JP2004342564A - Sheath material for battery - Google Patents

Sheath material for battery Download PDF

Info

Publication number
JP2004342564A
JP2004342564A JP2003141038A JP2003141038A JP2004342564A JP 2004342564 A JP2004342564 A JP 2004342564A JP 2003141038 A JP2003141038 A JP 2003141038A JP 2003141038 A JP2003141038 A JP 2003141038A JP 2004342564 A JP2004342564 A JP 2004342564A
Authority
JP
Japan
Prior art keywords
layer
metal
thickness
resin film
conductive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141038A
Other languages
Japanese (ja)
Inventor
Takaaki Okamura
高明 岡村
Kohei Izumi
孝平 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2003141038A priority Critical patent/JP2004342564A/en
Publication of JP2004342564A publication Critical patent/JP2004342564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-walled sheath material for a battery superior in barrier property. <P>SOLUTION: This is the sheath material for the battery composed of a first resin film 2, a metal vapor deposition layer 3 which is formed on the resin film by vapor deposition and having the thickness 200-3,000 A, a conductive coating film layer 4 which is formed on the metal vapor deposition layer by vapor deposition and having the thickness 0.1-2 μm, a metal plating layer 5 which is formed on the conductive coating film layer and having the thickness 0.5-5 μm, and a second resin film 6 installed on the metal plating layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電池用外装材に関し、より詳細には、薄肉でありながらバリヤー性に顕著に優れた電池用外装材に関する。
【0002】
【従来の技術】
電気機器の発達に伴い、その小型化、軽量化が進められており、これらに使用される電池においても小型化、軽量化が求められている。このような観点から電池の電極や電解質等に、高分子材料を使用し、シート状などに薄型化、軽量化したポリマー電池が開発されており、このポリマー電池では、電池自体の厚さを薄くするため、その外装材として積層フィルムを用いて薄型化、軽量化されている。
【0003】
このようなポリマー電池の外装材には、薄さ及び軽さと共に、水分或いは電池内部に存在する電解質等に対するバリヤー性や、熱封緘性等が要求され、従来は、例えば、ポリエステル或いはポリエチレンフィルムでアルミニウム箔を挟んで成る積層フィルムや(例えば特許文献1参照)、或いはエポキシ系樹脂層、金属箔層、熱接着性樹脂層等を積層した積層フィルムが用いられていた(例えば特許文献2参照)。
【0004】
本出願に関する先行技術文献情報として次のものがある。
【特許文献1】
特開2001−332299号公報
【特許文献2】
特開2001−176465号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記積層フィルムにおいては、樹脂フィルムとの積層を容易にすると共に充分なバリヤー性を得るために、厚みが40μm以上の厚肉の金属箔が使用されているため、十分な薄膜化が達成できないばかりか、剛質なため折り返しが容易でない欠点があった。このため充分なバリヤー性を有しながら、より一層薄肉化、軽量化された外装材が望まれている。
従って本発明の目的は、バリヤー性や折り返し性の電池用外装材として必要な機能に優れていると共に、薄肉化された電池用外装材を提供することである。
【0006】
【課題を解決するための手段】
本発明によれば、第一の樹脂フィルム、該第一の樹脂フィルム上に蒸着により形成された厚み200〜3000Åの金属蒸着層、該金属蒸着層上に形成された厚み0.1〜2μmの導電性塗膜層、該導電性塗膜層上に電解めっきにより形成された厚み0.5〜5μmの金属めっき層、該金属めっき層上に設けられた第二の樹脂フィルム層から成ることを特徴とする電池用外装材が提供される。
【0007】
本発明の電池用外装材においては、
1.金属蒸着層と導電性塗膜層の間に、電解めっきによる厚み0.5〜5μmの第二の金属めっき層が形成されていること、
2.第一の樹脂フィルム及び第二の樹脂フィルムを除いた厚みの総和が8μm以下であること、
3.導電性塗膜層の表面電気抵抗が1.3Ω/cm以下であること、
4.金属蒸着層及び金属めっき層が、アルミニウム、ニッケル、すず、亜鉛、銅、クロムの何れかの金属から成ること、
もできる。
【0008】
本発明においては、従来外装材のバリヤー層として使用されていたアルミニウム箔等から成る金属層を、金属蒸着層、導電性塗膜層及び金属めっき層の組み合わせから成るバリヤー層とすることにより、従来40μm以上もあったバリヤー層の厚みを12.3μm以下、特に8μm以下とすることが可能となり、より薄肉化、軽量化された電池用外装材を提供することが可能となるのである。
【0009】
しかも本発明においては、金属蒸着層上に導電塗膜層を形成した後、金属めっき層を形成することにより、均一且つ緻密な金属めっき層を形成することが可能であり、薄肉であっても確実なバリヤー機能を有することが保証されている。すなわち、金属蒸着層に直接電解めっきを行って金属めっき層を形成することも可能であるが、金属蒸着層に欠陥があると、その部分の金属めっき層も欠陥を有することになり、金属蒸着層と金属めっき層のダブル構造にしてもバリヤー性の向上は望めないが、本発明においては、たとえ金属蒸着層に欠陥があったとしても、導電性塗膜によりかかる欠陥が補修されているため、電解めっきに何等影響を与えることがなく、確実なバリヤー層を形成することが可能となるのである。
【0010】
【発明の実施形態】
以下、本発明の電池用外装材を、添付図面に示す具体例に基づいて詳細に説明する。
図1及び図2は本発明の電池用外装材の断面構造の一例を示す図である。
図1に示す全体を1で表す本発明の電池用外装材の一例は、第一の樹脂フィルム2上に金属を蒸着させることにより形成された金属蒸着層3、金属蒸着層3の上に導電性塗料を塗布して硬化させることにより形成された導電性塗膜層4、導電性塗膜層4上に電解めっきすることにより形成された金属めっき層5、金属めっき層5上に形成された第二の樹脂フィルム6から成る。
また図2に示す本発明の外装材の他の例では、金属蒸着層3と導電性塗膜層4の間に、第二の金属めっき層7が形成されている。
【0011】
第一の樹脂フィルム2及び第二の樹脂フィルム6としては、種々の材質のものを用いることができ、特に限定されるものではないが、一般的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ポリエチレン(PE)、アクリル酸やマレイン酸等の不飽和カルボン酸などで変性した酸変性オレフィン樹脂等を使用できる。また、必要に応じ、該フィルム上にプライマーがあってもよい。
本発明において、第一の樹脂フィルム2及び第二の樹脂フィルム6の厚みは、特に限定されるものではないが、電池用外装材に要求される特性、例えば機械的強度、軽量性、薄肉性等に応じて、3〜50μmの範囲にあることが好ましい。更に樹脂フィルムは、延伸或いは未延伸の何れも使用することができ、特に限定されないが、機械的強度を向上させるためには延伸フィルムを用いることが好ましく、金属蒸着層との密着性を向上させるためには未延伸のフィルムを用いることが好適である。
【0012】
金属蒸着層3は、第一の樹脂フィルム2に後述する金属めっき層を形成するために形成されるものであり、樹脂フィルムに金属を蒸着させて金属の蒸着層3を形成しておくことにより、電解めっきによる一定厚みの金属めっき層5を樹脂フィルムに密着性よく設けることが可能となる。
金属蒸着層3は、特にアルミニウム、ニッケル、スズ、亜鉛、銅、クロムのいずれかの金属の蒸着により形成されることが好ましい。
例えば、真空蒸着やスパッタリング、イオンプレーティング等従来公知の物理的蒸着法等により、上記金属の極薄膜をフィルム上に形成して金属蒸着層3を形成することができる。
金属蒸着層3の厚みは、200〜3000Åの範囲にあることが必要であり、上記範囲よりも金属蒸着層の厚みが薄いと、形成された金属の連続性が劣りがちで、バリヤー性が乏しくなり、逆に上記範囲よりも厚い場合、処理時間が長くなり不経済である。
尚、本発明においては、金属蒸着層上に後述する導電性塗膜層4が形成された後、電解めっき処理に付されることから、導電性塗膜層4がめっき液に対するバリヤーとなるためアルミニウム等のめっき液に侵されやすい金属を用いて極薄膜を形成ることも可能である。
【0013】
導電性塗膜層4は、銅、ニッケル、銀等の粉末やカーボン粉末等の少なくとも1種を含有する導電剤を、ビヒクル(例えばエポキシフェノール樹脂)と混合して塗布液を調製し、該塗布液を金属蒸着層3の表面に薄くコーティングして乾燥硬化させることにより形成される。
本発明においては、後述する金属めっきのための導電層として、上記金属蒸着層3と導電性塗膜層4の複合層を採用しているため、上記金属蒸着層3に欠陥があった場合でも導電性塗膜層4がバリヤーとなるため、電解めっきにより欠陥のない金属めっき層5を形成することが可能となる。
導電性塗膜層4の厚みは、硬化後の厚みで0.1〜2μmの範囲にあることが好ましい。上記範囲より薄いと該導電性塗膜の効果が乏しく、一方上記範囲よりも厚い場合には、硬化に時間を要し経済的に不利になり、好ましくない。
また導電性塗膜層の表面電気抵抗は、1.3Ω/cm以下であることが好ましい。1.3Ω/cmよりも大きい表面電気抵抗を有する場合には、この上に金属めっき層を設けることが困難になるからである。
尚、本発明の表面電機抵抗とは、導電性塗膜層を形成させた後、1cm幅のサンプルの測定面上に、1cmの間隔をおいて、+と−端子を接触させて電気抵抗を測定した値である。電気抵抗値を測定する際には、非測定面は絶縁テープで覆い、+と−端子と接触しないようにすることが好ましい。
【0014】
金属めっき層5は、上述した導電性塗膜層上に電解めっき処理により形成される。
金属めっき層5を構成する金属としては、アルミニウム、ニッケル、スズ、銅、亜鉛、クロムを好適に使用できる。
金属めっき層5は、0.5〜5μmの厚みとなるように設けられることが必要であり、上記範囲よりも薄いと電池用外装材に充分なバリヤー性を付与できず、一方上記範囲よりも厚いと軽量化、薄肉化に不利になるばかりでなく、経済性が劣ってくる。
本発明においては、図2に示した通り、金属蒸着層3と導電性塗膜層4の間にも金属めっき層7を形成することができ、これによりバリヤー層を一層強化することが可能となる。
金属めっき層7についても金属めっき層5と同様に、上述した金属から成り、その厚みも0.5〜5μmであることが好ましい。
電解めっき処理は、従来公知の方法により行うことができる。
【0015】
本発明の電池用外装材1は、上記金属めっき層5の上に第二の樹脂フィルム6を設けて成るが、樹脂フィルム6は、金属めっき層5上にプライマーを介して一体化されていてもよい。
プライマーは、樹脂フィルムの種類に応じ、密着性を考慮して慎重に決定すべきである。
【0016】
また電池用外装材のすべての層の積層が完了した後、フィルムの融解開始温度以上の温度に加熱したロールによりフィルムとめっき層の界面を加熱することにより、第一の樹脂フィルム2と金属蒸着層3、第二の樹脂フィルム6と金属めっき層5を密着させることもできる。すなわち、融解開始温度以上にフィルムと金属の界面を加熱して溶融することにより、樹脂の金属蒸着層3又は金属めっき層5への濡れを果たし、顕著に密着性を向上させることが可能となる。
尚、融解開始温度とは、結晶が融解し始める温度であり、本明細書では、示差走査熱量計(PERKIN ELMER社製DSC7)を用いて、窒素雰囲気で5℃/分の昇温速度で結晶の融解に基づく吸熱反応を測定し、吸熱反応が開始した温度を示している。ポリエチレンテレフタレートの場合は、一般的にはフィルムのヒートセットが行われた温度に近い温度が融解開始温度として検出される場合が多い。
【0017】
本発明の電池用外装材1においては、第一の樹脂フィルム2及び第二の樹脂フィルム6を除いた厚みの総和が8μm以下であることが特に好ましい。すなわち、従来の電池用外装材においては、バリヤー性及び積層の点から金属箔単体で40μm程度の厚みを要していたが、本発明の電池用外装材1では、金属蒸着層3、導電性塗膜層4、金属めっき層5の複合により優れたバリヤー性を発現することが可能になり、バリヤー層の厚みを8μm以下に薄肉化することが可能となったものである。
【0018】
本発明の電池用外装材1は、上述した層構成を有する限り種々の形態を採用できるが、非常に薄肉であるので、一般的には上記層構成の積層体を、一端が開口する袋状に成形して使用される。かかる袋状の外装材の内部に電池を構成する材料を収納すると共に、電極端子を内部から開口部を通して外側に延長し、その開口部を熱接着により封止することにより電池が形成される。
【0019】
【実施例】
(実施例1)
第一の樹脂フィルム及び第二の樹脂フィルムとして、厚さ20μmのPPフィルムを使用し、第一の樹脂フィルムの片面に真空蒸着により厚さ500ÅのNi蒸着層を形成し、Ni蒸着層の上にNi粉を導電剤として配合したNi系の塗料を塗布し乾燥して厚み1μmの導電性塗膜層を形成した。
更に導電性塗膜層上に、Niをめっきし、厚み3μmのNiめっき層を形成した。Niめっき層上にプライマーとしてウレタン塗料を塗布(乾燥厚み:0.5μm)して、厚さ20μmのPPフィルムを積層し、これを製袋し電池用外装材とした。
【0020】
(実施例2)
実施例1において、Ni蒸着層と導電性塗膜層の間に厚さ1μmのNiめっき層を形成した以外は、実施例1と同様にして電池用外装材を作成した。
【0021】
(比較例1)
導電性塗膜層を形成しない以外は実施例1と同様にして電池用外装材を作成した。
【0022】
(比較例2)
Ni蒸着層を形成しない以外は実施例1と同様にして電池用外装材を作成した。
【0023】
(比較例3)
Ni蒸着層の厚みを100Åとする以外は実施例1と同様にして電池用外装材を作成した。
【0024】
(比較例4)
導電性塗膜層の厚みを0.05μmとする以外は実施例1と同様にして電池用外装材を作成した。
【0025】
(比較例5)
Niめっき層の厚みを0.3μmとする以外は実施例1と同様にして電池用外装材を作成した。
【0026】
(評価方法)
正極として幅が5cmで、20cm長のAl箔(20μm)に、LiCoO:アセチレンブラック:PVDF=100:8:12(重量比)の組成から成る活物質(50mg/cm)を積層したものを用い、負極として、実施例1〜6及び比較例の幅が5cmで、20cm長の複合集電体に、グラファイト:PVDF=100:11(重量比)の組成から成る活物質(20mg/cm)を積層したものを用い、プロピレンカーボネートとエチレンカーボネートを等重量比で配合した液にLiClOを1モル/L添加した液を該液の1/4重量のポリアクリロニトリル系ポリマーと混ぜて、ゲル化したものをゲル電解質とし、正極の集電体の端の幅方向に0.5cm幅で8cm長のAl(60μm)から成るリードを、負極の集電体の端の幅方向に、同様に、0.5cm幅で8cm長のCu(60μm)から成るリードを接合し、前記実施例及び比較例で示した電池用外装材で包装し、常法により、Li系二次電池とした。
【0027】
該電池を60℃の雰囲気中に6ヶ月放置後、充電終了電圧=4.2V、放電終了電圧=2V、充放電速度=0.2Cの条件下で25℃で定電流充放電を行い、経時前後の放電容量(=電池容量1)を測定した。実施例1の経時前の放電容量に対する経時後の実施例1〜2、比較例1〜5の放電容量の百分率(ここでは保存率という)を求め、該保存率が99%以上を良好とした。
実施例1、2は良好であったが、比較例1〜5はいずれも保存率は99%未満で不良であった。
【0028】
(実施例及び比較例の保存率)
実施例1:99.6%
実施例2:99.8%
比較例1:92.1%
比較例2:93.4%
比較例3:94.8%
比較例4:96.3%
比較例5:98.3%
【0029】
【発明の効果】
本発明の電池用外装材によれば、第一の樹脂フィルム、該第一の樹脂フィルム上に蒸着により形成された厚み200〜3000Åの金属蒸着層、該金属蒸着層上に形成された厚み0.1〜2μmの導電性塗膜層、該導電性塗膜層上に電解めっきにより形成された厚み0.5〜5μmの金属めっき層、該金属めっき層上に設けられた第二の樹脂フィルム層から成ることにより、樹脂フィルム層を除く厚みの総和が薄肉でありながら、バリヤー性などの電池用外装材に要求される性能に顕著に優れている。
【図面の簡単な説明】
【図1】本発明の電池用外装材の一例の断面構造を示す図である。
【図2】本発明の電池用外装材の他の一例の断面構造を示す図である。
【符号の説明】
1 電池用外装材、2 第一の樹脂フィルム、3 金属蒸着層、4 導電性塗膜層、 5 金属めっき層、6 第二の樹脂フィルム、7 金属めっき層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery exterior material, and more particularly, to a battery exterior material that is thin and has remarkably excellent barrier properties.
[0002]
[Prior art]
With the development of electric devices, miniaturization and weight reduction are being promoted, and batteries used in these devices are also required to be miniaturized and lightened. From this point of view, polymer batteries have been developed that use polymer materials for the electrodes and electrolytes of the batteries, and have been made thinner and lighter, such as in sheet form, and in this polymer battery, the thickness of the batteries themselves has been reduced. Therefore, the thickness and weight have been reduced by using a laminated film as the exterior material.
[0003]
The exterior material of such a polymer battery is required to have not only thinness and lightness, but also a barrier property against moisture or an electrolyte present inside the battery, a heat sealing property, and the like. Conventionally, for example, a polyester or polyethylene film is used. A laminated film sandwiching an aluminum foil or a laminated film in which an epoxy-based resin layer, a metal foil layer, a heat-adhesive resin layer, and the like are laminated (for example, see Patent Document 2) has been used. .
[0004]
Prior art document information on the present application includes the following.
[Patent Document 1]
JP 2001-332299 A [Patent Document 2]
JP 2001-176465 A [0005]
[Problems to be solved by the invention]
However, in the above-mentioned laminated film, a thick metal foil having a thickness of 40 μm or more is used in order to facilitate lamination with the resin film and obtain sufficient barrier properties. Not only is it not possible, but also has the drawback that it is difficult to turn it back because of its rigidity. For this reason, there is a demand for a further thinner and lighter exterior material having sufficient barrier properties.
Accordingly, an object of the present invention is to provide a thinner battery packaging material which is excellent in functions required as a barrier or foldable battery packaging material.
[0006]
[Means for Solving the Problems]
According to the present invention, a first resin film, a metal deposited layer having a thickness of 200 to 3000 ° formed by vapor deposition on the first resin film, and a 0.1 to 2 μm thick formed on the metal deposited layer. A conductive coating layer, a metal plating layer having a thickness of 0.5 to 5 μm formed by electrolytic plating on the conductive coating layer, and a second resin film layer provided on the metal plating layer. A battery exterior material is provided.
[0007]
In the battery exterior material of the present invention,
1. A second metal plating layer having a thickness of 0.5 to 5 μm formed by electrolytic plating is formed between the metal deposition layer and the conductive coating layer,
2. The total thickness excluding the first resin film and the second resin film is 8 μm or less,
3. The surface electrical resistance of the conductive coating layer is 1.3 Ω / cm or less;
4. The metal deposition layer and the metal plating layer are made of any one of aluminum, nickel, tin, zinc, copper, and chromium;
You can also.
[0008]
In the present invention, the metal layer made of aluminum foil or the like, which has been conventionally used as the barrier layer of the exterior material, is changed to a barrier layer composed of a combination of a metal deposition layer, a conductive coating layer, and a metal plating layer. The thickness of the barrier layer, which was 40 μm or more, can be reduced to 12.3 μm or less, particularly 8 μm or less, so that a thinner and lighter battery packaging material can be provided.
[0009]
Moreover, in the present invention, a uniform and dense metal plating layer can be formed by forming the metal coating layer after forming the conductive coating layer on the metal deposition layer, It is guaranteed to have a reliable barrier function. That is, it is possible to form a metal plating layer by directly performing electrolytic plating on the metal deposition layer, but if the metal deposition layer has a defect, the metal plating layer in that portion also has a defect, and the metal deposition layer has a defect. Although improvement in barrier properties cannot be expected even with a double structure of the layer and the metal plating layer, in the present invention, even if there is a defect in the metal deposition layer, such a defect is repaired by the conductive coating film. In addition, it is possible to form a reliable barrier layer without affecting the electrolytic plating at all.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the battery exterior material of the present invention will be described in detail based on specific examples shown in the accompanying drawings.
1 and 2 are views showing an example of the cross-sectional structure of the battery exterior material of the present invention.
As shown in FIG. 1, one example of the battery exterior material of the present invention represented by 1 is a metal-deposited layer 3 formed by depositing a metal on the first resin film 2, and a conductive material on the metal-deposited layer 3. Conductive coating layer 4 formed by applying and curing a conductive paint, metal plating layer 5 formed by electrolytic plating on conductive coating layer 4, and formed on metal plating layer 5. It is composed of a second resin film 6.
Further, in another example of the exterior material of the present invention shown in FIG. 2, a second metal plating layer 7 is formed between the metal deposition layer 3 and the conductive coating layer 4.
[0011]
As the first resin film 2 and the second resin film 6, various materials can be used and are not particularly limited, but generally, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyethylene (PE), acid-modified olefin resins modified with unsaturated carboxylic acids such as acrylic acid and maleic acid, and the like can be used. If necessary, a primer may be provided on the film.
In the present invention, the thicknesses of the first resin film 2 and the second resin film 6 are not particularly limited, but the characteristics required for the battery exterior material, such as mechanical strength, light weight, and thinness It is preferably in the range of 3 to 50 μm depending on the conditions. Further, the resin film can be used either stretched or unstretched, and is not particularly limited, but it is preferable to use a stretched film in order to improve mechanical strength, and to improve adhesion with a metal deposition layer. For this purpose, it is preferable to use an unstretched film.
[0012]
The metal deposition layer 3 is formed to form a metal plating layer described later on the first resin film 2, and is formed by depositing a metal on the resin film to form the metal deposition layer 3. In addition, the metal plating layer 5 having a certain thickness by electrolytic plating can be provided on the resin film with good adhesion.
The metal vapor deposition layer 3 is preferably formed by vapor deposition of any one of aluminum, nickel, tin, zinc, copper, and chromium.
For example, the metal vapor deposition layer 3 can be formed by forming an extremely thin film of the above metal on a film by a conventionally known physical vapor deposition method such as vacuum vapor deposition, sputtering, or ion plating.
The thickness of the metal deposition layer 3 needs to be in the range of 200 to 3000 °, and if the thickness of the metal deposition layer is smaller than the above range, the continuity of the formed metal tends to be poor, and the barrier property is poor. On the other hand, if the thickness is larger than the above range, the processing time becomes longer, which is uneconomical.
In the present invention, since a conductive coating layer 4 described later is formed on the metal deposition layer and then subjected to electrolytic plating, the conductive coating layer 4 serves as a barrier to a plating solution. It is also possible to form an extremely thin film using a metal that is easily affected by a plating solution such as aluminum.
[0013]
The conductive coating layer 4 is prepared by mixing a conductive agent containing at least one of powders such as copper, nickel and silver and carbon powder with a vehicle (for example, an epoxy phenol resin) to prepare a coating solution. It is formed by coating the liquid thinly on the surface of the metal deposition layer 3 and drying and curing it.
In the present invention, since a composite layer of the above-described metal deposition layer 3 and the conductive coating layer 4 is employed as a conductive layer for metal plating to be described later, even if the metal deposition layer 3 has a defect, Since the conductive coating film layer 4 serves as a barrier, it is possible to form the metal plating layer 5 having no defect by electrolytic plating.
The thickness of the conductive coating layer 4 is preferably in the range of 0.1 to 2 [mu] m after curing. When the thickness is smaller than the above range, the effect of the conductive coating film is poor. On the other hand, when the thickness is larger than the above range, it takes time for curing and becomes economically disadvantageous.
Further, the surface electric resistance of the conductive coating layer is preferably 1.3 Ω / cm or less. This is because, if the surface electric resistance is higher than 1.3 Ω / cm, it becomes difficult to provide a metal plating layer thereon.
In addition, the surface electric resistance of the present invention means that after the conductive coating layer is formed, the positive and negative terminals are brought into contact with each other at intervals of 1 cm on the measurement surface of the sample having a width of 1 cm to reduce the electric resistance. It is a measured value. When measuring the electric resistance value, it is preferable that the non-measurement surface is covered with an insulating tape so as not to contact the + and-terminals.
[0014]
The metal plating layer 5 is formed on the above-mentioned conductive coating layer by electrolytic plating.
Aluminum, nickel, tin, copper, zinc, and chromium can be suitably used as the metal constituting the metal plating layer 5.
The metal plating layer 5 needs to be provided so as to have a thickness of 0.5 to 5 μm. If the thickness is smaller than the above range, sufficient barrier properties cannot be imparted to the battery exterior material. Thickness is not only disadvantageous for weight reduction and thinning, but also inferior in economic efficiency.
In the present invention, as shown in FIG. 2, a metal plating layer 7 can also be formed between the metal deposition layer 3 and the conductive coating layer 4, thereby making it possible to further strengthen the barrier layer. Become.
Like the metal plating layer 5, the metal plating layer 7 is made of the above-described metal, and preferably has a thickness of 0.5 to 5 μm.
The electrolytic plating can be performed by a conventionally known method.
[0015]
The battery exterior material 1 of the present invention has a second resin film 6 provided on the metal plating layer 5. The resin film 6 is integrated on the metal plating layer 5 via a primer. Is also good.
The primer should be carefully determined according to the type of the resin film in consideration of the adhesion.
[0016]
After the lamination of all the layers of the battery exterior material is completed, the interface between the film and the plating layer is heated by a roll heated to a temperature equal to or higher than the melting start temperature of the film, so that the first resin film 2 and the metal The layer 3, the second resin film 6, and the metal plating layer 5 can be adhered to each other. That is, by heating and melting the interface between the film and the metal at a temperature equal to or higher than the melting start temperature, the resin is wetted to the metal deposition layer 3 or the metal plating layer 5, and the adhesion can be significantly improved. .
The melting start temperature is a temperature at which the crystal starts to melt. In this specification, the crystal is heated at a rate of 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC7 manufactured by PERKIN ELMER). The endothermic reaction based on the melting of is measured and shows the temperature at which the endothermic reaction started. In the case of polyethylene terephthalate, generally, a temperature close to the temperature at which the film was heat-set is often detected as the melting start temperature.
[0017]
In the battery packaging material 1 of the present invention, the total thickness excluding the first resin film 2 and the second resin film 6 is particularly preferably 8 μm or less. That is, in the conventional battery packaging material, the metal foil alone required a thickness of about 40 μm from the viewpoint of barrier properties and lamination, but in the battery packaging material 1 of the present invention, the metal deposition layer 3 and the conductive The composite of the coating layer 4 and the metal plating layer 5 makes it possible to exhibit excellent barrier properties, and the thickness of the barrier layer can be reduced to 8 μm or less.
[0018]
The battery packaging material 1 of the present invention can adopt various forms as long as it has the above-mentioned layer configuration. However, since it is very thin, a laminate having the above-mentioned layer configuration is generally formed into a bag-like shape having an open end. It is used after molding. A battery is formed by housing the material constituting the battery inside such a bag-like exterior material, extending the electrode terminals from the inside to the outside through the opening, and sealing the opening by thermal bonding.
[0019]
【Example】
(Example 1)
As the first resin film and the second resin film, a PP film having a thickness of 20 μm is used, and a Ni vapor-deposited layer having a thickness of 500 ° is formed on one surface of the first resin film by vacuum vapor deposition. Was coated with a Ni-based paint containing Ni powder as a conductive agent, and dried to form a conductive coating layer having a thickness of 1 μm.
Further, Ni was plated on the conductive coating layer to form a Ni plating layer having a thickness of 3 μm. A urethane paint was applied as a primer on the Ni plating layer (dry thickness: 0.5 μm), and a PP film having a thickness of 20 μm was laminated.
[0020]
(Example 2)
A battery exterior material was prepared in the same manner as in Example 1, except that a 1-μm-thick Ni plating layer was formed between the Ni vapor-deposited layer and the conductive coating layer.
[0021]
(Comparative Example 1)
An exterior material for a battery was prepared in the same manner as in Example 1, except that the conductive coating layer was not formed.
[0022]
(Comparative Example 2)
A battery exterior material was prepared in the same manner as in Example 1 except that the Ni vapor-deposited layer was not formed.
[0023]
(Comparative Example 3)
A battery exterior material was prepared in the same manner as in Example 1 except that the thickness of the Ni vapor-deposited layer was changed to 100 °.
[0024]
(Comparative Example 4)
A battery packaging material was prepared in the same manner as in Example 1 except that the thickness of the conductive coating layer was set to 0.05 μm.
[0025]
(Comparative Example 5)
A battery exterior material was prepared in the same manner as in Example 1 except that the thickness of the Ni plating layer was changed to 0.3 μm.
[0026]
(Evaluation method)
A positive electrode obtained by laminating an active material (50 mg / cm 2 ) having a composition of LiCoO 2 : acetylene black: PVDF = 100: 8: 12 (weight ratio) on an aluminum foil (20 μm) having a width of 5 cm and a length of 20 cm as a positive electrode. As a negative electrode, an active material (20 mg / cm) having a composition of graphite: PVDF = 100: 11 (weight ratio) was applied to a composite current collector having a width of 5 cm and a length of 20 cm in Examples 1 to 6 and Comparative Example as a negative electrode. 2 ) Using a layered product of the above, a liquid obtained by adding 1 mol / L of LiClO 4 to a liquid in which propylene carbonate and ethylene carbonate are mixed at an equal weight ratio is mixed with a 1/4 weight of a polyacrylonitrile-based polymer of the liquid, The gelled material is used as a gel electrolyte, and a 0.5 cm wide and 8 cm long Al (60 μm) lead is inserted in the width direction of the end of the current collector of the positive electrode, and the current collection of the negative electrode is performed. Similarly, a lead made of Cu (60 μm) having a width of 0.5 cm and a length of 8 cm is joined in the width direction of the end, and the package is wrapped with the battery packaging material shown in the above Examples and Comparative Examples. A Li secondary battery was used.
[0027]
After leaving the battery in an atmosphere of 60 ° C. for 6 months, a constant current charge / discharge was performed at 25 ° C. under the conditions of a charge end voltage = 4.2 V, a discharge end voltage = 2 V, and a charge / discharge rate = 0.2 C. The discharge capacity before and after (= battery capacity 1) was measured. The percentage (herein referred to as storage rate) of the discharge capacity of Examples 1 and 2 and Comparative Examples 1 to 5 after aging with respect to the discharge capacity before aging of Example 1 was determined, and the storage rate was 99% or more. .
Examples 1 and 2 were good, but Comparative Examples 1 to 5 were all poor with a storage rate of less than 99%.
[0028]
(Preservation rate of Examples and Comparative Examples)
Example 1: 99.6%
Example 2: 99.8%
Comparative Example 1: 92.1%
Comparative Example 2: 93.4%
Comparative Example 3: 94.8%
Comparative Example 4: 96.3%
Comparative Example 5: 98.3%
[0029]
【The invention's effect】
According to the battery packaging material of the present invention, a first resin film, a metal-deposited layer having a thickness of 200 to 3000 ° formed by vapor deposition on the first resin film, and a thickness of 0 mm formed on the metal-deposited layer A conductive coating layer having a thickness of 1 to 2 μm, a metal plating layer having a thickness of 0.5 to 5 μm formed on the conductive coating layer by electrolytic plating, and a second resin film provided on the metal plating layer By being composed of the layers, the total thickness excluding the resin film layer is thin, but the performance required for the battery exterior material such as barrier properties is remarkably excellent.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of an example of a battery exterior material of the present invention.
FIG. 2 is a view showing a cross-sectional structure of another example of the battery package material of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 battery exterior material, 2 first resin film, 3 metal deposition layer, 4 conductive coating layer, 5 metal plating layer, 6 second resin film, 7 metal plating layer

Claims (5)

第一の樹脂フィルム、該第一の樹脂フィルム上に蒸着により形成された厚み200〜3000Åの金属蒸着層、該金属蒸着層上に形成された厚み0.1〜2μmの導電性塗膜層、該導電性塗膜層上に電解めっきにより形成された厚み0.5〜5μmの金属めっき層、該金属めっき層上に設けられた第二の樹脂フィルム層から成ることを特徴とする電池用外装材。A first resin film, a metal deposited layer having a thickness of 200 to 3000 ° formed by vapor deposition on the first resin film, a conductive coating layer having a thickness of 0.1 to 2 μm formed on the metal deposited layer, A battery casing comprising: a metal plating layer having a thickness of 0.5 to 5 μm formed by electrolytic plating on the conductive coating layer; and a second resin film layer provided on the metal plating layer. Wood. 前記金属蒸着層と導電性塗膜層の間に、電解めっきによる厚み0.5〜5μmの第二の金属めっき層が形成されている請求項1記載の電池用外装材。The battery exterior material according to claim 1, wherein a second metal plating layer having a thickness of 0.5 to 5 µm is formed by electrolytic plating between the metal deposition layer and the conductive coating layer. 前記第一の樹脂フィルム及び第二の樹脂フィルムを除いた厚みの総和が8μm以下である請求項1又は2記載の電池用外装材。The battery packaging material according to claim 1 or 2, wherein the total thickness excluding the first resin film and the second resin film is 8 µm or less. 前記導電性塗膜層の表面電気抵抗が1.3Ω/cm以下である請求項1乃至3の何れかに記載の電池用外装材。The battery exterior material according to any one of claims 1 to 3, wherein a surface electric resistance of the conductive coating layer is 1.3 Ω / cm or less. 前記金属蒸着層及び金属めっき層が、アルミニウム、ニッケル、すず、亜鉛、銅、クロムの何れかの金属から成る請求項1乃至4の何れかに記載の電池用外装材。The battery exterior material according to any one of claims 1 to 4, wherein the metal deposition layer and the metal plating layer are made of any one of aluminum, nickel, tin, zinc, copper, and chromium.
JP2003141038A 2003-05-19 2003-05-19 Sheath material for battery Pending JP2004342564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141038A JP2004342564A (en) 2003-05-19 2003-05-19 Sheath material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141038A JP2004342564A (en) 2003-05-19 2003-05-19 Sheath material for battery

Publications (1)

Publication Number Publication Date
JP2004342564A true JP2004342564A (en) 2004-12-02

Family

ID=33529563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141038A Pending JP2004342564A (en) 2003-05-19 2003-05-19 Sheath material for battery

Country Status (1)

Country Link
JP (1) JP2004342564A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095461A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet and battery
JP2007095460A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet and battery
JP2013222687A (en) * 2012-04-19 2013-10-28 Gs Yuasa Corp Battery
KR20150110324A (en) * 2014-03-24 2015-10-02 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
WO2016194268A1 (en) * 2015-05-29 2016-12-08 パナソニックIpマネジメント株式会社 Film exterior body for batteries, and battery having same
JP2020507891A (en) * 2017-09-19 2020-03-12 エルジー・ケム・リミテッド Pouch type battery case including heat dissipation layer
KR20210148281A (en) 2019-06-10 2021-12-07 닛폰세이테츠 가부시키가이샤 Battery case and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180962A (en) * 1983-03-30 1984-10-15 Toppan Printing Co Ltd Flat cell and enclosure thereof
JPS60162362U (en) * 1984-04-05 1985-10-28 日立マクセル株式会社 Thin lithium solid electrolyte secondary battery
JPH11213966A (en) * 1998-01-27 1999-08-06 Sumitomo Bakelite Co Ltd Battery
JP2000235850A (en) * 1999-02-16 2000-08-29 Hitachi Maxell Ltd Layered polymer electrolyte battery
JP2000251870A (en) * 1999-02-26 2000-09-14 Hitachi Maxell Ltd Layered type polymer electrolyte battery
JP2000251854A (en) * 1999-02-25 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2000251857A (en) * 1999-03-02 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2001185096A (en) * 1999-12-22 2001-07-06 Sony Corp Cell and method of manufacturing the same
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180962A (en) * 1983-03-30 1984-10-15 Toppan Printing Co Ltd Flat cell and enclosure thereof
JPS60162362U (en) * 1984-04-05 1985-10-28 日立マクセル株式会社 Thin lithium solid electrolyte secondary battery
JPH11213966A (en) * 1998-01-27 1999-08-06 Sumitomo Bakelite Co Ltd Battery
JP2000235850A (en) * 1999-02-16 2000-08-29 Hitachi Maxell Ltd Layered polymer electrolyte battery
JP2000251854A (en) * 1999-02-25 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2000251870A (en) * 1999-02-26 2000-09-14 Hitachi Maxell Ltd Layered type polymer electrolyte battery
JP2000251857A (en) * 1999-03-02 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP2001185096A (en) * 1999-12-22 2001-07-06 Sony Corp Cell and method of manufacturing the same
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095461A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet and battery
JP2007095460A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet and battery
JP2013222687A (en) * 2012-04-19 2013-10-28 Gs Yuasa Corp Battery
KR20150110324A (en) * 2014-03-24 2015-10-02 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
KR102325252B1 (en) * 2014-03-24 2021-11-10 쇼와 덴코 패키징 가부시키가이샤 Exterior for electrochemical device and electrochemical device
WO2016194268A1 (en) * 2015-05-29 2016-12-08 パナソニックIpマネジメント株式会社 Film exterior body for batteries, and battery having same
JP2020507891A (en) * 2017-09-19 2020-03-12 エルジー・ケム・リミテッド Pouch type battery case including heat dissipation layer
JP7041796B2 (en) 2017-09-19 2022-03-25 エルジー エナジー ソリューション リミテッド Pouch-shaped battery case including heat dissipation layer
US11289751B2 (en) 2017-09-19 2022-03-29 Lg Energy Solution, Ltd. Pouch-shaped battery case comprising heat dissipation layer
KR20210148281A (en) 2019-06-10 2021-12-07 닛폰세이테츠 가부시키가이샤 Battery case and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4038699B2 (en) Lithium ion battery
JP5382130B2 (en) Method for producing solid electrolyte battery
US9105931B2 (en) Positive electrode plate for use in lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
AU2012321339B2 (en) Graphene current collectors in batteries for portable electronic devices
JP5684462B2 (en) Positive electrode tab lead and battery
JP5200367B2 (en) Bipolar battery electrode
JP4649993B2 (en) Lithium secondary battery and manufacturing method thereof
JP3428448B2 (en) Electrode structure and battery using the same
US20120094176A1 (en) Power-Optimized And Energy-Density-Optimized Flat Electrodes For Electrochemcal Energy Stores
CN108140760B (en) Electrical storage device
JP2009004181A (en) Electrode for battery
JP2003282064A (en) Compound current collector
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
CN112397722A (en) Composite base material, preparation method of composite base material, battery and electric vehicle
JP2005158264A (en) Bipolar battery
JP2006147300A (en) Battery
JP2004342564A (en) Sheath material for battery
JP4381176B2 (en) Thin film solid secondary battery
JP2001043893A (en) Whole solid secondary battery and its manufacture
JP2006173079A (en) Battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JP2001076689A (en) Electrochemical device and its manufacture
JPH1140114A (en) Nonaqueous electrolyte battery
JP6632831B2 (en) Power storage device
JP2002151023A (en) Flat type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106