JPS6326507B2 - - Google Patents

Info

Publication number
JPS6326507B2
JPS6326507B2 JP54107549A JP10754979A JPS6326507B2 JP S6326507 B2 JPS6326507 B2 JP S6326507B2 JP 54107549 A JP54107549 A JP 54107549A JP 10754979 A JP10754979 A JP 10754979A JP S6326507 B2 JPS6326507 B2 JP S6326507B2
Authority
JP
Japan
Prior art keywords
current collector
adhesive
cathode
metal current
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54107549A
Other languages
Japanese (ja)
Other versions
JPS5632677A (en
Inventor
Kazumasa Yoshida
Kenji Koga
Yoshitoki Kitami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10754979A priority Critical patent/JPS5632677A/en
Publication of JPS5632677A publication Critical patent/JPS5632677A/en
Publication of JPS6326507B2 publication Critical patent/JPS6326507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は薄形電池の金属集電体製造方法の改良
に関し、密着性の優れた導電・熱融性接着剤を塗
着することにより、電池の放電性能、貯蔵性能を
向上させることを目的とする。 従来の薄形電池の金属集電体は、鉄、アルミニ
ウム、亜鉛、ステンレス、銅等の金属板に、塩化
ビニル、メラミン、エポキシ、フエノール等の樹
脂と、電導材として黒鉛、アセチレンブラツク等
の炭素粉とを溶剤に溶解混合した導電性接着剤
を、塗着乾燥して薄形電池に用いていた。 しかし、塩化ビニル系の樹脂を主成分とした導
電性接着剤は、金属板との密着が悪く長期貯蔵中
に剥離して電気絶縁層が形成され、電池の内部抵
抗が増大し放電性能を低下させたり、金属板と接
着剤フイルムとの間に電解液が浸透して、電池の
内部短絡の原因となつた。 またこの欠点の改良として、従来はメラミン、
エポキシ、フエノール系の樹脂である熱硬化型樹
脂を主成分とした導電性接着剤が開発されたが、
金属板との密着はよいが、高温で長時間の加熱硬
化を必要とし、作業性が悪く電導性も悪化する欠
点があり、また炭素膜等を熱圧着するにも不向き
であつた。 本発明は従来の欠点を改良したもので、飽和共
重合ポリエステル樹脂を主成分とした導電・熱融
着性接着剤を金属箔の片面に直接塗着することに
より、金属箔との密着性が向上し、電池の放電性
能、貯蔵性能を向上せしめるものである。 本発明の実施例によりなる薄形電池を図面にも
とづいて説明する。 第2図イのごとく、1はニツケル、鉄、アルミ
ニウム、ステンレス等の耐腐食性金属からなる外
面が陰極端子10を兼ねる金属箔で、導電・熱融
着性接着剤2を内面に直接塗着乾燥し、さらに接
着剤2面に炭素膜3を加熱圧着して貼り合せた3
層からなる陰極金属集電体4を形成している。次
に第1図のごとく、5は亜鉛薄板からなる陰極
で、炭素膜3よりやや小さく形成し炭素膜3に密
着集電している。6はクラフト紙、合成紙などか
らなるセパレータで、陰極5と密着するととも
に、セパレータ6の周縁に含浸または塗着したエ
ポキシ樹脂系などの密封剤7によつて、炭素膜3
に密着し、電池を密封口している。8は陰極金属
集電体で、外面が陽極端子11を兼ねた金属箔の
内面に直接導電・熱融着性接着剤2を塗着、さら
に炭素膜を被着している。この炭素膜には陽極活
物質である二酸化マンガン粉を主体とし、これに
電導材であるアセチレンブラツク、結着材である
ポリビニルアルコールまたはポリアクリル酸を添
加混合してなる陽極合剤9を被着集電している。
この陽極合剤9と陰極5とでセパレータ6を挟
み、陰極陽極金属集電体4,8を端子が外面にな
るように積重し、全体を陰極陽極端子10,11
を除き合成樹脂または金属をラミネートした外装
体12で被包している。なお、セパレータ6およ
び陽極合剤9には、例えば塩化亜鉛水溶液または
塩化亜鉛と塩化アンモニウム混合水溶液からなる
電解液が含有されている。 本発明の薄形電池に用いる陰極陽極金属集電体
4,8は、第2図イのごとく、外面が陰極陽極端
子板10,11を兼ねた金属箔1の内面に、テレ
フタル酸と飽和多価アルコールとから合成した飽
和共重合ポリエステル樹脂と、黒鉛、アセチレン
ブラツク等の炭素粉とを溶剤に溶解混合した導
電・熱融着性接着剤2を、金属箔1の内面に直接
塗着乾燥し、さらに接着剤2の表面に炭素膜3を
加熱圧着して貼り合せて形成している。 本発明電池の陰極陽極金属集電体4,8は、飽
和共重合ポリエステル樹脂を主成分とする接着剤
2を用いて貼り合せるため、耐熱性、耐衝撃性、
耐屈曲性等に優れ、金属箔と接着剤2との密着性
が良く、また、電池を被覆している外装体12と
炭素膜3の成分として用いているポリエステル、
ポリ塩化ビニル、ポリカーボネート等の樹脂とも
優れた密着性を有し、さらに、加熱融着性の接着
剤の働きを有するものである。 また、同接着剤2は炭素粉を含有し導電性を有
するため、第2図ロのごとく、炭素膜3を用い
ず、金属箔1の内面に接着剤2を塗着した2層構
造の陰極金属集電体4′でも、また同様の2層構
造の陽極集電体でも同じの効果がある。 次に、本発明の薄形電池と従来の同型電池とを
比較する。 まず、本発明品に用いる集電体について、導
電・熱融着性接着剤として、 線状飽和ポリエステル樹脂 15重量部 鱗状黒鉛 11 〃 アセチレンブラツク 4 〃 メチルエチルケトン 70 〃 とを秤量混合溶解し、導電・熱融着性接着剤2を
形成し、厚さ50μmの鉄の金属箔1の内面に10μ
m〜15μmの厚さ塗着し、60℃で10分間乾燥して
非粘着性のフイルムとし、塩化ビニルを主成分と
した厚さ50μmの炭素膜3を、150℃で10Kg/cm2
の力で0.5秒加熱圧着し、陰極陽極金属集電体4,
8を形成する。この陰極陽極金属集電体4,8を
用いて40mm×70mmのサイズの前記の薄形電池を
160個試作して、本発明品〔A〕を製造した。 さらに、本発明品〔B〕は線状飽和ポリエステ
ル樹脂を同様に用いた接着剤2からフイルムを形
成し、炭素膜3を用いない2層構造の陰極金属集
電体4′と2層構造の陽極金属集電体を用いて、
同型の薄形電池の本発明品〔B〕を160個製造し
た。 次に、従来品として、 可溶性塩化ビニル樹脂 15部 炭素粉 7.5部 溶 剤 70部 とを秤量混合溶解した接着剤を金属箔内面に塗着
し、炭素膜を圧着した陰極陽極金属集電体を用い
た同型の薄形電池の従来品〔C〕を160個試作し、
さらに従来品〔D〕として、熱架橋性メラミン樹
脂を用いて、〔C〕と同様に160個試作した。 これら40mm×70mmのサイズの薄形電池である本
発明品〔A〕、〔B〕と従来品〔C〕、〔D〕との各
30個を、製造1週間後に開路電圧と500Ωの閉路
電圧を測定し、500Ω連続放電し結果を表1に示
した。また、45℃の高温に130個貯蔵し、3ケ月
後に同様に開路、閉路電圧と500Ω連続放電と、
100個中の内部短絡した不良電池個数を調査し、
表2にまとめた。
The present invention relates to an improvement in the manufacturing method of metal current collectors for thin batteries, and its purpose is to improve the discharge performance and storage performance of batteries by applying a conductive and heat-fusible adhesive with excellent adhesion. do. The metal current collector of conventional thin batteries is a metal plate made of iron, aluminum, zinc, stainless steel, copper, etc., resin such as vinyl chloride, melamine, epoxy, phenol, etc., and carbon such as graphite, acetylene black, etc. as a conductive material. A conductive adhesive prepared by dissolving and mixing powder with a solvent was applied and dried to be used in thin batteries. However, conductive adhesives whose main component is vinyl chloride resin have poor adhesion to metal plates and peel off during long-term storage, forming an electrically insulating layer that increases the battery's internal resistance and reduces discharge performance. Otherwise, the electrolyte penetrated between the metal plate and the adhesive film, causing an internal short circuit in the battery. In addition, to improve this drawback, conventionally melamine,
Conductive adhesives have been developed whose main ingredients are thermosetting resins such as epoxy and phenolic resins.
Although it has good adhesion to metal plates, it requires heat curing at high temperatures for a long time, has poor workability and poor conductivity, and is also unsuitable for thermocompression bonding of carbon films and the like. The present invention improves the conventional drawbacks by directly applying a conductive and heat-adhesive adhesive mainly composed of saturated copolymerized polyester resin to one side of the metal foil, thereby improving its adhesion to the metal foil. This improves the discharge performance and storage performance of the battery. A thin battery according to an embodiment of the present invention will be explained based on the drawings. As shown in Figure 2 A, 1 is a metal foil made of a corrosion-resistant metal such as nickel, iron, aluminum, stainless steel, etc., whose outer surface also serves as a cathode terminal 10, and a conductive/thermal adhesive 2 is directly applied to the inner surface. After drying, a carbon film 3 was bonded to the adhesive 2 by heat-pressing.
A cathode metal current collector 4 consisting of layers is formed. Next, as shown in FIG. 1, numeral 5 denotes a cathode made of a thin zinc plate, which is formed slightly smaller than the carbon film 3 and collects current in close contact with the carbon film 3. Reference numeral 6 denotes a separator made of kraft paper, synthetic paper, etc., which is in close contact with the cathode 5, and is sealed with a sealant 7 such as an epoxy resin type impregnated or painted on the periphery of the separator 6.
The battery is sealed tightly. Reference numeral 8 denotes a cathode metal current collector, which has a metal foil whose outer surface also serves as an anode terminal 11, has a conductive/heat-fusible adhesive 2 applied directly to the inner surface, and is further coated with a carbon film. This carbon film is coated with an anode mixture 9 consisting mainly of manganese dioxide powder, which is an anode active material, and acetylene black, which is a conductive material, and polyvinyl alcohol or polyacrylic acid, which is a binder. Power is being collected.
A separator 6 is sandwiched between the anode mixture 9 and the cathode 5, and the cathode and anode metal current collectors 4 and 8 are stacked so that the terminals are on the outside.
Except for this, it is covered with an exterior body 12 laminated with synthetic resin or metal. Note that the separator 6 and the anode mixture 9 contain an electrolytic solution consisting of, for example, an aqueous zinc chloride solution or a mixed aqueous solution of zinc chloride and ammonium chloride. The cathode and anode metal current collectors 4 and 8 used in the thin battery of the present invention, as shown in FIG. A conductive/thermal adhesive 2 made by dissolving and mixing a saturated copolymerized polyester resin synthesized from alcohol and carbon powder such as graphite or acetylene black in a solvent is applied directly to the inner surface of the metal foil 1 and dried. Furthermore, a carbon film 3 is bonded to the surface of the adhesive 2 by heat-pressing. Since the cathode and anode metal current collectors 4 and 8 of the battery of the present invention are bonded together using the adhesive 2 whose main component is a saturated copolymerized polyester resin, they have good heat resistance, impact resistance,
Polyester has excellent bending resistance, has good adhesion between the metal foil and the adhesive 2, and is used as a component of the exterior body 12 and carbon film 3 that cover the battery.
It has excellent adhesion to resins such as polyvinyl chloride and polycarbonate, and also functions as a heat-fusible adhesive. In addition, since the adhesive 2 contains carbon powder and has conductivity, as shown in FIG. The same effect can be obtained with the metal current collector 4' or with a similar two-layered anode current collector. Next, the thin battery of the present invention will be compared with a conventional battery of the same type. First, for the current collector used in the product of the present invention, 15 parts by weight of linear saturated polyester resin, 11 parts by weight of scaly graphite, 4 parts of acetylene black, and 70 parts of methyl ethyl ketone are mixed and dissolved as a conductive and heat-fusible adhesive. A heat-adhesive adhesive 2 is formed and 10 μm is applied to the inner surface of a 50 μm thick iron metal foil 1.
A carbon film 3 with a thickness of 50 μm and mainly composed of vinyl chloride was coated with a thickness of 15 μm and dried at 60°C for 10 minutes to form a non-adhesive film at 10 kg/cm 2 at 150°C.
Heat and press the cathode anode metal current collector 4,
form 8. Using these cathode and anode metal current collectors 4 and 8, the above-mentioned thin battery with a size of 40 mm x 70 mm is manufactured.
Inventive product [A] was manufactured by making 160 prototypes. Furthermore, in the product [B] of the present invention, a film is formed from an adhesive 2 similarly using a linear saturated polyester resin, and a cathode metal current collector 4' having a two-layer structure without using a carbon film 3 and a cathode metal current collector 4' having a two-layer structure are formed. Using an anode metal current collector,
160 thin batteries of the same type according to the present invention [B] were manufactured. Next, as a conventional product, an adhesive prepared by weighing and dissolving 15 parts of soluble vinyl chloride resin, 7.5 parts of carbon powder, and 70 parts of solvent was applied to the inner surface of the metal foil, and a cathode and anode metal current collector with the carbon film crimped was applied. We made 160 prototypes of the same type of conventional thin battery [C] that we used,
Furthermore, as a conventional product [D], 160 prototypes were manufactured using thermally crosslinkable melamine resin in the same manner as [C]. These thin batteries of the present invention [A] and [B] with a size of 40 mm x 70 mm and the conventional products [C] and [D]
The open circuit voltage and 500Ω closed circuit voltage of 30 pieces were measured one week after manufacture, and the results were shown in Table 1 after continuous discharge of 500Ω. In addition, 130 pieces were stored at a high temperature of 45℃, and after 3 months, the same open circuit and closed circuit voltages and 500Ω continuous discharge,
We investigated the number of defective batteries with internal short circuits out of 100, and
The results are summarized in Table 2.

【表】【table】

【表】 表1の結果、本発明品〔A〕、〔B〕は閉路電圧
が高く、従つて分極抵抗すなわち内部抵抗が小さ
く金属集電体の密着性が優れていることが判る。
さらに、放電性能も向上している。 表2の結果、貯蔵後においても閉路電圧が高く
密着性が持続し、放電性能も優れている。 なお、接着剤2の厚さは5μm〜300μmが良好
で、5μm未満だとピンホールが形成され腐食が
発生したり、接着力が弱くなり、電池の短絡が起
り易く、300μmを越えると電気抵抗が無視出来
ず、かつまた材料も無駄で実用価値にとぼしい。
また、接着剤への炭素粉の添加量はポリエステル
樹脂1重量部に対して0.7〜1.2重量部が良好で、
0.7重量部未満では導電性が悪く、1.2重量部を越
えると導電性は充分であるが密着性が極端に劣化
する。 また、本発明の薄形電池に用いた金属集電体
は、006P等の積層形電池にも応用できるもので
ある。 以上のごとく、本発明のテレフタル酸と飽和多
価アルコールとから合成した飽和共重合ポリエス
テル樹脂に、炭素粉を添加した導電・熱融着性接
着剤を、片面に直接塗着してなる陰極陽極金属集
電体を用いて製造した薄形電池は、内部抵抗が小
さく、放電性能と貯蔵性能が優れているものであ
る。
[Table] The results in Table 1 show that the products [A] and [B] of the present invention have a high closed-circuit voltage, and therefore have a low polarization resistance, that is, an internal resistance, and excellent adhesion to the metal current collector.
Furthermore, discharge performance has also been improved. As shown in Table 2, even after storage, the closed circuit voltage is high and the adhesion is maintained, and the discharge performance is also excellent. The thickness of the adhesive 2 is preferably between 5 μm and 300 μm. If it is less than 5 μm, pinholes will be formed and corrosion will occur, the adhesive strength will be weak, and battery short circuits will easily occur. If it exceeds 300 μm, the electrical resistance will decrease. cannot be ignored, and the materials are also wasted and have little practical value.
In addition, the amount of carbon powder added to the adhesive is preferably 0.7 to 1.2 parts by weight per 1 part by weight of the polyester resin.
If it is less than 0.7 parts by weight, the conductivity is poor, and if it exceeds 1.2 parts by weight, the conductivity is sufficient but the adhesion is extremely deteriorated. Furthermore, the metal current collector used in the thin battery of the present invention can also be applied to stacked batteries such as 006P. As described above, the cathode anode is formed by directly coating one side of the saturated copolymerized polyester resin of the present invention synthesized from terephthalic acid and saturated polyhydric alcohol with a conductive and heat-fusible adhesive containing carbon powder. Thin batteries manufactured using metal current collectors have low internal resistance and excellent discharge performance and storage performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例により製造された薄型
電池の断面図で、第2図のイは薄型電池に用いた
陰極金属集電体の要部拡大断面図で、ロは2層の
実施例における陰極金属集電体の要部拡大断面図
である。 1……金属箔、2……接着剤、3……炭素膜、
4,4′……陰極金属集電体、8……陽極金属集
電体、10……陰極端子、11……陽極端子。
Figure 1 is a sectional view of a thin battery manufactured according to an embodiment of the present invention, A in Figure 2 is an enlarged sectional view of the main part of the cathode metal current collector used in the thin battery, and B is a two-layer implementation. FIG. 3 is an enlarged sectional view of a main part of a cathode metal current collector in an example. 1...Metal foil, 2...Adhesive, 3...Carbon film,
4, 4'... Cathode metal current collector, 8... Anode metal current collector, 10... Cathode terminal, 11... Anode terminal.

Claims (1)

【特許請求の範囲】 1 テレフタル酸と飽和多価アルコールとから合
成した飽和共重合ポリエステル樹脂に、炭素粉を
添加した導電・熱融着性接着剤2を、金属箔1の
片面に塗着し、かつ反対面を陰極端子10とした
陰極金属集電体4と、別の同様の金属箔の片面に
接着剤2を塗着し、反対面を陽極端子11とした
陽極金属集電体8とを使用して組立てることを特
徴とした薄形電池の製造方法。 2 該陰極金属集電体4または陽極金属集電体8
が、導電・熱融着性接着剤2と炭素膜3とをその
表面に貼り合せてなることを特徴とする特許請求
の範囲第1項記載の薄形電池の製造方法。
[Claims] 1. A conductive/heat-fusible adhesive 2 made by adding carbon powder to a saturated copolymerized polyester resin synthesized from terephthalic acid and a saturated polyhydric alcohol is applied to one side of a metal foil 1. , and a cathode metal current collector 4 with a cathode terminal 10 on the opposite side, and an anode metal current collector 8 with an adhesive 2 applied on one side of another similar metal foil and an anode terminal 11 on the opposite side. A method for manufacturing a thin battery characterized by assembling it using. 2 The cathode metal current collector 4 or the anode metal current collector 8
2. The method of manufacturing a thin battery according to claim 1, wherein a conductive/heat-fusible adhesive 2 and a carbon film 3 are bonded to the surface of the thin battery.
JP10754979A 1979-08-23 1979-08-23 Battery Granted JPS5632677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10754979A JPS5632677A (en) 1979-08-23 1979-08-23 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10754979A JPS5632677A (en) 1979-08-23 1979-08-23 Battery

Publications (2)

Publication Number Publication Date
JPS5632677A JPS5632677A (en) 1981-04-02
JPS6326507B2 true JPS6326507B2 (en) 1988-05-30

Family

ID=14461992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10754979A Granted JPS5632677A (en) 1979-08-23 1979-08-23 Battery

Country Status (1)

Country Link
JP (1) JPS5632677A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253157A (en) * 1984-05-28 1985-12-13 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPS63116971U (en) * 1987-01-20 1988-07-28
JP2811834B2 (en) * 1989-01-24 1998-10-15 松下電器産業株式会社 Non-aqueous electrolyte battery and method of manufacturing the same
JP4403524B2 (en) * 2008-01-11 2010-01-27 トヨタ自動車株式会社 Electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5632677A (en) 1981-04-02

Similar Documents

Publication Publication Date Title
JP5069834B2 (en) Electrochemical energy storage device with improved enclosure mechanism
US6077623A (en) Bipolar lead-acid battery plates and method of making same
US7881042B2 (en) Cell assembly for an energy storage device with activated carbon electrodes
JPH10189050A (en) Lithium ion battery
JPH10302756A (en) Thin battery
JPH0791449B2 (en) Activated carbon / polyacene material composite, its manufacturing method, electric double layer capacitor and its composite parts
CN112510215B (en) Electrode pole piece, manufacturing method of electrode pole piece and electrochemical energy storage device
JPS6326507B2 (en)
JPH11288849A (en) Electrode-metal material, capacitor using material thereof and manufacture thereof
JPH09265973A (en) Terminal structure for flat battery
JPH0754714B2 (en) Thin lead acid battery and manufacturing method thereof
JP2004342564A (en) Sheath material for battery
JPH0329131B2 (en)
JP2018181525A (en) All-solid battery
JP2000277393A (en) Electric double-layer capacitor and its manufacturing method
JPH047564Y2 (en)
JPH04286859A (en) Flat-type power supply element
JPS5856458B2 (en) thin plate battery
JPH046071B2 (en)
JPS6011552Y2 (en) flat battery
JPS6050033B2 (en) thin battery
JPH029498Y2 (en)
JPH05121056A (en) Thin type battery
JPS6338529Y2 (en)
JPS6120126B2 (en)