 5 will not be saturated even if there is a strong optical input from a short distance.

【0016】[0016]

【発明の効果】以上示したとおり、この発明はAPDの
バイアスをミラー積分器の出力で変化させてAPDの感
度を変化させるか、あるいは光変調器を駆動回路で駆動
して光透過率を変化させるかして、TPGを実現してい
るので、トランスインピーダンスアンプの出力が飽和せ
ず、ダブルパルスが出ないから、誤測距しないと言う効
果がある。
[Effects of the Invention] As shown above, the present invention changes the bias of the APD using the output of the mirror integrator to change the sensitivity of the APD, or changes the light transmittance by driving the optical modulator with a drive circuit. In this way, since TPG is realized, the output of the transimpedance amplifier does not saturate, and double pulses are not generated, which has the effect of preventing erroneous distance measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明に用いるAPDの感度のバイアス電圧
依存性を示す図である。
FIG. 2 is a diagram showing the bias voltage dependence of the sensitivity of the APD used in the present invention.

【図3】この発明に用いる、ミラー積分器の出力電圧及
びAPDの感度の時間変化を示す図である。
FIG. 3 is a diagram showing temporal changes in the output voltage of the Miller integrator and the sensitivity of the APD used in the present invention.

【図4】この発明の実施例2を示す構成図である。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】従来の測距装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional distance measuring device.

【図6】測距装置の信号強度と閾値の時間変化を示す図
である。
FIG. 6 is a diagram showing temporal changes in signal strength and threshold value of a distance measuring device.

【図7】従来の測距装置のミラー積分器の出力電圧及び
AGCアンプのゲインの時間変化を示す図である。
FIG. 7 is a diagram showing temporal changes in the output voltage of a mirror integrator and the gain of an AGC amplifier in a conventional distance measuring device.

【図8】従来の測距装置のダブルパルスによる誤測距を
示す図
[Fig. 8] Diagram showing erroneous distance measurement due to double pulses of a conventional distance measuring device

【符号の説明】[Explanation of symbols]

1  レーザ発振器 2  送信光学系 3  受信光学系 4  APD 5  トランスインピーダンスアンプ 7  アンプ 8  光検出器 9  ミラー積分器 10  カウンタ 11  光変調器 12  駆動回路 1 Laser oscillator 2 Transmission optical system 3 Receiving optical system 4 APD 5 Transimpedance amplifier 7 Amplifier 8 Photodetector 9 Miller integrator 10 Counter 11 Optical modulator 12 Drive circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  レーザ発振器と、このレーザ発振器の
出力光を目標に照射するための送信光学系と、この送信
光学系から出て目標から反射して帰ってくる上記レーザ
発振器の出力光を集めて受信光とする受信光学系と、こ
の受信光を電流信号に変換するアバランシェフォトダイ
オード(APD)と、このAPDの電流信号を電圧信号
に変換するトランスインピーダンスアンプと、このトラ
ンスインピーダンスアンプの出力電圧信号を増幅するア
ンプと、上記レーザ発振器から光が出た時刻をモニタし
電気信号を出力する光検出器と、この光検出器でモニタ
した時刻の電気信号で計数を始め上記アンプの出力で計
数を停止するカウンタとから成る測距装置において、上
記APDのバイアス電圧を時間変化させるようにミラー
積分器を上記光検出器とAPDとの間に設けたことを特
徴とする測距装置。
Claim 1: A laser oscillator, a transmission optical system for irradiating the output light of the laser oscillator onto a target, and a transmission optical system that collects the output light of the laser oscillator that exits from the transmission optical system and is reflected from the target and returns. an avalanche photodiode (APD) that converts this received light into a current signal, a transimpedance amplifier that converts the current signal of this APD into a voltage signal, and an output voltage of this transimpedance amplifier. An amplifier that amplifies the signal, a photodetector that monitors the time when light is emitted from the laser oscillator and outputs an electrical signal, and counting starts with the electrical signal at the time monitored by this photodetector, and counting is performed using the output of the amplifier. A distance measuring device comprising a counter for stopping the APD, characterized in that a mirror integrator is provided between the photodetector and the APD so as to change the bias voltage of the APD over time.
【請求項2】  レーザ発振器と、このレーザ発振器の
出力光を目標に照射するための送信光学系と、この送信
光学系から出て目標から反射して帰ってくる上記レーザ
発振器の出力光を集めて受信光とする受信光学系と、こ
の受信光を電流信号に変換するアバランシェフォトダイ
オード(APD)と、このAPDの電流信号を電圧信号
に変換するトランスインピーダンスアンプと、このトラ
ンスインピーダンスアンプの出力電圧信号を増幅するア
ンプと、上記レーザ発振器から光が出た時刻をモニタし
電気信号を出力する光検出器と、この光検出器でモニタ
した時刻の電気信号で計数を始め上記アンプの出力で計
数を停止するカウンタとから成る測距装置において上記
受信光学系とAPDとの間に設けられた光変調器と、こ
の光変調器の透過率を時間変化させる駆動回路とを具備
したことを特徴とする測距装置。
2. A laser oscillator, a transmission optical system for irradiating the output light of the laser oscillator onto a target, and a transmission optical system that collects the output light of the laser oscillator that exits from the transmission optical system and is reflected from the target and returns. an avalanche photodiode (APD) that converts this received light into a current signal, a transimpedance amplifier that converts the current signal of this APD into a voltage signal, and an output voltage of this transimpedance amplifier. An amplifier that amplifies the signal, a photodetector that monitors the time when light is emitted from the laser oscillator and outputs an electrical signal, and counting starts with the electrical signal at the time monitored by this photodetector, and counting is performed using the output of the amplifier. A distance measuring device comprising a counter for stopping the APD, comprising an optical modulator provided between the receiving optical system and the APD, and a drive circuit that changes the transmittance of the optical modulator over time. distance measuring device.
JP7092991A 1991-04-03 1991-04-03 Range finder device Pending JPH04307387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7092991A JPH04307387A (en) 1991-04-03 1991-04-03 Range finder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7092991A JPH04307387A (en) 1991-04-03 1991-04-03 Range finder device

Publications (1)

Publication Number Publication Date
JPH04307387A true JPH04307387A (en) 1992-10-29

Family

ID=13445696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7092991A Pending JPH04307387A (en) 1991-04-03 1991-04-03 Range finder device

Country Status (1)

Country Link
JP (1) JPH04307387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734952B2 (en) * 2002-01-22 2004-05-11 Leica Geosystems, Ag Process and device for the automatic location of reference markers
JP2008215878A (en) * 2007-02-28 2008-09-18 Yamaha Motor Co Ltd Light receiving device, laser radar device, and vehicle
JP2008286669A (en) * 2007-05-18 2008-11-27 Sokkia Topcon Co Ltd Light wave range finder
WO2018173818A1 (en) * 2017-03-23 2018-09-27 パナソニックIpマネジメント株式会社 Distance measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734952B2 (en) * 2002-01-22 2004-05-11 Leica Geosystems, Ag Process and device for the automatic location of reference markers
JP2008215878A (en) * 2007-02-28 2008-09-18 Yamaha Motor Co Ltd Light receiving device, laser radar device, and vehicle
JP2008286669A (en) * 2007-05-18 2008-11-27 Sokkia Topcon Co Ltd Light wave range finder
WO2018173818A1 (en) * 2017-03-23 2018-09-27 パナソニックIpマネジメント株式会社 Distance measuring device
JP2018159628A (en) * 2017-03-23 2018-10-11 パナソニックIpマネジメント株式会社 Distance measuring device
US11487008B2 (en) 2017-03-23 2022-11-01 Panasonic Intellectual Property Management Co., Ltd. Distance measuring device

Similar Documents

Publication Publication Date Title
CN110244311B (en) Laser radar receiving device, laser radar system and laser ranging method
KR100967530B1 (en) Method and device for optically measuring distance
Koskinen et al. Comparison of continuous-wave and pulsed time-of-flight laser range-finding techniques
GB2275841A (en) Optoelectric distance measuring equipment
JP4334678B2 (en) Distance measuring device
US5710621A (en) Heterodyne measurement device and method
JPH04307387A (en) Range finder device
JP3249592B2 (en) Distance detection method
JP2500733B2 (en) Laser distance measuring device
JPH03189584A (en) Distance measuring instrument
JPH07248374A (en) Distance measuring device
JPH06160523A (en) Range finder
JPH0672925B2 (en) Laser range finder
JP3486223B2 (en) Distance measuring device
JPH01197684A (en) Distance measuring equipment
JPH06258436A (en) Electro-optical distance measuring equipment
JPH04191687A (en) Distance measuring apparatus
JPH06289137A (en) Optical range finder
JP2573682B2 (en) Optical radar device
JPH03130691A (en) Laser distance measuring apparatus
JPH06186071A (en) Method for measuring level of molten steel in mold using laser distance measuring apparatus
JP3022987U (en) Electronic control device for photoelectric rangefinder
JPH06235765A (en) Laser radar
KR0140128B1 (en) The apparatus and method for distance error correctable optic distantt measurement
JPH06249959A (en) Distance measuring equipment