JPH046071B2 - - Google Patents

Info

Publication number
JPH046071B2
JPH046071B2 JP58054620A JP5462083A JPH046071B2 JP H046071 B2 JPH046071 B2 JP H046071B2 JP 58054620 A JP58054620 A JP 58054620A JP 5462083 A JP5462083 A JP 5462083A JP H046071 B2 JPH046071 B2 JP H046071B2
Authority
JP
Japan
Prior art keywords
heat
current collector
electrode current
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58054620A
Other languages
Japanese (ja)
Other versions
JPS59180962A (en
Inventor
Takeo Oohira
Kyoshi Sawada
Shigeo Kobayashi
Yutaka Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Panasonic Holdings Corp
Original Assignee
Toppan Printing Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP58054620A priority Critical patent/JPS59180962A/en
Publication of JPS59180962A publication Critical patent/JPS59180962A/en
Publication of JPH046071B2 publication Critical patent/JPH046071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/555Window-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は、扁平薄型有機電解液電池に関する。[Detailed description of the invention] <Technical field> The present invention relates to a flat thin organic electrolyte battery.

<従来技術及び開発経過の説明> 従来、正極活物質に二酸化マンガン、負極活物
質に亜鉛を用い、中性塩電解液を用いた扁平薄型
電池は、例えば「ペーパーバツテリー」の商品名
で市販されてきた。この扁平薄型電池の断面図
は、およそ第1図に示すようなものである。
<Description of prior art and development progress> Conventionally, flat and thin batteries using manganese dioxide as the positive electrode active material, zinc as the negative electrode active material, and a neutral salt electrolyte have been commercially available under the trade name of "Paper Battery," for example. It's here. A cross-sectional view of this flat, thin battery is approximately as shown in FIG.

すなわち、第1図において負極(亜鉛板)11
と正極集電体14の間に、電解液である過塩素酸
亜鉛水溶液を含浸したセパレーター12、正極合
剤(二酸化マンガンとカーボンブラツクの混合
物)13を介在させ、全体を外被包材10で包装
している。なお、この外被包材10には一部窓が
あけられており、この窓から露出した正極集電体
14が正極端子15となり、負極11と外被包材
10の間にはさまれた金属板が負極端子16とな
つている。
That is, in FIG. 1, the negative electrode (zinc plate) 11
A separator 12 impregnated with an aqueous solution of zinc perchlorate, which is an electrolytic solution, and a positive electrode mixture (a mixture of manganese dioxide and carbon black) 13 are interposed between the electrode current collector 14 and the positive electrode current collector 14, and the whole is covered with an outer covering material 10. It's packaged. Note that a window is partially opened in this outer packaging material 10, and the positive electrode current collector 14 exposed through this window becomes a positive electrode terminal 15, which is sandwiched between the negative electrode 11 and the outer packaging material 10. The metal plate serves as a negative terminal 16.

第1図では、外被包材10は単一の層から成る
シートのように描かれているが、その詳細な第2
図の拡大断面図に示すように、外側から耐熱性フ
イルム21/接着剤22/アルミニウム箔23/
接着剤24/耐熱性樹脂フイルム25/接着剤2
6/金属接着性樹脂27を積層した多層シートで
ある。
In FIG. 1, the outer wrapper 10 is depicted as a single layer sheet;
As shown in the enlarged sectional view of the figure, from the outside, the heat-resistant film 21 / adhesive 22 / aluminum foil 23 /
Adhesive 24/Heat-resistant resin film 25/Adhesive 2
6/ It is a multilayer sheet in which metal adhesive resin 27 is laminated.

ところで、最近のIC,LSIをはじめとするエレ
クトロニクスの進展はめざましく、これらを応用
した電子精密機器においても、高精度・多機能化
がますます強く求められ、こらの電源としての一
次電池にも、高エネルギー密度、長期信頼性が求
められている。更に電卓やカメラなどの低消費電
力の携帯用小型機器では飛躍的な小型軽量化など
のフアツシヨナブルで、より機能的な商品設計が
図られている。そこで、小型で軽量であること、
薄いこと、フアツシヨナルブルである点では、上
記の扁平薄型電池は極めて優れたものであるが、
必ずしもエネルギー密度が最も優れているという
訳ではない。
Incidentally, recent advances in electronics such as ICs and LSIs have been remarkable, and electronic precision equipment that uses these devices is increasingly required to be highly accurate and multi-functional. High energy density and long-term reliability are required. Furthermore, small portable devices with low power consumption, such as calculators and cameras, are being designed to be more fashionable and more functional, such as dramatically smaller size and weight. Therefore, it must be small and lightweight,
The above-mentioned flat and thin battery is extremely superior in terms of being thin and fashionable;
It does not necessarily mean that the energy density is the best.

このエネルギー密度の最も高い電池は、今日ま
で、リチウム電池であると言われている。このリ
チウム電池とは、金属リチウムまたはリチウム−
アルミニウム(Li−Al)合金等のリチウム系合
金を負極活物質とし、非水系の電解液を用いたも
ので、以下(イ)〜(ハ)の特徴がある。
To date, the battery with the highest energy density is said to be a lithium battery. This lithium battery is metal lithium or lithium-
It uses a lithium-based alloy such as an aluminum (Li-Al) alloy as a negative electrode active material and a non-aqueous electrolyte, and has the following characteristics (a) to (c).

(イ) 金属リチウムが、標準電極電位E=−
3.045Vとあらゆる物質中で最も卑な電位を持
ち、かつ電気化学当量は0.26g/Ahと固体物
質中で最も小さい値を持つため、高電圧電池
(3V以上)でかつエネルギー密度の非常に大き
な電池となる可能性がある。
(a) Metallic lithium has a standard electrode potential E=-
It has the lowest potential of all substances at 3.045V, and the lowest electrochemical equivalent of 0.26g/Ah among solid substances, making it a high-voltage battery (more than 3V) and a very high energy density. It could be a battery.

(ロ) 有機電解液を使用するため、広い作動温度範
囲を持つ。
(b) Since it uses an organic electrolyte, it has a wide operating temperature range.

(ハ) 5年以上という長期貯蔵性が期待できる。そ
こで、従来の二酸化マンガン/亜鉛系の扁平薄
型電池に代えて、リチウム電池の扁平薄型電池
を製造することができれば、高電圧でエネルギ
ー密度が高く、長期貯蔵性があり、しかも小型
軽量で薄く、フアツシヨナブルな電池が得られ
ることになる。そこで、予想される扁平薄型リ
チウム電池の大略断面図は、例えば第3図に示
すようにものである。すなわち、二枚あるいは
二つに折り込んだ外被包材30には正極集電体
31及び負極集電体35がそれぞれ熱融着され
ている。この正極集電体31と負極集電体35
の間に、順に、正極合剤32、有機電解液の含
浸したセパレーター33、リチウム又はリチウ
ム系合金から成る負極34がはさまれている。
(c) It can be expected to have a long shelf life of 5 years or more. Therefore, if it were possible to manufacture a flat thin lithium battery instead of the conventional flat thin manganese dioxide/zinc battery, it would be possible to produce a flat thin lithium battery that has high voltage, high energy density, long-term storage, and is small, lightweight, and thin. A fashionable battery can be obtained. Therefore, a rough cross-sectional view of the expected flat thin lithium battery is as shown in FIG. 3, for example. That is, the positive electrode current collector 31 and the negative electrode current collector 35 are each heat-sealed to the outer packaging material 30 which is folded into two sheets or two. This positive electrode current collector 31 and negative electrode current collector 35
A positive electrode mixture 32, a separator 33 impregnated with an organic electrolyte, and a negative electrode 34 made of lithium or a lithium-based alloy are sandwiched between them in this order.

しかるに、扁平薄型リチウム電池の外被包材3
0には、従来の二酸化マンガン/亜鉛系の扁平薄
型電池の外被包材10と異なり、極めて優れた防
湿性と、有機電解液に対する耐性とを要求され
る。また、従来の扁平薄型電池と同じく、集電体
31,35に対する熱接着性が要求されるのは勿
論である。
However, the outer packaging material 3 of flat thin lithium batteries
Unlike the conventional manganese dioxide/zinc-based flat thin battery outer covering material 10, extremely excellent moisture resistance and resistance to organic electrolytes are required. Further, as with conventional flat thin batteries, it goes without saying that thermal adhesion to the current collectors 31 and 35 is required.

このような事情に鑑みて、本発明者等は、今日
まで、様々な外被包材を試作し、検討して来た。
In view of these circumstances, the inventors of the present invention have so far produced and studied various outer packaging materials.

例えば、接着剤を用いて内面接着性樹脂を積層
した従来の外被包材10をそのまま使用すると、
有機電解液が浸透して、耐熱性樹脂フイルム25
と金属接着性樹脂27の間、及び耐熱性樹脂フイ
ルム25とアルミニウム箔23の間で剥離してし
まつた。
For example, if the conventional outer packaging material 10 in which an inner adhesive resin is laminated using an adhesive is used as is,
The organic electrolyte penetrates into the heat-resistant resin film 25.
and the metal adhesive resin 27, and between the heat-resistant resin film 25 and the aluminum foil 23.

有機電解液の浸透による同様の剥離もしくは接
着強度の劣化は、ウレタン系接着剤やエポキシ系
接着剤を用いた場合も発生した。これらの実験結
果から、溶剤型の接着剤やノンソルベント型の接
着剤などのいわゆる接着剤は、有機電解液の浸透
によつて膨潤してしまい、接着強度が劣化して剥
離し易くなると結論せざるを得なかつた。
Similar peeling or deterioration of adhesive strength due to penetration of organic electrolyte also occurred when urethane-based adhesives or epoxy-based adhesives were used. From these experimental results, it can be concluded that so-called adhesives such as solvent-based adhesives and non-solvent adhesives swell due to the penetration of organic electrolytes, which deteriorates their adhesive strength and makes them easier to peel off. I had no choice.

そこで、本発明者等は、外被包材30のアルミ
ニウム箔より内側に接着剤を使用せず、熱融着性
樹脂のみを用いて外被包材40を試作した。これ
は第4図の断面図に示すもので、外側から順に耐
熱性フイルム41/接着剤42/アルミニウム箔
43/熱融着性樹脂44の層構成を有する積層材
料40である。
Therefore, the present inventors prototyped the outer wrapping material 40 using only a heat-fusible resin without using an adhesive on the inner side of the aluminum foil of the outer wrapping material 30. This is shown in the sectional view of FIG. 4, and is a laminated material 40 having a layered structure of heat-resistant film 41/adhesive 42/aluminum foil 43/thermal adhesive resin 44 in order from the outside.

なお、有機電解液がアルミニウム箔43より外
側に浸透することはないので、耐熱性フイルム4
1とアルミニウム箔43は適当な接着剤を用いて
接着することができる。ここで、熱融着性樹脂4
4としては、例えば、エチレン−(メタ)アクリ
ル酸誘導体共重合体、エチレン−グリシジル(メ
タ)アクリレート−ビニルアセテート三元共重合
体、不飽和カルボン酸でグラフト変性したポリオ
レフインなどであり、中でもその熱融着強度とそ
の経時的な安定性から、不飽和カルボン酸でグラ
フト変性したボリオレフインが優れており、特に
不飽和カルボン酸でグラフト変性したポリプロピ
レンが優れていた。
Note that since the organic electrolyte does not penetrate beyond the aluminum foil 43, the heat-resistant film 4
1 and the aluminum foil 43 can be bonded together using a suitable adhesive. Here, heat-fusible resin 4
Examples of 4 include ethylene-(meth)acrylic acid derivative copolymer, ethylene-glycidyl(meth)acrylate-vinyl acetate terpolymer, and polyolefin graft-modified with unsaturated carboxylic acid. Polyolefin graft-modified with unsaturated carboxylic acid was superior in terms of fusion strength and stability over time, and polypropylene graft-modified with unsaturated carboxylic acid was particularly excellent.

こうして、第4図に示す積層材料40を外被包
材30に用いることによつて、集電体31,35
と外被包材30との接着性及び有機電解液の浸透
による接着強度の劣化の問題は解決したが、その
一方、第4図に示す積層材料40を用いることに
よつて新たな問題が発生してしまつた。すなわ
ち、集電体31,35と積層材料40中のアルミ
ニウム箔43が短絡してしまつたのである。
In this way, by using the laminated material 40 shown in FIG.
Although the problem of deterioration of the adhesion between the outer envelope material 30 and the adhesive strength due to penetration of the organic electrolyte was solved, on the other hand, a new problem occurred by using the laminated material 40 shown in FIG. I did it. That is, the current collectors 31 and 35 and the aluminum foil 43 in the laminated material 40 were short-circuited.

短絡の原因には二つあつた。一つは、積層材料
40を外被包材30として、集電体31,35に
熱融着する際に、熱融着性樹脂44に小さなピン
ホールが生じ、ここから積層材料40中のアルミ
ニウム箔43に短絡してしまうのである。
There were two causes for the short circuit. One is that when the laminated material 40 is used as the outer covering material 30 and is heat-sealed to the current collectors 31 and 35, a small pinhole is created in the heat-sealable resin 44, and the aluminum in the laminated material 40 is formed through the heat-sealed resin 44. This causes a short circuit to the foil 43.

短絡のもう一つの原因は、外被包材30同志を
熱融着した際に、そのシールエツジ部分で、集電
体31,35が熱融着性樹脂44を破つて、アル
ミニウム箔43と短絡してしまうのである。この
状態を第5図の部分断面図に示す。図中×がその
破れた部分である。
Another cause of the short circuit is that when the outer covering material 30 is heat-sealed together, the current collectors 31 and 35 break the heat-sealing resin 44 at the seal edges and short-circuit with the aluminum foil 43. That's what happens. This state is shown in the partial sectional view of FIG. The x in the figure is the torn part.

この短絡を防止するためには、アルミニウム箔
43と熱融着樹脂44の間に、熱融着時の熱でピ
ンホールを生じない別のシートを介在させれば良
いと思われた。これが第6図の断面図に示すもの
で、図中61はナイロン、エチレン−ビニルアル
コール共重合体、ポリエステル(ポリエチレンテ
レフタレート)、あるいは熱融着時に熱融着性樹
脂44より大きい溶融粘度を有するポリオレフイ
ン等のフイルムである。
In order to prevent this short circuit, it was thought that it would be best to interpose another sheet between the aluminum foil 43 and the heat-sealing resin 44, which would not cause pinholes due to the heat during heat-sealing. This is shown in the cross-sectional view of FIG. 6, where 61 is nylon, ethylene-vinyl alcohol copolymer, polyester (polyethylene terephthalate), or polyolefin having a higher melt viscosity than the heat-fusible resin 44 during heat-sealing. It is a film such as.

ところが、ナイロンやエチレン−ビニルアルコ
ール共重合体には吸湿性があり、その端面から吸
湿してしまうので、負極活物質として用いられる
リチウム又はリチウム系合金が侵入した水分と反
応する危険があつた。ポリエステルは吸湿性もな
く、耐有機溶剤性も優れているが、熱融着性樹脂
44とポリエステルは通常熱融着性がなく、(ポ
リエステル系熱融着性樹脂はポリエステルに熱融
着できるが、有機電解液に膨潤してしまう)、十
分な接着強度を得ることができなかつた。
However, since nylon and ethylene-vinyl alcohol copolymers have hygroscopic properties and absorb moisture from their end surfaces, there was a risk that lithium or lithium-based alloys used as negative electrode active materials would react with the invading moisture. Polyester is not hygroscopic and has excellent resistance to organic solvents, but heat-fusible resin 44 and polyester usually do not have heat-fusibility (polyester-based heat-fusible resin can be heat-fused to polyester, but , it swelled in the organic electrolyte), and sufficient adhesive strength could not be obtained.

フイルム61としてポリエステルを用い、熱融
着樹脂44とフイルム61の間に接着剤を用いれ
ば良いが、上述したように、接着剤は有機電解液
の浸透により剥離してしまう。
Polyester may be used as the film 61, and an adhesive may be used between the heat-sealing resin 44 and the film 61, but as described above, the adhesive peels off due to penetration of the organic electrolyte.

この問題は解決し難いように思われた。しかる
に、本発明者等は、両面に金属や無機物を蒸着し
た耐熱性樹脂フイルムを用いるという方法でこれ
を解決した。熱融着性樹脂は金属や無機物を対す
る熱融着性を有するものである。
The problem seemed intractable. However, the present inventors solved this problem by using a heat-resistant resin film with metals or inorganic substances deposited on both sides. The heat-fusible resin has heat-fusibility to metals and inorganic materials.

<発明の概要> すなわち、本発明は、二枚又は二つに折り込ん
だ外被包材に正極集電体及び負極集電体がそれぞ
れ熱融着され、この正極集電体と負極集電体の間
に、順に、正極合剤、有機電解液の含浸したセパ
レーター、負極がはさまれ、周囲でこの外被包材
同士を接着して密封すると共に、この外被包材の
一部に窓を設けて、正極集電体と負極集電体が露
出している扁平薄型有機電解液電池において、こ
の外被包材が外側から耐熱性フイルム、アルミニ
ウム箔、多層構造の内面接着層から成つて、この
内面接着層がアルミニウム側熱融着性樹脂と最内
面熱融着性樹脂の間に、両面に金属又は無機物を
蒸着した耐熱性樹脂フイルムを配した少なくとも
三層構造から成り、しかもこの内面接着層が熱融
着によつて積層一体化されていることを特徴とす
る扁平薄型有機電解液電池を提供する。
<Summary of the Invention> That is, the present invention provides a method in which a positive electrode current collector and a negative electrode current collector are respectively heat-sealed to an outer wrapping material folded into two sheets or folded in two, and the positive electrode current collector and negative electrode current collector are bonded together. A positive electrode mixture, a separator impregnated with an organic electrolyte, and a negative electrode are sandwiched between the layers, and the outer casing materials are bonded and sealed around the periphery. In a flat thin organic electrolyte battery in which a positive electrode current collector and a negative electrode current collector are exposed, this outer covering material is made of a heat-resistant film, aluminum foil, and a multilayer inner adhesive layer from the outside. , this inner surface adhesive layer consists of at least a three-layer structure in which a heat-resistant resin film with metal or inorganic material deposited on both sides is placed between the aluminum-side heat-fusible resin and the innermost heat-sealable resin, and this inner surface Provided is a flat and thin organic electrolyte battery characterized in that adhesive layers are laminated and integrated by heat fusion.

本発明によれば、外被包材のアルミニウム箔よ
りも内側の内面接着層に耐熱性樹脂フイルムを配
して、内部の熱融着性樹脂にピンホールが生じた
場合も、アルミニウム箔と集電体との電気的接触
を阻止すると共に、耐熱性樹脂フイルムの接着に
接着剤を使用していないため有機電解液の浸透に
よる接着強度の劣化も防ぐことができる。
According to the present invention, the heat-resistant resin film is arranged on the inner surface adhesive layer inside the aluminum foil of the outer covering material, so that even if a pinhole occurs in the internal heat-sealing resin, it will not collect with the aluminum foil. In addition to preventing electrical contact with the electric body, since no adhesive is used to bond the heat-resistant resin film, it is possible to prevent deterioration of adhesive strength due to penetration of organic electrolyte.

<発明の具体化> 以下、本発明の詳細は実施例により説明する。
図面の第7図は本発明の一実施例の外被包材の断
面図を示している。図中71はポリエステル、ナ
イロンなどの耐熱性フイルムを示し、この耐熱性
フイルム71は熱融着性樹脂76の熱融着温度よ
り20〜30℃以上高い融点を持ち、アルミニウム箔
73と積層してアルミニウム箔73のピンホール
発生、腐蝕を防ぐと共に、外被包材70に熱融着
作業性を与えるものである。この耐熱性フイルム
71とアルミニウム箔73は接着剤又は接着性フ
イルム72を介して貼り合せる。
<Embodiment of the invention> The details of the present invention will be explained below with reference to Examples.
FIG. 7 of the drawings shows a cross-sectional view of an outer wrapping material according to an embodiment of the present invention. In the figure, 71 indicates a heat-resistant film made of polyester, nylon, or the like. This prevents the occurrence of pinholes and corrosion in the aluminum foil 73, and also provides heat-sealing workability to the outer wrapping material 70. This heat-resistant film 71 and aluminum foil 73 are bonded together via an adhesive or an adhesive film 72.

また75は両面に金属又は無機物を蒸着した耐
熱性樹脂フイルムで、例えばポリエステルフイル
ム(ポリエチレンテレフレートフイルム)が適し
ている。蒸着する金属としてはアルミニウム、
金、銀、クロム、銅、また蒸着する無機物として
は、例えば二酸化ケイ素、一酸化ケイ素、酸化チ
タン、酸化インジウム等が挙げられる。
Further, 75 is a heat-resistant resin film having metal or inorganic material deposited on both sides, and for example, a polyester film (polyethylene terephrate film) is suitable. Aluminum is the metal to be vapor deposited,
Gold, silver, chromium, copper, and inorganic substances to be vapor-deposited include, for example, silicon dioxide, silicon monoxide, titanium oxide, and indium oxide.

最内面熱融着性樹脂76としては、例えば、エ
チレン−(メタ)アクリル酸共重合体、エチレン
−グリシジル(メタ)アクリレート−ビニルアセ
テート、不飽和カルボン酸でグラフト変性したポ
リオレフインなどの金属及び無機物に接着性を有
する熱融着性樹脂が使用できるが、上述したよう
に、その耐有機電解液性から、不飽和カルボン酸
でグラフト変性したポリオレフインが好ましく、
特に、エチレン又はプロピレン単量体100重量部
に対し、アクリル酸、メタクリル酸、イタコン
酸、フマル酸、マレイン酸、無水マレイン酸など
のα,β−不飽和カルボン酸を0.01〜10重量部グ
ラフト重合させたものが好ましい。
The innermost heat-fusible resin 76 may be made of metals and inorganic materials such as ethylene-(meth)acrylic acid copolymer, ethylene-glycidyl(meth)acrylate-vinyl acetate, and polyolefin graft-modified with unsaturated carboxylic acid. A heat-fusible resin having adhesive properties can be used, but as mentioned above, a polyolefin graft-modified with an unsaturated carboxylic acid is preferable because of its resistance to organic electrolytes.
In particular, 0.01 to 10 parts by weight of α,β-unsaturated carboxylic acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, etc. is graft polymerized to 100 parts by weight of ethylene or propylene monomer. Preferably.

また、アルミニウム箔側熱融着性樹脂74とし
ては、最内面熱融着性樹脂76として使用できる
樹脂なら使用できるが、この外、ポリエチレンな
ども使用できる。
Further, as the aluminum foil side heat-fusible resin 74, any resin that can be used as the innermost heat-fusible resin 76 can be used, but polyethylene or the like can also be used.

アルミニウム箔(例えば厚さ9μ以上)73、
アルミニウム側熱融着性樹脂74、両面に金属又
は無機物を蒸着した耐熱性樹脂フイルム75、最
内面熱融着性樹脂76は、接着剤を用いることな
く、熱融着によつて積層一体化することが必要で
ある。
Aluminum foil (for example, thickness 9μ or more) 73,
The aluminum side heat-fusible resin 74, the heat-resistant resin film 75 with metal or inorganic material vapor-deposited on both sides, and the innermost heat-fusible resin 76 are laminated and integrated by heat fusion without using an adhesive. It is necessary.

この外被包材70によつて得られる扁平薄型電
池の断面図は第3図に示すものと同様で、二枚あ
るいは二つに折り込んだ外被包材70には、正極
集電体31及び負極集電体35がそれぞれ熱融着
されている。この際の熱融着温度は150〜200℃が
好ましい。正極集電体31にはチタン、ステンレ
ス鋼、アルミニウムなどが用いられ、負極集電体
35には、ニツケル、ステンレス鋼などが用いら
れる。また、その厚さは30〜80μである。正極合
剤層32は、正極活物質と導電材としてのカーボ
ンブラツク及び結着材からなる。正極活物質には
二酸化マンガンなどの金属酸化物や金属硫化物ま
たはフツ化炭素が使用される。結着材はポリテト
ラフロロエチレンを用いる。一方負極34にはリ
チウム、あるいはリチウム−アルミニウム合金な
どのリチウム系合金を用いる。セパレーター33
はポリプロピレンなどの不織布である。有機電解
液はr−プチロラクトンの如き非プロトン系高誘
電率、低粘度の有機溶媒に、ほうフツ化リチウ
ム、過塩素酸リチウムなどの無機塩を溶解したも
のを用いる。
The cross-sectional view of a flat, thin battery obtained using this outer wrapping material 70 is similar to that shown in FIG. The negative electrode current collectors 35 are each heat-sealed. The thermal fusion temperature at this time is preferably 150 to 200°C. Titanium, stainless steel, aluminum, or the like is used for the positive electrode current collector 31, and nickel, stainless steel, or the like is used for the negative electrode current collector 35. Moreover, its thickness is 30-80μ. The positive electrode mixture layer 32 consists of a positive electrode active material, carbon black as a conductive material, and a binder. Metal oxides such as manganese dioxide, metal sulfides, or carbon fluoride are used as the positive electrode active material. Polytetrafluoroethylene is used as the binder. On the other hand, the negative electrode 34 is made of lithium or a lithium-based alloy such as a lithium-aluminum alloy. Separator 33
is a nonwoven fabric such as polypropylene. The organic electrolyte used is one in which an inorganic salt such as lithium fluoride or lithium perchlorate is dissolved in an aprotic organic solvent having a high dielectric constant and low viscosity such as r-butyrolactone.

以上のように、本発明によれば、外被包材と集
電体との熱融着の際及び外被包材同志の熱融着の
際に、熱融着性樹脂層にピンホールを生じても、
耐熱性樹脂フイルムが存在するために、集電体と
アルミニウム箔の電気的接触が妨げられて、外被
包材と集電体との短絡を防ぐことができる。ま
た、外被包材と集電体、外被包材の層同志が強い
接着力を持ち、有機電解液の浸透による剥離が生
じない。
As described above, according to the present invention, pinholes are formed in the heat-fusible resin layer when heat-sealing the outer wrapping material and the current collector and when heat-sealing the outer wrapping materials together. Even if it occurs,
The presence of the heat-resistant resin film prevents electrical contact between the current collector and the aluminum foil, thereby preventing a short circuit between the outer wrapping material and the current collector. In addition, the layers of the outer covering material, current collector, and outer covering material have strong adhesive strength, and peeling does not occur due to penetration of the organic electrolyte.

また、両面に金属又は無機物を蒸着した耐熱性
樹脂フイルムを中間層に用いているので、外被包
材の強度が向上すると共に、蒸着層によつて有機
電解液の浸透遮断性が向上し、このため、アルミ
ニウム側熱融着性樹脂としてポリエチレンが使用
できるなど、その樹脂の選択範囲、強度の許容性
が増す。
In addition, since a heat-resistant resin film with metal or inorganic material vapor-deposited on both sides is used as the intermediate layer, the strength of the outer covering material is improved, and the vapor-deposited layer improves the permeability of the organic electrolyte. For this reason, polyethylene can be used as the heat-fusible resin on the aluminum side, increasing the range of resin selection and strength tolerance.

以下、実施例及び比較例により、本発明を説明
する。
The present invention will be explained below with reference to Examples and Comparative Examples.

<実施例> 厚み12μのポリエステルフイルムの両面に500
〜600〓のアルミニウムを蒸着し、この片面に無
水マレイン酸でグラフト変性したポリエチレンを
溶融押出コーテイングすると共に、このコーテイ
ング面に「ポリエステルフイルム/接着剤/アル
ミニウム箔」の層構成を持つ積層材料のアルミニ
ウム箔面を重ねて熱融着した。次いで、このアル
ミニウム蒸着面の他面に無水マレイン酸でグラフ
ト変性したポリエチレンを溶融押出コーテイング
して、「ポリエステルフイルム71/接着剤7
2/アルミニウム箔73/変性ポリエチレン7
4/両面にアルミニウムを蒸着したポリエステル
フイルム75/変性ポリエチレン76」の層構成
を持つ外被包材を得た。この接着強度を調べたと
ころ、最も接着強度の小さいのが両面にアルミニ
ウムを蒸着したポリエステルフイルム75と変性
ポリエチレン76の間で、150〜500g/15mmであ
つた。従つて、この外被包材は、各層間で強固に
接着してとり、経時的又は電池を折り曲げても各
層間で剥離が生じ難いことが分かる。
<Example> 500 on both sides of a 12μ thick polyester film
~600〓 of aluminum is vapor-deposited, one side of which is melt-extruded coated with polyethylene graft-modified with maleic anhydride, and the coated surface is coated with a laminated aluminum material with a layer structure of "polyester film/adhesive/aluminum foil". The foil surfaces were overlapped and heat fused. Next, polyethylene graft-modified with maleic anhydride was melt-extruded coated on the other surface of this aluminum vapor-deposited surface to form "Polyester Film 71/Adhesive 7".
2/Aluminum foil 73/Modified polyethylene 7
An outer covering material having a layer structure of 4/polyester film 75 with aluminum vapor-deposited on both sides/modified polyethylene 76 was obtained. When this adhesive strength was investigated, the lowest adhesive strength was between polyester film 75, which had aluminum deposited on both sides, and modified polyethylene 76, at 150 to 500 g/15 mm. Therefore, it can be seen that in this outer packaging material, each layer is firmly adhered to each other, and peeling between each layer is unlikely to occur over time or even when the battery is bent.

この外被包材を用いて薄型電池を作成したとこ
ろ、電極のつき破りやピンホール発生による外被
包材と集電体との短絡の発生がなく、又、60℃、
相対湿度95%の条件で3ケ月保存した後でも電池
特性の劣化はなく、良好であつた。
When a thin battery was made using this outer casing material, there was no short circuit between the outer casing material and the current collector due to electrode punctures or pinholes, and there was no short circuit between the outer casing material and the current collector at 60°C.
Even after storage for three months at a relative humidity of 95%, there was no deterioration in battery characteristics and the battery remained in good condition.

更にこの外被包材を用いて作成した薄型電池を
使用時を想定してエツジ部分を50回繰り返し折り
曲げをした後、同様に60%、相対湿度95%の条件
で3ケ月保存したところ、包材中のアルミニウム
箔の亀裂による不良が2%発生したが、他は劣化
もなく良好であつた。なお、アルミニウム箔の亀
裂は、水分が侵入してリチウムやリチウム合金と
反応する可能性があることを意味する。
Furthermore, after bending the edges of a thin battery made using this outer packaging material 50 times in preparation for use, the packaging material was stored for 3 months at 60% relative humidity and 95% relative humidity. There were 2% defects due to cracks in the aluminum foil in the material, but the rest were in good condition with no deterioration. Note that cracks in the aluminum foil mean that moisture may enter and react with lithium or lithium alloys.

<比較例> 両面にアルミニウムを蒸着したポリエステルフ
イルムの代わりに、アルミニウムを蒸着していな
いポリエステルフイルムを用いた外は、実施例1
と同様に外被包材を製造した。この外被包材の接
着強度を調べたところ、ポリエステルフイルムと
変性ポリエチレンの間が最も接着強度が小さく、
20〜50g/15mmであつた。従つて、このポリエス
テルフイルムと変性ポリエチレンの間で剥離し易
く、以下に述べる如く、経時的又は折り曲げによ
つて剥離してしまう。
<Comparative Example> Example 1 except that a polyester film on which aluminum was not vapor-deposited was used instead of a polyester film on which aluminum was vapor-deposited on both sides.
An outer packaging material was manufactured in the same manner as in the above. When we investigated the adhesive strength of this outer covering material, we found that the adhesive strength was the lowest between polyester film and modified polyethylene.
It was 20-50g/15mm. Therefore, the polyester film and the modified polyethylene are likely to separate, and as described below, they will separate over time or by bending.

この外被包材を用いて、実施例と同様に薄型電
池を作成したところ、作成直後は電池特性も良好
であつたが、60℃、相対湿度95%の条件で保存し
たところ、保存3日目より内部抵抗が増大しはじ
め、ポリエステルフイルムと変性ポリエチレンの
間で剥離し、侵入した水分により1ケ月以内に全
品が使用不能となつてしまつた。
When a thin battery was created using this outer packaging material in the same manner as in the example, the battery characteristics were good immediately after creation, but when stored at 60°C and 95% relative humidity, it was stored for 3 days. The internal resistance began to increase, the polyester film and the modified polyethylene peeled off, and the moisture that entered made all the products unusable within a month.

また、エツジ部分を折り曲げたものは、その操
作中にポリエステルフイルムと変性ポリエチレン
の間で剥離が生じ、使用不能であつた。
Moreover, in the case where the edge portion was bent, peeling occurred between the polyester film and the modified polyethylene during the operation, making it unusable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の二酸化マンガン/亜
鉛系の扁平薄型電池及びその外被包材の断面図、
第3図はリチウムを負極とした扁平薄型電池の断
面図、第4図及び第6図は従来の外被包材の断面
図、第5図はピンホール部分を説明するための扁
平薄型電池の部分断面図、第7図は本発明の外被
包材の断面図である。 10,30,40,60,70……外被包材、
21,41,71……耐熱性フイルム、22,2
4,26,42,72……接着剤、23,43,
73……アルミニウム箔、44……熱融着性樹
脂、74……アルミニウム箔側熱融着性樹脂、7
5……両面にアルミニウムを蒸着した耐熱性樹脂
フイルム、76……最内面熱融着性樹脂、31…
…正極集電体、32……正極合剤、33……セパ
レーター、34……負極、35……負極集電体。
Figures 1 and 2 are cross-sectional views of a conventional manganese dioxide/zinc-based flat thin battery and its outer packaging material;
Figure 3 is a cross-sectional view of a flat, thin battery with lithium as the negative electrode, Figures 4 and 6 are cross-sectional views of conventional outer packaging materials, and Figure 5 is a cross-sectional view of a flat, thin battery with lithium as a negative electrode. Partial sectional view, FIG. 7 is a sectional view of the outer wrapping material of the present invention. 10, 30, 40, 60, 70...outer packaging material,
21,41,71...Heat-resistant film, 22,2
4, 26, 42, 72...adhesive, 23, 43,
73... Aluminum foil, 44... Heat-fusible resin, 74... Aluminum foil side heat-fusible resin, 7
5...Heat-resistant resin film with aluminum vapor-deposited on both sides, 76...Innermost heat-fusible resin, 31...
...Positive electrode current collector, 32... Positive electrode mixture, 33... Separator, 34... Negative electrode, 35... Negative electrode current collector.

Claims (1)

【特許請求の範囲】 1 二枚又は二つに折り込んだ外被包材に正極集
電体及び負極集電体がそれぞれ熱融着され、この
正極集電体と負極集電体の間に、順に、正極合
剤、有機電解液の含浸したセパレーター、負極が
はさまれ、周囲でこの外被包材同士を接着して密
封すると共に、この外被包材の一部に窓を設け
て、正極集電体と負極集電体が露出している扁平
薄型有機電解液電池において、この外被包材が外
側から耐熱性フイルム、アルミニウム箔、多層構
造の内面接着層から成つて、この内面接着層がア
ルミニウム側熱融着性樹脂と最内面熱融着性樹脂
の間に、両面に金属又は無機物を蒸着した耐熱性
樹脂フイルムを配した少なくとも三層構造から成
り、しかもこの内面接着層が熱融着によつて積層
一体化されていることを特徴とする扁平薄型有機
電解液電池。 2 耐熱性フイルムがポリエステルフイルムであ
ることを特徴とする特許請求の範囲第1項記載の
扁平薄型有機電解液電池。
[Claims] 1. A positive electrode current collector and a negative electrode current collector are heat-sealed to the outer wrapping material folded into two sheets or two, respectively, and between the positive electrode current collector and the negative electrode current collector, In order, the positive electrode mixture, the separator impregnated with an organic electrolyte, and the negative electrode are sandwiched, and the outer packaging materials are adhered and sealed around them, and a window is provided in a part of the outer packaging material. In flat, thin organic electrolyte batteries in which the positive electrode current collector and negative electrode current collector are exposed, this outer covering material consists of a heat-resistant film, aluminum foil, and a multilayer inner adhesive layer from the outside. The layer consists of at least a three-layer structure in which a heat-resistant resin film with metal or inorganic material vapor-deposited on both sides is arranged between the heat-fusible resin on the aluminum side and the heat-fusible resin on the innermost surface, and this inner adhesive layer A flat, thin organic electrolyte battery characterized by being integrated into layers by fusion bonding. 2. The flat and thin organic electrolyte battery according to claim 1, wherein the heat-resistant film is a polyester film.
JP58054620A 1983-03-30 1983-03-30 Flat cell and enclosure thereof Granted JPS59180962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054620A JPS59180962A (en) 1983-03-30 1983-03-30 Flat cell and enclosure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054620A JPS59180962A (en) 1983-03-30 1983-03-30 Flat cell and enclosure thereof

Publications (2)

Publication Number Publication Date
JPS59180962A JPS59180962A (en) 1984-10-15
JPH046071B2 true JPH046071B2 (en) 1992-02-04

Family

ID=12975778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054620A Granted JPS59180962A (en) 1983-03-30 1983-03-30 Flat cell and enclosure thereof

Country Status (1)

Country Link
JP (1) JPS59180962A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830008B2 (en) * 1998-10-30 2006-10-04 ソニー株式会社 Non-aqueous electrolyte battery
JP2004342564A (en) * 2003-05-19 2004-12-02 Toyo Kohan Co Ltd Sheath material for battery
KR100846296B1 (en) * 2006-12-22 2008-07-14 율촌화학 주식회사 Pouch for packing cell and method for preparing the same
JP6652127B2 (en) 2015-03-24 2020-02-19 日本電気株式会社 Secondary battery, method of manufacturing secondary battery, electric vehicle, and power storage system
JP7117188B2 (en) * 2018-08-08 2022-08-12 Fdk株式会社 Storage element

Also Published As

Publication number Publication date
JPS59180962A (en) 1984-10-15

Similar Documents

Publication Publication Date Title
JP6157569B2 (en) Secondary battery and thermal adhesive insulating film for secondary battery
JP3767151B2 (en) Thin battery
US4997732A (en) Battery in a vacuum sealed enveloping material and a process for making the same
JP4774594B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JPH09288996A (en) Nonaqueous electrolyte battery
JPS58198864A (en) Lithium battery
JP2000067907A (en) Electrode structure and battery using it
JPH0458146B2 (en)
JPH11213964A (en) Thin battery and its manufacture
JP2001256933A (en) Battery and battery pack
JP2001250515A (en) Battery
JP2007026901A (en) Film packaged battery
JP3260323B2 (en) Sheet type electrochemical element and method of manufacturing the same
JP4559547B2 (en) Battery case sheet
JP2002151024A (en) Flat type battery
JP2000268789A (en) Sealant for thin battery
JP2001266814A (en) Sheet-shaped battery
JPH10302753A (en) Connection structure of electric collector of pole plate of battery and lead
JPH10289696A (en) Battery and its manufacture
JPH046071B2 (en)
JPS58126664A (en) Electrochemical cell and sealing method therefor
JP2019145724A (en) Electrochemical cell
JPH0339883Y2 (en)
JP2001332240A (en) Lead for battery, and mounting structure of the lead for battery
JP6632831B2 (en) Power storage device