JPS63267419A - Silent discharge generating device and gas treatment - Google Patents

Silent discharge generating device and gas treatment

Info

Publication number
JPS63267419A
JPS63267419A JP62101067A JP10106787A JPS63267419A JP S63267419 A JPS63267419 A JP S63267419A JP 62101067 A JP62101067 A JP 62101067A JP 10106787 A JP10106787 A JP 10106787A JP S63267419 A JPS63267419 A JP S63267419A
Authority
JP
Japan
Prior art keywords
silent discharge
air
gas
electric field
globular particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62101067A
Other languages
Japanese (ja)
Other versions
JPH07110332B2 (en
Inventor
Akira Mizuno
彰 水野
Hiroshi Ito
弘志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKO KASEI KOGYO KK
Original Assignee
WAKO KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKO KASEI KOGYO KK filed Critical WAKO KASEI KOGYO KK
Priority to JP62101067A priority Critical patent/JPH07110332B2/en
Publication of JPS63267419A publication Critical patent/JPS63267419A/en
Publication of JPH07110332B2 publication Critical patent/JPH07110332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Abstract

PURPOSE:To provide a large silent discharge generating space, gas permeable and stabilized, by setting structure for permeating gas with a number of air- permeable small hole spaces constituted of dielectric materials showing relative permittivity of given range between a couple of electrodes. CONSTITUTION:A net-shaped ground electrode 8 and an electric field applicator 9 formed with conductive materials are provided in an insulated device case 5, and globular particles 11 constituted of dielectric materials of the given relative permittivity such as barium titanate and the like are filled between said both electrodes 8 and 9 to constitute a structure 10 for permeating gas. When alternating voltage is applied from an electric source 14 to the electric field applicator 9, external electric field is applied to the whole of globular particles 11, and silent discharge is generated in slightly formed spaces between globular particles 11. For instance, the air to be treated containing NO flows from the upstream side 6 of the gas 5 to the downstream side 7 to mix NH3 and water content into the air to be treated. The air to be treated reacts during passing the area of generating silent discharge and turns into NH4NO3 and the like which are adhered to the surface of globular particles 11 and collected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無声放電の発生スペースに空気等のガスを通
して一定のガス成分に所期の化学変化を起こさUるだめ
のガス処理用の無声放電発生装置に1yIする。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a silent electric discharge generator for gas processing in a gas discharge chamber, which causes a desired chemical change in certain gas components by passing a gas such as air into a space where a silent discharge is generated. Apply 1yI to the discharge generator.

(従来の技術) 従来のこのような無声放電発生装置として、例えば第5
図に示すように、交流IJ:t1に接続された対の電極
2問に板ガラス等の絶縁体3をほぼ接Jる状態で挟んノ
ごものがある。この装置では、絶縁体3の介在により対
の電極2間にアーク放電を発生し青る空隙が存在しない
ため、所定の交流電圧を印加したとき電極2と絶縁体3
間で無声til電が発生するようになっており、これに
よって例えば空気中にオゾン03を生成するために利用
されている。
(Prior art) As such a conventional silent discharge generator, for example, the fifth
As shown in the figure, an insulator 3 such as a plate glass is sandwiched between two electrodes of a pair connected to AC IJ:t1 in a state where they are almost in contact with each other. In this device, arc discharge occurs between the pair of electrodes 2 due to the presence of the insulator 3, and there is no blue gap, so when a predetermined AC voltage is applied, the electrode 2 and the insulator 3
Silent electricity is generated between the two, and is used to generate ozone 03 in the air, for example.

(発明が解決しようとする問題点) しかし、上記の従来技術では無声放電発生スペースが極
めて狭いものとなるため、そのスペースに多量のガスを
通過さけることができず、ガス処理能力が低いという問
題があった。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional technology, the silent discharge generation space is extremely narrow, so a large amount of gas cannot pass through that space, resulting in a low gas processing capacity. was there.

そこで本発明は、対の電極間に、ガスが通過可能で、か
つ安定な無声放電が発生しているスベ゛−スを大きく設
定し得るようにすることを、その解決すべき技術的課題
とする。
Therefore, the technical problem to be solved by the present invention is to make it possible to set a large space between a pair of electrodes in which gas can pass and stable silent discharge is generated. do.

(問題点を解決するための手段) 上記課題を解決J”るための技術的手段は、所定範囲の
比誘電率を示す誘電体から成る通気可能な小孔隙を多数
形成したガス透過用の構造体を構成し、この構造体の両
側には、前記誘導体の比誘電率と外部から前記誘電体に
印加される無声放電用電圧との二つの要因で定義された
無声放電安定領域において無声放電を発生さVるための
放電用の交流電圧あるいはパルス電圧が印加される対の
電極をそれぞれ同#43!i体にほぼ接するように設け
たことである。
(Means for Solving the Problems) The technical means for solving the above problems is to create a structure for gas permeation in which a large number of small air-permeable pores made of a dielectric material exhibiting a relative dielectric constant within a predetermined range are formed. A silent discharge is formed on both sides of the structure in a silent discharge stable region defined by two factors: the dielectric constant of the dielectric and the silent discharge voltage applied to the dielectric from the outside. A pair of electrodes to which an AC voltage or a pulse voltage for discharge to generate V is applied are provided so as to be substantially in contact with the #43!i body.

(作 用) 対の電極間に設けたガス透過用の構造体が通気可能な多
数の小孔隙を有するので、十分な間のガスを通過させ得
る。
(Function) Since the gas permeation structure provided between the pair of electrodes has a large number of small air-permeable pores, a sufficient amount of gas can pass through the structure.

構造体は比誘電率の高い誘電体から成るので、所定の交
流電圧あるいはパルス電圧を印加すると、それぞれの小
孔隙において安定な無塵放電が発生する。
Since the structure is made of a dielectric material with a high relative permittivity, when a predetermined alternating voltage or pulse voltage is applied, a stable dust-free discharge is generated in each small pore gap.

(実施例) 次に本発明の第1実施例を第1図〜第3図に基づいて説
明する。
(Example) Next, a first example of the present invention will be described based on FIGS. 1 to 3.

無声放電発生装置4は有害む一酸化窒素NOを含む空気
を処理するためのものである。
The silent discharge generator 4 is for treating air containing harmful nitrogen monoxide NO.

鉤状の装置ケース5は絶縁性のIn(例えば、適当な種
類の合成樹脂材料)から成り、図示省略の適当な送風手
段によって上流側6から下流側7へ空気が流通されるに
うになっている。
The hook-shaped device case 5 is made of insulating In (for example, an appropriate type of synthetic resin material), and is configured to allow air to flow from the upstream side 6 to the downstream side 7 by an appropriate blowing means (not shown). There is.

装置を−ス5の内部において、上流側には導体材料によ
り所定のメツシュの網状に形成された接地電極8が、ま
た下流側には導体44FIにより同じメツシュの網状に
形成された電界印加電極9が、それぞれ装置ケース5の
内周部全体を横1111iするように設けられている。
Inside the device space 5, on the upstream side there is a grounding electrode 8 formed in the form of a predetermined mesh of a conductor material, and on the downstream side there is an electric field applying electrode 9 formed in the form of the same mesh of a conductor 44FI. are provided so as to extend horizontally 1111i across the entire inner peripheral portion of the device case 5.

次に、接地電極8と電界印加電極9との間にはガス透過
用の構造体10が構成されている。構造体10は、比誘
電率εSが50程麿、あるいはそれ以上である適当な種
類の誘電体材料(例えば、比誘電率εSが約1500で
あるチタン酸バリウム、又はこれを主成分とする組成物
)から成る多数の球状粒子11を両電極8.9間に充填
することにより構成されている。球状粒子11は網状の
電極8,9を通過しない径を有している。
Next, a structure 10 for gas permeation is constructed between the ground electrode 8 and the electric field application electrode 9. The structure 10 is made of a suitable type of dielectric material having a dielectric constant εS of about 50 or more (for example, barium titanate having a dielectric constant εS of about 1500, or a composition mainly composed of barium titanate). It is constructed by filling a space between both electrodes 8 and 9 with a large number of spherical particles 11 made of a material. The spherical particles 11 have a diameter that does not allow them to pass through the mesh electrodes 8 and 9.

なお、前記の接地電極8は導I!12を介して接地され
ており、また電界印加電極9はII!1l13を介して
交流電源14に接続されている。
Note that the ground electrode 8 is a conductor I! 12, and the electric field applying electrode 9 is connected to II! It is connected to the AC power supply 14 via 1l13.

また、装置ケース5の入口側6にはアンモニアNH3を
定量的に供給し得る装ff1(図示省略)が設G′Jら
れている。
Further, on the inlet side 6 of the device case 5, a device G'J is provided which can quantitatively supply ammonia NH3 (not shown).

本実施例は以上のように構成されたものであり、次のよ
うに使用される。
This embodiment is constructed as described above and is used as follows.

まず電界印加電極9に電源14から交流電圧を加えると
、電界印加電極9と接地電極8との間における誘電体の
球状粒子11全体に外部電界が印加される。すると、個
々の球状粒子11が分極を起こし、その表面に正゛極性
、及び負極性の電荷が現われる。その電荷により、隣り
合う球状粒子11間の僅かな孔隙に電界が集中し、第2
図の斜線で示す孔隙部分15において無声放電が発生す
る。
First, when an AC voltage is applied to the electric field applying electrode 9 from the power supply 14, an external electric field is applied to the entire dielectric spherical particles 11 between the electric field applying electrode 9 and the ground electrode 8. Then, each spherical particle 11 is polarized, and charges of positive polarity and negative polarity appear on its surface. Due to the electric charge, an electric field is concentrated in the small pores between adjacent spherical particles 11, and the second
Silent discharge occurs in the hole portion 15 shown by diagonal lines in the figure.

このような無声放電において、第3図にグラフ化して示
すように、横軸の対数目盛で示す球状粒子11の比誘電
率εSと縦軸の目盛で示す交流印加電圧V LAC(K
 v)の2つの要因で定義される無声放電安定領域16
(第3図の斜線部分)の存在することが知られている。
In such a silent discharge, as shown graphically in FIG.
Silent discharge stable region 16 defined by the two factors of v)
(The shaded area in FIG. 3) is known to exist.

従って、球状粒子11の比誘電率εSに対応して適正な
範囲の交流電圧を印加することにより、孔隙部分15に
J3いて安定な無声放電を発生させ得る。また、球状粒
子11の比誘電率が高いので、第3図より明らかなよう
に相対的に低い交I!圧の印加により安定した無声放電
を発生させ得る。
Therefore, by applying an AC voltage in an appropriate range corresponding to the dielectric constant εS of the spherical particles 11, stable silent discharge can be generated in the pore portions 15. Furthermore, since the relative dielectric constant of the spherical particles 11 is high, as is clear from FIG. 3, the AC I! A stable silent discharge can be generated by applying pressure.

このような状態において、−酸化窒素NOを含む被処理
空気を装置ケース5の上流側6より下流側7へ向って流
す。このとき、図示省略のアンモニア供給装置より一酸
化窒素Noと当量のアンモニアNH3を被処理空気に混
入ざ往、かつ適当な手段で空気中に水分(水蒸気)を含
有させる。
In such a state, the air to be treated containing -nitrogen oxide NO is caused to flow from the upstream side 6 to the downstream side 7 of the device case 5. At this time, ammonia NH3 in an amount equivalent to nitrogen monoxide No. is mixed into the air to be treated from an ammonia supply device (not shown), and moisture (steam) is caused to be contained in the air by an appropriate means.

被処理空気は構造体10を透過りるに際し、球状粒′子
11間に形成された多数の小孔隙を分散通過りるので、
多聞の被処理空気を流Jことができる。そして、被処理
空気が無声放電を発生している孔隙部分15を通過する
とき、被処理空気中の酸素ガスO、水H20からラジカ
ル状の酸素原子Oあるいは水M I O11が発生する
ため、主として以下に示す反応式により二酸化窒素NO
2あるいはlII′I酸HNO3を生成する。
When the air to be treated passes through the structure 10, it passes through a large number of small pores formed between the spherical particles 11.
It is possible to flow a large amount of air to be treated. When the air to be treated passes through the pore portion 15 where silent discharge is occurring, radical oxygen atoms O or water M I O11 are generated from the oxygen gas O and water H20 in the air to be treated. According to the reaction formula shown below, nitrogen dioxide NO
2 or lII'I acid HNO3 is produced.

NO−ト O→ N O2 No、+OH→HNO3 これらの二酸化窒素NO2や硝酸HNO3は一酸化窒素
N Oに比し反応性が高く、前記した当量のアンモニア
NH3と反応して、水分の存在下に、&r1Mアンモニ
ウムN HN O3のエアロゾルを生する。そしてこの
エアロゾルは球状粒子11の表面にイ」着することによ
り捕集される。上記の反応は球状粒子11間の小孔隙内
で行なわれ、かつ多数の球状粒子11の総表面積が極め
て大ぎいので、エアロゾルの捕集はほぼ完全に行なわれ
る。
NO-TO O→ N O2 No, +OH→HNO3 These nitrogen dioxide NO2 and nitric acid HNO3 have higher reactivity than nitrogen monoxide NO, and react with the above equivalent amount of ammonia NH3 in the presence of moisture. , &r generate an aerosol of 1M ammonium N HN O3. This aerosol is then collected by landing on the surface of the spherical particles 11. The above reaction takes place in the small pores between the spherical particles 11, and since the total surface area of the large number of spherical particles 11 is extremely large, the aerosol is almost completely collected.

なお、本実施例において、誘電体の粒子の形状は球状の
ものに限らない。また、電界印加電極にはパルス電圧を
印加しても良い。
In this example, the shape of the dielectric particles is not limited to spherical shapes. Further, a pulse voltage may be applied to the electric field applying electrode.

次に本発明の第2実施例を第4図に基づいて説明づる。Next, a second embodiment of the present invention will be explained based on FIG.

本実施例において、ガス透過用の構造体17は(苧かむ
相互間隙をちって並夕11状に複数配列された通気板1
8により構成されている。各通気板18は第1実施例と
同様の誘電体材料を用いた海綿状の多孔質板体であって
、その多数の小孔隙より空気を透過さ1!得る。そして
、構造体17に79i定の電圧が印加されたとぎ、各構
造体17間の僅かな間隙19にJ3いて安定な無声放電
を発生・Jるにうになっている。他の点の構成及び作用
は第1実IJI!!例と同様である。
In this embodiment, the structure 17 for gas permeation is composed of (a plurality of ventilation plates 1 arranged in parallel 11 shapes with mutual gaps between each other).
8. Each ventilation plate 18 is a cavernous porous plate made of the same dielectric material as in the first embodiment, and allows air to pass through its numerous small pores. obtain. When a constant voltage of 79i is applied to the structures 17, a stable silent discharge is generated in the slight gap 19 between the structures 17. The structure and operation of other points are the first real IJI! ! Similar to the example.

上記の各実施例において、比誘電率εSが10程度ある
いはそれ以下の誘電体も使用し得る。しかし、この場合
には印加電圧を相当に高くする必要があることから、実
施し難い場合もある。
In each of the embodiments described above, a dielectric material having a dielectric constant εS of about 10 or less may also be used. However, in this case, since the applied voltage needs to be considerably high, it may be difficult to implement.

なお、本発明の無声放電発生装置は上記のように一酸化
窒素Noを含む空気の処理用として用いられる他、無声
放電発生スペースに空気等のガスを通した際に行なわれ
るガス成分の各種の化学変化を利用する他種の用途、例
えば空気中にオゾン03を発生さけるための装置として
、あるいは亜lii!l酸ガスSo を無水TiA酸S
 O3に変化さけてアルカリ等で吸着可能とする装置等
としても利用可能である。
The silent discharge generator of the present invention can be used not only to treat air containing nitric oxide No. as described above, but also to treat various gas components when gas such as air is passed through the silent discharge generation space. Other types of applications that utilize chemical changes, such as devices to avoid generating ozone 03 in the air, or sublii! l acid gas So to anhydrous TiA acid S
It can also be used as a device that allows adsorption with alkali or the like without changing to O3.

さらに出願人が昭和60年10月31日付の特許出願(
特願昭60−244963号)で開示したようなゲス1
−荷電用のコロナ放電極を上記各実施例の構成に加える
ことにより、空気中のダストの電気的集塵をガス透過用
m造体において合せ行ない得るJ:うにしても良い。
Furthermore, the applicant filed a patent application dated October 31, 1985 (
Guess 1 as disclosed in Japanese Patent Application No. 60-244963)
- By adding a charging corona discharge electrode to the configuration of each of the above embodiments, electrical collection of dust in the air may be performed in the gas permeable structure.

(発明の効果) 本発明は、ガスが通過し得る安定な無声放電発生スペー
スを大きく設定できるため、無声放電発生装置を各種有
害ガス成分の捕集、無害化等のだめに利用する際におい
て、その処理能力を大幅に向FさUることができる。
(Effects of the Invention) The present invention can set a large stable silent discharge generation space through which gas can pass, so when the silent discharge generation device is used for collecting various harmful gas components, making them harmless, etc. Processing capacity can be greatly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の断面図、第2図はぞの要
部拡大図、第3図は誘電体の比誘電率と無声放電用交流
電圧との要因で定義される無声放電安定領域を示すグラ
フ、第4図は本発明の第2実施例の断面図、第5図は従
来例を承り図である。 4・・・無声放電発生装置 5・・・装置ケース 8・・・接地電極 9・・・電界印加電極 10・・・構造体 11・・・球状粒子 出願人  和光化成工業株式会社 出願人   水   野      彰代理人   弁
理士 岡田英彦(外3名)4、無声族i覧生殻! 5:&!L’″f−ス 8:擾旭電極 第1図 第4図 第5図
Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2 is an enlarged view of the main part, and Fig. 3 is a silent discharge defined by the relative dielectric constant of the dielectric material and the AC voltage for silent discharge. A graph showing the stable discharge region, FIG. 4 is a sectional view of the second embodiment of the present invention, and FIG. 5 is a cross-sectional view of the conventional example. 4...Silent discharge generator 5...Device case 8...Grounding electrode 9...Electric field application electrode 10...Structure 11...Spherical particle applicant Wako Kasei Kogyo Co., Ltd. applicant Mizuno Akira's agent Patent attorney Hidehiko Okada (3 others) 4. Silent tribe i-listening shell! 5:&! L'″f-s 8: Asahi electrode Fig. 1 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 所定範囲の比誘電率を示す誘電体から成る通気可能な小
孔隙を多数形成したガス透過用の構造体を構成し、この
構造体の両側には、前記誘導体の比誘電率と外部から前
記誘電体に印加される無声放電用電圧との二つの要因で
定義された無声放電安定領域において無声放電を発生さ
せるための放電用の交流電圧あるいはパルス電圧が印加
される対の電極をそれぞれ同構造体にほぼ接するように
設けたことを特徴とするガス処理用の無声放電発生装置
A structure for gas permeation is constituted by forming a large number of small ventilated pores made of a dielectric material exhibiting a relative permittivity within a predetermined range. A pair of electrodes to which an alternating current voltage or a pulse voltage for discharge is applied to generate a silent discharge in a stable region of silent discharge defined by two factors: the voltage for silent discharge applied to the body, and the voltage for silent discharge applied to the body are each of the same structure. A silent discharge generator for gas processing, characterized in that it is provided so as to be almost in contact with the .
JP62101067A 1987-04-23 1987-04-23 Silent discharge generator for gas processing Expired - Fee Related JPH07110332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101067A JPH07110332B2 (en) 1987-04-23 1987-04-23 Silent discharge generator for gas processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101067A JPH07110332B2 (en) 1987-04-23 1987-04-23 Silent discharge generator for gas processing

Publications (2)

Publication Number Publication Date
JPS63267419A true JPS63267419A (en) 1988-11-04
JPH07110332B2 JPH07110332B2 (en) 1995-11-29

Family

ID=14290759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101067A Expired - Fee Related JPH07110332B2 (en) 1987-04-23 1987-04-23 Silent discharge generator for gas processing

Country Status (1)

Country Link
JP (1) JPH07110332B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111423A (en) * 1987-10-26 1989-04-28 Akira Mizuno Gas treatment equipment
WO2000014010A1 (en) * 1998-09-09 2000-03-16 The Victoria University Of Manchester Air purification device
JP2002001116A (en) * 2000-06-20 2002-01-08 Kansai Research Institute Method for treatment of gas or liquid containing malodorous harmful substance, catalyst device for oxidation-reduction reaction and catalyst for oxidation- reduction reaction
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
JP2019017538A (en) * 2017-07-13 2019-02-07 日本特殊陶業株式会社 Plasma reactor, air cleaning machine
CN111228977A (en) * 2020-03-19 2020-06-05 浙江嘉福新材料科技有限公司 Sulfuric acid tail gas treatment device and treatment process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111423A (en) * 1987-10-26 1989-04-28 Akira Mizuno Gas treatment equipment
WO2000014010A1 (en) * 1998-09-09 2000-03-16 The Victoria University Of Manchester Air purification device
AU759432B2 (en) * 1998-09-09 2003-04-17 University Of Manchester, The Air purification device
US6635153B1 (en) 1998-09-09 2003-10-21 The Victoria University Of Manchester Air purification device
AU759432C (en) * 1998-09-09 2004-03-04 University Of Manchester, The Air purification device
US6635996B1 (en) 1999-03-26 2003-10-21 Canon Kabushiki Kaisha Plasma generating apparatus, plasma generating method and gas processing method by plasma reaction
JP2002001116A (en) * 2000-06-20 2002-01-08 Kansai Research Institute Method for treatment of gas or liquid containing malodorous harmful substance, catalyst device for oxidation-reduction reaction and catalyst for oxidation- reduction reaction
JP2019017538A (en) * 2017-07-13 2019-02-07 日本特殊陶業株式会社 Plasma reactor, air cleaning machine
CN111228977A (en) * 2020-03-19 2020-06-05 浙江嘉福新材料科技有限公司 Sulfuric acid tail gas treatment device and treatment process

Also Published As

Publication number Publication date
JPH07110332B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
Masuda et al. Control of NOx by positive and negative pulsed corona discharges
Masuda et al. Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics
US4743275A (en) Electron field generator
CN205797491U (en) Plasma filter screen device
JPS63267419A (en) Silent discharge generating device and gas treatment
Kirsch et al. Diffusion charging of submicrometer aerosol particles by unipolar ions
GB1394227A (en) Electrostatic filter
CN203298403U (en) Air purifier
CN105546657A (en) Air filter and applicable air cleaning device
KR20040085249A (en) Air pollutant destruction apparatus having plasma filter with three dimensional cell structure and its cleaning method
US1325124A (en) Process and apparatus for precipitating matter from gases
JPS6259504A (en) Ozonizer by corona discharge
Adachi et al. Diffusion charging of ultrafine aerosol particles by positive helium, argon, and nitrogen ions
CN105727670B (en) Air filtering method
Kim et al. Activated carbon-coated electrode and insulating partition for improved dust removal performance in electrostatic precipitators
CN109316913B (en) Application of wet discharge reactor in removing sulfur dioxide gas in waste gas
FR2220311A1 (en) Electrostatic filter to remove dust from air or exhaust fumes - employs cheap electrically non-conductive fibrous dust-collecting mesh
CN109316912B (en) Application of wet discharge reactor in removing nitrogen oxides in waste gas
KR850001333B1 (en) Ioic dust collectors
KR102505668B1 (en) METHOD FOR REMOVING NOx AND DUST FROM HARMFUL GAS EMITTED FROM SEMICONDUCTOR PROCESS
JPS5515909A (en) Ozonizer
CN212691989U (en) Multi-section ion wind power consumable-free air purifier
JPS58125606A (en) Rotating ozonizer
JPH0479180A (en) Ionized gas generating device
Tyndall et al. The mobility of ions in air. Part. V―The transformation of positive ions at short ages

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees